
ar
X

iv
:1

80
3.

08
77

7v
1 

 [
cs

.D
S]

  2
3 

M
ar

 2
01

8

Data Streams with Bounded Deletions

Rajesh Jayaram

Carnegie Mellon University

rkjayara@cs.cmu.edu

David P. Woodruff

Carnegie Mellon University

dwoodruf@cs.cmu.edu

Abstract

Two prevalent models in the data stream literature are the insertion-only and turnstile
models. Unfortunately, many important streaming problems require a Θ(log(n)) multiplicative
factor more space for turnstile streams than for insertion-only streams. This complexity gap
often arises because the underlying frequency vector f is very close to 0, after accounting for all
insertions and deletions to items. Signal detection in such streams is difficult, given the large
number of deletions.

In this work, we propose an intermediate model which, given a parameter α ≥ 1, lower
bounds the norm ‖f‖p by a 1/α-fraction of the Lp mass of the stream had all updates been

positive. Here, for a vector f , ‖f‖p = (
∑n

i=1
|fi|p)1/p, and the value of p we choose depends on

the application. This gives a fluid medium between insertion only streams (with α = 1), and
turnstile streams (with α = poly(n)), and allows for analysis in terms of α.

We show that for streams with this α-property, for many fundamental streaming problems
we can replace a O(log(n)) factor in the space usage for algorithms in the turnstile model
with a O(log(α)) factor. This is true for identifying heavy hitters, inner product estimation,
L0 estimation, L1 estimation, L1 sampling, and support sampling. For each problem, we give
matching or nearly matching lower bounds for α-property streams. We note that in practice,
many important turnstile data streams are in fact α-property streams for small values of α.
For such applications, our results represent significant improvements in efficiency for all the
aforementioned problems.
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1 Introduction

Data streams have become increasingly important in modern applications, where the sheer size of a
dataset imposes stringent restrictions on the resources available to an algorithm. Examples of such
datasets include internet traffic logs, sensor networks, financial transaction data, database logs, and
scientific data streams (such as huge experiments in particle physics, genomics, and astronomy).
Given their prevalence, there is a substantial body of literature devoted to designing extremely
efficient one-pass algorithms for important data stream problems. We refer the reader to [9, 50] for
surveys of these algorithms and their applications.

Formally, a data stream is given by an underlying vector f ∈ Rn, called the frequency vector,
which is initialized to 0n. The frequency vector then receives a stream of m updates of the form
(it,∆t) ∈ [n] × {−M, . . . ,M} for some M > 0 and t ∈ [m]. The update (i,∆) causes the change
fit ← fit+∆t. For simplicity, we make the common assumption that log(mM) = O(log(n)), though
our results generalize naturally to arbitrary n,m [12].

Two well-studied models in the data stream literature are the insertion-only model and the
turnstile model. In the former model, it is required that ∆t > 0 for all t ∈ [m], whereas in the
latter ∆t can be any integer in {−M, . . . ,M}. It is known that there are significant differences
between these models. For instance, identifying an index i ∈ [n] for which |xi| > 1
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∑n
j=1 |xj | can

be accomplished with only O(log(n)) bits of space in the insertion-only model [10], but requires
Ω(log2(n)) bits in the turnstile model [38]. This log(n) gap between the complexity in the two
models occurs in many other important streaming problems.

Due to this “complexity gap”, it is perhaps surprising that no intermediate streaming model
had been systematically studied in the literature before. For motivation on the usefulness of such
a model, we note that nearly all of the lower bounds for turnstile streams involve inserting a large
number of items before deleting nearly all of them [41, 38, 39, 37]. This behavior seems unlikely in
practice, as the resulting norm ‖f‖p becomes arbitrarily small regardless of the size of the stream.
In this paper, we introduce a new model which avoids the lower bounds for turnstile streams by
lower bounding the norm ‖f‖p. We remark that while similar notions of bounded deletion streams
have been considered for their practical applicability [26] (see also [21], where a bound on the
maximum number of edges that could be deleted in a graph stream was useful), to the best of our
knowledge there is no comprehensive theoretical study of data stream algorithms in this setting.

Formally, we define the insertion vector I ∈ Rn to be the frequency vector of the substream of
positive updates (∆t ≥ 0), and the deletion vector D ∈ Rn to be the entry-wise absolute value of
the frequency vector of the substream of negative updates. Then f = I − D by definition. Our
model is as follows.

Definition 1. For α ≥ 1 and p ≥ 0, a data stream f satisfies the Lp α-property if ‖I+D‖p ≤ α‖f‖p.

For p = 1, the definition simply asserts that the final L1 norm of f must be no less than a
1/α fraction of the total weight of updates in the stream

∑m
t=1 |∆t|. For strict turnstile streams,

this is equivalent to the number of deletions being less than a (1− 1/α) fraction of the number of
insertions, hence a bounded deletion stream.

For p = 0, the α-property simply states that ‖f‖0, the number of non-zero coordinates at the
end of the stream, is no smaller than a 1/α fraction of the number of distinct elements seen in the
stream (known as the F0 of the stream). Importantly, note that for both cases this constraint need
only hold at the time of query, and not necessarily at every point in the stream.

Observe for α = 1, we recover the insertion-only model, whereas for α = mM in the L1 case
or α = n in the L0 case we recover the turnstile model (with the minor exception of streams with
‖f‖p = 0). So α-property streams are a natural parameterized intermediate model between the
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Problem Turnstile L.B. α-Property U.B. Citation Notes

ǫ-Heavy Hitters Ω(ǫ−1 log2(n)) O(ǫ−1 log(n) log(α)) [38]
Strict-turnstile
succeeds w.h.p.

ǫ-Heavy Hitters Ω(ǫ−1 log2(n)) O(ǫ−1 log(n) log(α)) [38]
General-turnstile

δ = O(1)

Inner Product Ω(ǫ−1 log(n)) O(ǫ−1 log(α)) Theorem 21 General-turnstile

L1 Estimation Ω(log(n)) O(log(α)) Theorem 16 Strict-turnstile

L1 Estimation Ω(ǫ−2 log(n))
O(ǫ−2 log(α))
+ log(n))

[39] General-turnstile

L0 Estimation Ω(ǫ−2 log(n))
O(ǫ−2 log(α))
+ log(n))

[39] General-turnstile

L1 Sampling Ω(log2(n)) O(log(n) log(α)) [38] General-turnstile (∗)
Support Sampling Ω(log2(n)) O(log(n) log(α)) [41] Strict-turnstile

Figure 1: The best known lower bounds (L.B.) for classic data stream problems in the turnstile
model, along with the upper bounds (U.B.) for α-property streams from this paper. The notes
specify whether an U.B./L.B. pair applies to the strict or general turnstile model. For simplicity,
we have suppressed log log(n) and log(1/ǫ) terms, and all results are for δ = O(1) failure probability,
unless otherwise stated. (∗) L1 sampling note: strong α-property, with ǫ = Θ(1) for both U.B. &
L.B.

insertion-only and turnstile models. For clarity, we use the term unbounded deletion stream to refer
to a (general or strict) turnstile stream which does not satisfy the α property for α = o(n).

For many applications of turnstile data streaming algorithms, the streams in question are in fact
α-property streams for small values of α. For instance, in network traffic monitoring it is useful to
estimate differences between network traffic patterns across distinct time intervals or routers [50].
If f1i , f

2
i represent the number of packets sent between the i-th [source, destination] IP address pair

in the first and second intervals (or routers), then the stream in question is f1 − f2. In realistic
systems, the traffic behavior will not be identical across days or routers, and even differences as
small as 0.1% in overall traffic behavior (i.e. ‖f1 − f2‖1 > .001‖f1 + f2‖1) will result in α < 1000
(which is significantly smaller than the theoretical universe size of n ≈ 2256 potential IP addresses
pairs in IPv6).

A similar case for small α can be made for differences between streams whenever these differences
are not arbitrarily small. This includes applications in streams of financial transactions, sensor
network data, and telecommunication call records [34, 20], as well as for identifying newly trending
search terms, detecting DDoS attacks, and estimating the spread of malicious worms [51, 24, 48,
44, 58].

A setting in which α is likely even smaller is database analytics. For instance, an important
tool for database synchronization is Remote Differential Compression (RDC)[55, 3], which allows
similar files to be compared between a client and server by transmitting only the differences between
them. For files given by large data streams, one can feed these differences back into sketches of the
file to complete the synchronization. Even if as much as a half of the file must be resynchronized
between client and sever (an inordinately large fraction for typical RDC applications), streaming
algorithms with α = 2 would suffice to recover the data.

For L0, there are important applications of streams with bounded ratio α = F0/L0. For example,
L0 estimation is applicable to networks of cheap moving sensors, such as those monitoring wildlife
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movement or water-flow patterns [34]. In such networks, some degree of clustering is expected (in
regions of abundant food, points of water-flow accumulation), and these clusters will be consistently
occupied by sensors, resulting in a bounded ratio of inactive to active regions. Furthermore, in
networking one often needs to estimate the number of distinct IP addresses with active network
connections at a given time [27, 50]. Here we also observe some degree of clustering on high-activity
IP’s, with persistently active IP’s likely resulting in an L0 to F0 ratio much larger than 1/n (where
n is the universe size of IP addresses).

In many of the above applications, α can even be regarded as a constant when compared with
n. For such applications, the space improvements detailed in Figure 1 are considerable, and reduce
the space complexity of the problems nearly or exactly to known upper bounds for insertion-only
streams [10, 49, 40, 38].

Finally, we remark that in some cases it is not unreasonable to assume that the magnitude of
every coordinate would be bounded by some fraction of the updates to it. For instance, in the
case of RDC it is seems likely that none of the files would be totally removed. We summarize this
stronger guarantee as the strong α-property.

Definition 2. For α ≥ 1, a data stream f satisfies the strong α-property if Ii +Di ≤ α|fi| for all
i ∈ [n].

Note that this property is strictly stronger that the Lp α-property for any p ≥ 0. In particular,
it forces fi 6= 0 if i is updated in the stream. In this paper, however, we focus primarily on the
more general α-property of Definition 1, and use α-property to refer to Definition 1 unless otherwise
explicitly stated. Nevertheless, we show that our lower bounds for Lp heavy hitters, L1 estimation,
L1 sampling, and inner product estimation, all hold even for the more restricted strong α-property
streams.

1.1 Our Contributions

We show that for many well-studied streaming problems, we can replace a log(n) factor in algorithms
for general turnstile streams with a log(α) factor for α-property streams. This is a significant
improvement for small values of α. Our upper bound results, along with the lower bounds for the
unbounded deletion case, are given in Figure 1. Several of our results come from the introduction
of a new data structure, CSSampSim (Section 2), which produces point queries for the frequencies
fi with small additive error. Our improvements from CSSampSim and other L1 problems are the
result of new sampling techniques for α-property streams

While sampling of streams has been studied in many papers, most have been in the context
of insertion only streams (see, e.g., [15, 18, 19, 17, 23, 31, 42, 45, 57]). Notable examples of the
use of sampling in the presence of deletions in a stream are [16, 30, 33, 28, 29]. We note that
these works are concerned with unbiased estimators and do not provide the (1 ± ǫ)-approximate
relative error guarantees with small space that we obtain. They are also concerned with unbounded
deletion streams, whereas our algorithms exploit the α-property of the underlying stream to obtain
considerable savings.

In addition to upper bounds, we give matching or nearly matching lower bounds in the α-
property setting for all the problems we consider. In particular, for the L1-related problems (heavy
hitters, L1 estimation, L1 sampling, and inner product estimation), we show that these lower
bounds hold even for the stricter case of strong α-property streams.

We also demonstrate that for general turnstile streams, obtaining a constant approximation of
the L1 still requires Ω(log(n))-bits for α-property streams. For streams with unbounded deletions,
there is an Ω(ǫ−2 log(n)) lower bound for (1 ± ǫ)-approximation [39]. Although we cannot remove
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this log n factor for α-property streams, we are able to show an upper bound of Õ(ǫ−2 logα+log n)
bits of space for strong α-property streams, where the Õ notation hides log(1/ǫ)+ log log n factors.
We thus separate the dependence of ǫ−2 and log n in the space complexity, illustrating an additional
benefit of α-property streams, and show a matching lower bound for strong α-property streams.

1.2 Our Techniques

Our results for L1 streaming problems in Sections 2 to 5 are built off of the observation that for
α property streams the number of insertions and deletions made to a given i ∈ [n] are both upper
bounded by α‖f‖1. We can then think of sampling updates to i as a biased coin flip with bias at
least 1/2 + (α‖f‖1)−1. By sampling poly(α/ǫ) stream updates and scaling up, we can recover the
difference between the number of insertions and deletions up to an additive ǫ‖f‖1 error.

To exploit this fact, in Section 2 we introduce a data structure CSSampSim inspired by the classic
Countsketch of [14], which simulates running each row of Countsketch on a small uniform sample of
stream updates. Our data structure does not correspond to a valid instantiation of Countsketch on
any stream since we sample different stream updates for different rows of Countsketch. Nevertheless,
we show via a Bernstein inequality that our data structure obtains the Countsketch guarantee plus
an ǫ‖f‖1 additive error, with only a logarithmic dependence on ǫ in the space. This results in
more efficient algorithms for the L1 heavy hitters problem (Section 3), and is also used in our L1

sampling algorithm (Section 4). We are able to argue that the counters used in our algorithms can
be represented with much fewer than log n bits because we sample a very small number of stream
updates.

Additionally, we demonstrate that sampling poly(α/ǫ) updates preserves the inner product
between α-property streams f, g up to an additive ǫ‖f‖1‖g‖1 error. Then by hashing the sampled
universe down modulo a sufficiently large prime, we show that the inner product remains preserved,
allowing us to estimate it in O(ǫ−1 log(α)) space (Section 2.2).

Our algorithm for L1 estimation (Section 5) utilizes our biased coin observation to show that
sampling will recover the L1 of a strict turnstile α-property stream. To carry out the sampling in
o(log(n)) space, give a alternate analysis of the well known Morris counting algorithm, giving better
space but worse error bounds. This allows us to obtain a rough estimate of the position in the
stream so that elements can be sampled with the correct probability. For L1 estimation in general
turnstile streams, we analyze a virtual stream which corresponds to scaling our input stream by
Cauchy random variables, argue it still has the α-property, and apply our sampling analysis for L1

estimation on it.
Our results for the L0 streaming problems in Sections 6 and 7 mainly exploit the α-property

in sub-sampling algorithms. Namely, many data structure for L0 streaming problems subsample
the universe [n] at log(n) levels, corresponding to log(n) possible thresholds which could be O(1)-
approximations of the L0. If, however, an O(1) approximation were known in advance, we could
immediately subsample to this level and remove the log(n) factor from the space bound. For α
property streams, we note that the non-decreasing values F t

0 of F0 after t updates must be bounded
in the interval [Lt

0, O(α)L0]. Thus, by employing an O(1) estimator Rt of F t
0 , we show that it suffices

to subsample to only the O(log(α/ǫ)) levels which are closest to log(Rt) at time t, from which our
space improvements follows.

1.3 Preliminaries

If g is any function of the updates of the stream, for t ∈ [m] we write gt to denote the value of g
after the updates (i1,∆1), . . . , (it,∆t). For Sections 2 to 5, it will suffice to assume ∆t ∈ {−1, 1}
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for all t ∈ [m]. For general updates, we can implicitly consider them to be several consecutive
updates in {−1, 1}, and our analysis will hold in this expanded stream. This implicit expanding
of updates is only necessary for our algorithms which sample updates with some probability p. If
an update |∆t| > 1 arrives, we update our data structures with the value sign(∆t) · Bin(|∆t|, p),
where Bin(n, p) is the binomial random variable on n trials with success probability p, which has
the same effect. In this unit-update setting, the L1 α property reduces to m ≤ α‖fm‖1, so this is
the definition which we will use for the L1 α property. We use the term unbounded deletion stream
to refer to streams without the α-property (or equivalently streams that have the α = poly(n)-
property and can also have all 0 frequencies). For Sections 2 to 5, we will consider only the L1

α-property, and thus drop the L1 in these sections for simplicity, and for Sections 6 and 7 we will
consider only the L0 α-property, and similarly drop the L0 there.

We call a vector y ∈ Rn k-sparse if it has at most k non-zero entries. For a given vector f ∈ Rn,
let Errkp(f) = miny k−sparse ‖f − y‖p. In other words, Errkp(f) is the p-norm of f with the k heaviest
entries removed. We call the argument minimizer of ‖f − y‖p the best k-sparse approximation
to f . Finally, we use the term with high probability (w.h.p.) to describe events that occur with
probability 1 − n−c, where c is a constant. Events occur with low probability (w.l.p.) if they are
a complement to a w.h.p. event. We will often ignore the precise constant c when it only factors
into our memory usage as a constant.

2 Frequency Estimation via Sampling

In this section, we will develop many of the tools needed for answering approximate queries about
α property streams. Primarily, we develop a data structure CSSampSim, inspired by the classic
Countsketch of [14], that computes frequency estimates of items in the stream by sampling. This
data structure will immediately result in an improved heavy hitters algorithm in Section 3, and is
at the heart of our L1 sampler in Section 4. In this section, we will write α-property to refer to the
L1 α-property throughout.

Firstly, for α-property streams, the following observation is crucial to many of our results.
Given a fixed item i ∈ [n], by sampling at least poly(α/ǫ) stream updates we can preserve fi (after
scaling) up to an additive ǫ‖f‖1 error.

Lemma 1 (Sampling Lemma). Let f be the frequency vector of a general turnstile stream with
the α-property, and let f∗ be the frequency vector of a uniformly sampled substream scaled up by
1
p , where each update is sampled uniformly with probability p > α2ǫ−3 log(δ−1)/m. Then with
probability at least 1− δ for i ∈ [n], we have

|f∗i − fi| < ǫ‖f‖1

Moreover, we have
∑n

i=1 f
∗
i =

∑n
i=1 fi ± ǫ‖f‖1.

Proof. Assume we sample each update to the stream independently with probability p. Let f+i , f
−
i

be the number of insertions and deletions of element i respectively, so fi = f+i − f−i . Let X+
j

indicate that the j-th insertion to item i is sampled. First, if ǫ‖f‖1 < f+i then by Chernoff bounds:

Pr[|1
p

f+

i
∑

j=1

X+
j − f+i | ≥ ǫ‖f‖1] ≤ 2 exp

(−pf+i (ǫ‖f‖1)2
3(f+i )2

)

≤ exp
(

− pǫ3m/α2
)
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CSSampSim (CSSS)

Input: sensitivity parameters k ≥ 1, ǫ ∈ (0, 1).

1. Set S = Θ(α
2

ǫ2 T
2 log(n)), where T ≥ 4/ǫ2 + log(n).

2. Instantiate d × 6k count-sketch table A, for d = O(log(n)). For each table entry aij ∈ A,
store two values a+ij and a−ij, both initialized to 0.

3. Select 4-wise independent hash functions hi : [n]→ [6k], gi : [n]→ {1,−1}, for i ∈ [d].
4. Set p← 0, and start log(n) bit counter to store the position in the stream.
5. On Update (it,∆t):

(a) if t = 2r log(S) + 1 for any r ≥ 1, then for every entry aij ∈ A set a+ij ←Bin(a+ij , 1/2),

a−ij ←Bin(a−ij , 1/2), and p← p+ 1

(b) On Update (it,∆t): Sample (it,∆t) with probability 2−p. If sampled, then for i ∈ [d]

i. if ∆tgi(it) > 0, set a+
i,hi(it)

← a+
ihi(it)

+∆tgi(it).

ii. else set a−i,hi(it)
← a−ihi(it)

+ |∆tgi(it)|
6. On Query for fj: return y∗j = median{2pgi(j) · (a+i,hi(j)

− a−i,hi(j)
) | i ∈ [d]}.

Figure 2: Our data structure to simulate running Countsketch on a uniform sample of the stream.

where the last inequality holds because f+i ≤ m ≤ α‖f‖1. Taking p ≥ α2 log(1/δ)/(ǫ3m) gives the

desired probability δ. Now if ǫ‖f‖1 ≥ f+i , then Pr[1p
∑f+

i
j=1X

+
j ≥ f+i + ǫ‖f‖1] ≤ exp

(

− pf+i ǫ‖f‖1/
f+i

)

≤ exp
(

− pǫm/α
)

≤ δ for the same value of p. Applying the same argument to f−i , we obtain
f∗i = f+i − f−i ± 2ǫ‖f‖1 = fi ± 2ǫ‖f‖1 as needed after rescaling ǫ. For the final statement, we can
consider all updates to the stream as being made to a single element i, and then simply apply the
same argument given above.

2.1 Count-Sketch Sampling Simulator

We now describe the Countsketch algorithm of [14], which is a simple yet classic algorithm in
the data stream literature. For a parameter k and d = O(log(n)), it creates a d × 6k matrix A
initialized to 0, and for every row i ∈ [d] it selects hash functions hi : [n] → [6k], and gi : [n] →
{1,−1} from 4-wise independent uniform hash families. On every update (it,∆t), it hashes this
update into every row i ∈ [d] by updating ai,hi(it) ← ai,hi(it) + gi(it)∆t. It then outputs y∗ where
y∗j = median{gi(j)ai,hi(j) | i ∈ [d]}. The guarantee of one row of the Countsketch is as follows.

Lemma 2. Let f ∈ Rn be the frequency vector of any general turnstile stream hashed into a d× 6k
Countsketch table. Then with probability at least 2/3, for a given j ∈ [n] and row i ∈ [d] we have
∣

∣gi(j)ai,hi(j) − fj
∣

∣ < k−1/2Errk2(f). It follows if d = O(log(n)), then with high probability, for all

j ∈ [n] we have
∣

∣y∗j − fj
∣

∣ < k−1/2Errk2(f), where y∗ is the estimate of Countsketch. The space

required is O(k log2(n)) bits.

We now introduce a data structure which simulates running Countsketch on a uniform sample
of the stream of size poly(α log(n)/ǫ). The full data structure is given in Figure 2. Note that for a
fixed row, each update is chosen with probability at least 2−p ≥ S/(2m) = Ω(α2T 2 log(n)/(ǫ2m)).
We will use this fact to apply Lemma 1 with ǫ′ = (ǫ/T ) and δ = 1/poly(n). The parameter T will
be poly(log(n)/ǫ), and we introduce it as a new symbol purely for clarity.

Now the updates to each row in CSSS are sampled independently from the other rows, thus CSSS
may not represent running Countsketch on a single valid sample. However, each row independently
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contains the result of running a row of Countsketch on a valid sample of the stream. Since the
Countsketch guarantee holds with probability 2/3 for each row, and we simply take the median of
O(log(n)) rows to obtain high probability, it follows that the output of CSSS will still satisfy an
additive error bound w.h.p. if each row also satisfies that error bound with probability 2/3.

By Lemma 1 with sensitivity parameter (ǫ/T ), we know that we preserve the weight of all items
fi with |fi| ≥ 1/T‖f‖1 up to a (1 ± ǫ) factor w.h.p. after sampling and rescaling. For all smaller
elements, however, we obtain error additive in ǫ‖f‖1/T . This gives rise to the natural division of
the coordinates of f . Let big ⊂ [n] be the set of i with |fi| ≥ 1/T‖f‖1, and let small ⊂ [n] be the
complement. Let E ⊂ [n] be the top k heaviest coordinates in f , and let s ∈ Rn be a fixed sample
vector of f after rescaling by p−1. Since Errk2(s) = minŷ k-sparse ‖s − ŷ‖2, it follows that Errk2(s) ≤
‖sbig\E‖2 + ‖ssmall‖2. Furthermore, by Lemma 1 ‖sbig\E‖2 ≤ (1 + ǫ)‖fbig\E‖2 ≤ (1 + ǫ)Errk2(f). So
it remains to upper bound ‖ssmall‖22, which we do in the following technical lemma.

The intuition for the Lemma is that ‖fsmall‖2 is maximized when all the L1 weight is con-
centrated in T elements, thus ‖fsmall‖2 ≤ (T (‖f‖1/T )2)1/2 = ‖f‖1/T 1/2. By the α property, we
know that the number of insertions made to the elements of small is bounded by α‖f‖1. Thus,
computing the variance of ‖ssmall‖22 and applying Bernstein’s inequality, we obtain a similar upper
bound for ‖ssmall‖2.

Lemma 3. If s is the rescaled frequency vector resulting from uniformly sampling with probability
p ≥ S/(2m), where S = Ω(α2T 2 log(n)) for T = Ω(log(n)), of a general turnstile stream f with
the α property, then we have ‖ssmall‖2 ≤ 2T−1/2‖f‖1 with high probability.

Proof. Fix f ∈ Rn, and assume that ‖f‖1 > S (otherwise we could just sample all the updates
and our counters in Countsketch would never exceed log(αS)). For any i ∈ [n], let fi = f+i − f−i ,
so that f = f+ − f−, and let si be our rescaled sample of fi. By definition, for each i ∈ small
we have fi <

1
T ‖f‖1. Thus the quantity ‖fsmall‖22 is maximized by having T coordinates equal

to 1
T ‖f‖1. Thus ‖fsmall‖22 ≤ T (‖f‖1T )2 ≤ ‖f‖2

1

T . Now note that if we condition on the fact that
si ≤ 2/T‖f‖ for all i ∈ small, which occurs with probability greater than 1 − n−5 by Lemma
1, then since E[

∑

i |si|4] = O(n4), all of the following expectations change by a factor of at most
(1 ± 1/n) by conditioning on this fact. Thus we can safely ignore this conditioning and proceed
by analyzing E[‖ssmall‖22] and E[‖ssmall‖44] without this condition, but use the conditioning when
applying Bernstein’s inequality later.

We have that |si| = |1p
∑f+

i +f−
i

j=1 Xij |, where Xij is an indicator random variable that is ±1 if
the j-th update to fi is sampled, and 0 otherwise, where the sign depends on whether or not the
update was an insertion or deletion and p ≥ S/(2m) is the probability of sampling an update. Then

E[|si|] = E[|1p
∑f+

i +f−
i

j=1 Xij |] = |fi|. Furthermore, we have E[s2i ] =
1
p2
E[(

∑f+

i +f−
i

j=1 Xij)
2]

=
1

p2
(

f+

i +f−
i

∑

j=1

E[X2
ij ] +

∑

j1 6=j2

E[Xij1Xij2 ])

=
1

p
(f+i + f−i ) + ((f+i )(f+i − 1) + (f−i )(f−i − 1)− 2f+i f

−
i )

Substituting f−i = f+i −fi in part of the above equation gives E[s2i ] =
1
p(f

+
i +f−i )+f2i +fi−2f+i ≤

1
p(f

+
i + f−i ) + 2f2i . So E[

∑

i∈small s
2
i ] ≤ 1

p(‖f
+
small‖1 + ‖f−small‖1) + 2‖fsmall‖22, which is at most

α
p ‖f‖1+2

‖f‖21
T by the α-property of f and the upper bound on ‖fsmall‖22. Now E[s4i ] =

1
p4
E[(

∑f+

i +f−
i

j=1

9



Xij)
4], which we can write as

E
[

∑

j

X4
ij + 4

∑

j1 6=j2

X3
ij1Xij2 + 12

∑

j1,j2,j3
distinct

X2
ij1Xij2Xij3 +

∑

j1,j2,j3,j4
distinct

Xij1Xij2Xij3Xij4

] 1

p4
(1)

We analyze Equation 1 term by term. First note that E[
∑

j X
4
ij ] = p(f+i +f−i ), and E[

∑

j1 6=j2
X3

ij1
Xij2 ] =

p2
(

(f+i )(f+i −1)+(f−i )(f−i −1)−2(f+i f−i )
)

. Substituting f−i = f+i −fi, we obtain E[
∑

j1 6=j2
X3

ij1
Xij2 ] ≤

2p2f2i . Now for the third term we have E[
∑

j1 6=j2 6=j3
X2

ij1
Xij2Xij3 ] = p3

(

(f+i )(f+i − 1)(f+i − 2) +

(f−i )(f−i − 1)(f−i − 2)+ f+i (f−i )(f−i − 1)+ f−i (f+i )(f+i − 1)− 2(f+i f
−
i )(f+i − 1)− 2(f+i f

−
i )(f−i − 1)

)

,
which after the same substitution is upper bounded by 10p3 max{f+i , |fi|}f2i ≤ 10p3α‖f‖1f2i , where
the last inequality follows from the α-property of f . Finally, the last term is E[

∑

j1 6=j2 6=j3 6=j4

Xij1Xij2Xij3Xij4 ] = p4
(

f+i (f+i − 1)(f+i − 2)(f+i − 3) + f−i (f−i − 1)(f−i − 2)(f−i − 3) + 6(f+i (f+i −
1))(f−i (f−i −1))−4

(

f+i (f+i −1)(f+i −2)f−i +f−i (f−i −1)(f−i −2)f+i
))

. Making the same substitution
allows us to bound this above by p4(24f4i − 12fif

+
i + 12(f+i )2) ≤ p4(36(fi)4 + 24(f+i )2).

Now f satisfies the α property. Thus ‖f+small‖1 + |f−small‖1 ≤ α‖f‖1, so summing the bounds
from the last paragraph over all i ∈ small we obtain

E[
1

p4
‖ssmall‖44] ≤

1

p3
α‖f‖1 +

8

p2
‖fsmall‖22

+
120α

p
‖fsmall‖22 |f‖1 + 36‖fsmall‖44 + 24α2‖f‖21

Now 1/p ≤ 2m
S ≤ 2α

S ‖f‖1 by the α-property. Applying this with the fact that ‖fsmall‖22 is maximized

at
‖f‖2

1

T , and similarly ‖fsmall‖22 is maximized at T (‖f‖1/T )4 = ‖f‖41/T 3 we have that E[ 1
p4
‖ssmall‖44]

is at most
8α4

S3
‖f‖41 +

36α2

S2T
‖f‖41 +

240α2

ST
‖f‖41 +

36

T 3
‖f‖41 + 24α2‖f‖21

Since we have ‖f‖1 > S > α2T 2, the above expectation is upper bounded by 300
T 3 ‖f‖41. We now

apply Bernstein’s inequality. Using the fact that we conditioned on earlier, we have the upper bound
1
psi ≤ 2‖f‖1/T , so plugging this into Bernstein’s inequality yields: Pr[

∣

∣‖ssmall‖22 − E[‖ssmall‖22]
∣

∣ >
‖f‖21
T ] ≤ exp

(

− ‖f‖41/(2T 2)

300‖f‖4
1
/T 3+2‖f‖3

1
/(3T 2)

)

≤ exp
(

− T/604
)

Finally, T = Ω(log(n)), so the above

probability is poly( 1n) for T = c log(n) and a sufficiently large constant c. Since the expectation

E[‖ssmall‖22] is at most α
p ‖f‖1 + 2‖f‖21/T ≤ 3‖f‖21/T , it follows that ‖ssmall‖2 ≤ 2‖f‖1√

T
with high

probability, which is the desired result.

Applying the result of Lemma 3, along with the bound on Errk2(s) from the previous paragraphs,
we obtain the following corollary.

Corollary 1. With high probability, if s is as in Lemma 3, then Errk2(s) ≤ (1 + ǫ)Errk2(f) +
2T−1/2‖f‖1

Now we analyze the error from CSSS. Observe that each row in CSSS contains the result of
hashing a uniform sample into 6k buckets. Let si ∈ Rn be the frequency vector, after scaling by
1/p, of the sample hashed into the i-th row of CSSS, and let yi ∈ Rn be the estimate of si taken
from the i-th row of CSSS. Let σ(i) : n → [O(log(n))] be the row from which Countsketch returns

its estimate for fi, meaning y∗i = y
σ(i)
i .
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Theorem 1. For ǫ > 0, k > 1, with high probability, when run on a general turnstile stream f ∈ Rn

with the α property, CSSS with 6k columns, O(log(n)) rows, returns y∗ such that, for every i ∈ [n]
we have

|y∗i − fi| ≤ 2(
1

k1/2
Errk2(f) + ǫ‖f‖1)

It follows that if ŷ is the best k-sparse approximation to y∗, then Errk2(f) ≤ ‖f−ŷ‖2 ≤ 5(k1/2ǫ‖f‖1+
Errk2(f)) with high probability. The space required is O(k log(n) log(α log(n)/ǫ)).

Proof. Set S = Θ(α
2

ǫ2
T 2 log(n)) as in Figure 2, and set T = 4/ǫ2 +O(log(n)). Fix any i ∈ [n]. Now

CSSS samples updates uniformly with probability p > S/(2m), so applying Lemma 1 to our sample
sji of fi for each row j and union bounding, with high probability we have sji = fi± ǫ

T ‖f‖1 = sqi for
all rows j, q. Then by the Countsketch guarantee of Lemma 2, for each row q that yqi = fi±( ǫ

T ‖f‖1+
k−1/2 maxj Err

k
2(s

j)) with probability 2/3. Thus y∗i = y
σ(i)
i = fi ± ( ǫ

T ‖f‖1 + k−1/2 maxj Err
k
2(s

j))

with high probability. Now noting that
√
T ≥ 2/ǫ, we apply Corollary 1 to Errk2(s

j) and union
bound over all j ∈ [O(log(n))] to obtain maxj Err

k
2(s

j) ≤ (1 + ǫ)Errk2(f) + ǫ‖f‖1 w.h.p., and union
bounding over all i ∈ [n] gives |y∗i −fi| ≤ 2( 1

k1/2
Errk2(f)+ǫ‖f‖1) for all i ∈ [n] with high probability.

For the second claim, note that Errk2(f) ≤ ‖f − f ′‖2 for any k-sparse vector f ′, from which the
first inequality follows. Now if the top k coordinates are the same in y∗ as in f , then ‖f − ŷ‖2 is at
most Errk2(f) plus the L2 error from estimating the top k elements, which is at most (4k(ǫ‖f‖1 +
k−1/2Errk2(f))

2)1/2 ≤ 2(k1/2ǫ‖f‖1 + Errk2(f)). In the worst case the top k coordinates of y∗ are
disjoint from the top k in f . Applying the triangle inequality, the error is at most the error on the
top k coordinates of y∗ plus the error on the top k in f . Thus ‖f − ŷ‖2 ≤ 5(k1/2ǫ‖f‖1 + Errk2(f))
as required.

For the space bound, note that the Countsketch table has O(k log(n)) entries, each of which
stores two counters which holds O(S) samples in expectation. So the counters never exceed
poly(S) = poly(αǫ log(n)) w.h.p. by Chernoff bounds, and so can be stored using O(log(α log(n)/ǫ))
bits each (we can simply terminate if a counter gets too large).

We now address how the error term of Theorem 1 can be estimated so as to bound the potential
error. This will be necessary for our L1 sampling algorithm. We first state the following well known
fact about norm estimation [56], and give a proof for completeness.

Lemma 4. Let R ∈ Rk be a row of the Countsketch matrix with k columns run on a stream with
frequency vector f . Then with probability 99/100, we have

∑k
i=1R

2
i = (1±O(k−1/2))‖f‖22

Proof. Let 1(E) be the indicator function that is 1 if the event E is true, and 0 otherwise. Let
h : [n] → [k] and g : [n] → {0, 1} be 4-wise independent hash functions which specify the row
of Countsketch. Then E[

∑k
i=1R

2
i ] = E[

∑k
j=1(

∑n
i=1 1(h(i) = j)g(i)fi)

2] = E[
∑n

i=1 f
2
i ] + E[

∑k
j=1

(
∑

i16=i2 1(h(i1) = j)1(h(i2) = j)g(i1)g(i2)fi1fi2)
2]. By the 2-wise independence of g, the second

quantity is 0, and we are left with ‖f‖22. By a similar computation using the full 4-wise indepen-
dence, we can show that V ar(

∑k
i=1R

2
i ) = 2(‖f‖42 − ‖f‖44)/k ≤ 2‖f‖42/k. Then by Chebyshev’s

inequality, we obtain Pr[|∑k
i=1R

2
i − ‖f‖22| > 10

√
2‖f‖22/

√
k] < 1/100 as needed.

Lemma 5. For k > 1, ǫ ∈ (0, 1), given a α-property stream f , there is an algorithm that can
produce an estimate v such that Errk2(f) ≤ v ≤ 45k1/2ǫ‖f‖1 +20Errk2(f) with high probability. The
space required is the space needed to run two instances of CSSS with paramters k, ǫ.

Proof. By Lemma 4, the L2 of row i of CSSS with a constant number of columns will be a (1 ±
1/2) approximation of ‖si‖2 with probability 99/100, where si is the scaled up sampled vector
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corresponding to row i. Our algorithm is to run two copies of CSSS on the entire stream, say CSSS1
and CSSS2, with k columns and sensitivity ǫ. At the end of the stream we compute y∗ and ŷ from
CSSS1 where ŷ is the best k-sparse approximation to y∗. We then feed −ŷ into CSSS2. The resulting
L2 of the i-th row of CSSS2 is (1 ± 1/2)‖si2 − ŷ‖2 (after rescaling of si) with probability 99/100,
where si2 is the sample corresponding to the i-th row of CSSS2.

Now let T = 4/ǫ2 as in Theorem 1, and let si be the sample corresponding to the i-th row of
CSSS1. Then for any i, ‖sismall‖2 ≤ 2T−1/2‖f‖1 w.h.p. by Lemma 3, and the fact that ‖fsmall‖2 ≤
T−1/2‖f‖1 follows from the definition of small. Furthermore, by Lemma 1, we know w.h.p. that
|sij−fj| < ǫ|fj| for all j ∈ big, and thus ‖sibig−fbig‖2 ≤ ǫ‖f‖1. Then by the reverse triangle inequality

we have
∣

∣‖si − ŷ‖2 − ‖f − ŷ‖2
∣

∣ ≤ ‖si − f‖2 ≤ ‖sismall − fsmall‖2 + ‖sibig − fbig‖2 ≤ 5ǫ‖f‖1. Thus

‖si− ŷ‖2 = ‖f− ŷ‖2±5ǫ‖f‖1 for all rows i w.h.p, so the L2 of the i-th row of CSSS2 at the end of the
algorithm is the value vi such that 1

2(‖f−ŷ‖2−5ǫ‖f‖1) ≤ vi ≤ 2(‖f−ŷ‖2+5ǫ‖f‖1) with probability
9/10 (note that the bounds do not depend on i). Taking v = 2 ·median(v1, . . . , vO(log(n)))+5ǫ‖f‖1,
it follows that ‖f − ŷ‖2 ≤ v ≤ 4‖f − ŷ‖2 + 25ǫ‖f‖1 with high probability. Applying the upper and
lower bounds on ‖f − ŷ‖2 given in Theorem 1 yields the desired result. The space required is the
space needed to run two instances of CSSS, as stated.

2.2 Inner Products

Given two streams f, g ∈ Rn, the problem of estimating the inner product 〈f, g〉 = ∑n
i=1 figi has

attracted considerable attention in the streaming community for its usage in estimating the size of
join and self-join relations for databases [5, 53, 52]. For unbounded deletion streams, to obtain an
ǫ‖f‖1‖g‖1-additive error approximation the best known result requires O(ǫ−1 log(n)) bits with a
constant probability of success [22]. We show in Theorem 21 that Ω(ǫ−1 log(α)) bits are required
even when f, g are strong α-property streams. This also gives a matching Ω(ǫ−1 log(n)) lower bound
for the unbounded deletion case

In Theorem 2, we give a matching upper bound for α-property streams up to log log(n) and
log(1/ǫ) terms. We first prove the following technical Lemma, which shows that inner products are
preserved under a sufficiently large sample.

Lemma 6. Let f, g ∈ Rn be two α-property streams with lengths mf ,mg respectively. Let f
′, g′ ∈ Rn

be unscaled uniform samples of f and g, sampled with probability pf ≥ s/mf and pg ≥ s/mg

respectively, where s = Ω(α2/ǫ2). Then with probability 99/100, we have 〈p−1
f f ′, p−1

g g′〉 = 〈f, g, 〉 ±
ǫ‖f‖1‖g‖1.

Proof. We have E[〈p−1
f f ′, p−1

g g′〉] = ∑

i E[p
−1
f f ′i ]E[p

−1
g g′i] = 〈f, g〉. Now the (f ′ig

′
i)’s are indepen-

dent, and thus we need only compute Var(p−1
f p−1

g f ′ig
′
i). We have Var(p−1

f p−1
g f ′ig

′
i) = (p−1

f p−1
g )2

E[(f ′i)
2]E[(g′i)

2] − (figi)
2. Let Xi,j be ±1 if the j-th update to fi is sampled, where the sign

indicates whether the update was an insertion or deletion. Let f+, f− be the insertion and dele-
tion vectors of f respectively (see Definition 1), and let F = f+ + fi. Then f = f+ − f−, and
f ′i =

∑f+

i +f−
i

j=1 Xij . We have

E[(f ′i)
2/p2f ] = E[p−2

f (

f+

i +f−
i

∑

j=1

X2
ij +

∑

j1 6=j2

Xij1Xij2)]

≤ p−1
f Fi + (f+i )2 + (f−i )2 − 2f+i f

−
i

= p−1
f Fi + f2i
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Now define g+, g− and G = g+ + g− similarly. Note that the α-property states that mf = ‖F‖1 ≤
α‖f‖1 and mg = ‖G‖1 ≤ α‖g‖1. Moreover, it gives p−1

f ≤ mf/s ≤ ǫ2‖f‖1/α, and p−1
g ≤ mg/s ≤

ǫ2‖g‖1/α. Then Var(〈p−1
f f ′, p−1

g g′〉 = ∑n
i=1Var(p

−1
f p−1

g f ′ig
′
i) ≤

∑n
i=1(f

2
i p

−1
g Gi + g2i p

−1
f Fi + p−1

f p−1
g

FiGi). First note that
∑n

i=1 p
−1
g f2i Gi ≤ p−1

g ‖G‖1‖f‖21 ≤ ǫ2‖g‖21‖f‖21 and similarly
∑n

i=1 p
−1
f g2i

Fi ≤ ǫ2‖g‖21‖f‖21. Finally, we have
∑n

i=1 p
−1
f p−1

g FiGi ≤ p−1
f p−1

g ‖F‖1‖G‖1 ≤ ǫ4‖f‖21‖g‖21, so the

variance is at most 3ǫ2‖f‖21‖g‖21. Then by Chebyshev’s inequality:

Pr[
∣

∣〈p−1
f f ′, p−1

g g′〉 − 〈f, g〉
∣

∣ > 30ǫ‖f‖1‖g‖1] ≤ 1/100

and rescaling ǫ by a constant gives the desired result.

Our algorithm obtains such a sample as needed for Lemma 6 by sampling in exponentially
increasing intervals. Next, we hash the universe down by a sufficiently large prime to avoid collisions
in the samples, and then run a inner product estimator in the smaller universe. Note that this
hashing is not pairwise independent, as that would require the space to be at least log n bits; rather
the hashing just has the property that it preserves distinctness with good probability. We now
prove a fact that we will need for our desired complexity.

Lemma 7. Given a log(n) bit integer x, the value x (mod p) can be computed using only log log(n)+
log(p) bits of space.

Proof. We initialize a counter c ← 0. Let x1, x2, . . . , xlog(n) be the bits of x, where x1 the least
significant bit. Then we set y1 = 1, and at every step t ∈ [log(n)] of our algorithm, we store yt, yt−1,
where we compute yt as yt = 2yt−1 (mod p). This can be done in O(log(p)) space. Our algorithm
then takes log(n) steps, where on the t-th step it checks if xt = 1, and if so it updates c ← c + yt

(mod p), and otherwise sets c ← c. At the end we have c =
∑log(n)

i=0 2ixi (mod p) = x (mod p) as
desired, and c never exceeds 2p, and can be stored using log(p) bits of space. The only other value
stored is the index t ∈ [log(n)], which can be stored using log log(n) bits as stated.

We now recall the Countsketch data structure (see Section 2). Countsketch picks a 2-wise
independent hash function h : [n]→ [k] and a 4-wise independent hash function σ : [n]→ {1,−1},
and creates a vector A ∈ Rk. Then on every update (it,∆t) to a stream f ∈ Rn, it updates
Ah(it) ← Ah(it) + σit∆t where σi = σ(i). Countsketch can be used to estimate inner products.
In the following Lemma, we show that feeding uniform samples of α-property streams f, g into
two instances of Countmin, denoted A and B, then 〈A,B〉 is a good approximation of 〈f, g〉 after
rescaling A and B by the inverse of the sampling probability.

Lemma 8. Let f ′, g′ be uniformly sampled rescaled vectors of general-turnstile α-property streams
f, g with lengths mf ,mg and sampling probabilities pf , pg respectively. Suppose that pf ≥ s/mf and
pg ≥ s/mg, where s = Ω(α2 log7(n)T 2ǫ−10). Then let A ∈ Rk be the Countsketch vector run on f ′,
and let B ∈ Rk be the Countsketch vector run on g′, where A,B share the same hash function h
and k = Θ(1/ǫ) Then

k
∑

i=1

AiBi = 〈f, g〉 ± ǫ‖f‖1‖g‖1

with probability 11/13.

Proof. Set k = 1002/ǫ. Let Yij indicate h(i) = h(j), and let Xij = σiσjf
′
ig

′
jYij . We have

∑k
i=1AiBi = 〈f ′, g′〉 + ∑

i 6=j Xij . Let ǫ0 = Θ(log2(n)/ǫ3) and let T = Θ(log(n)/ǫ2), so we
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can write s = Ω(α2 log(n)T 2/ǫ20) (this will align our notation with that of Lemma 3). Define
F = {i ∈ [n] | |fi| ≥ ‖f‖1/T} and G = {i ∈ [n] | |gi| ≥ ‖g‖1/T}. We now bound the term
|∑i 6=j,(i,j)∈F×GXij | ≤

∑

(i,j)∈F×G Yij |f ′ig′j|.
Now by Lemma 1 and union bounding over all i ∈ [n], we have ‖f ′ − f‖∞ ≤ ǫ0‖f‖1/T and

‖g′ − g‖∞ ≤ ǫ0‖g‖1/T with high probability, and we condition on this now. Thus for every
(i, j) ∈ F × G, we have f ′i = (1 ± ǫ0)fi and g′j = (1 ± ǫ0)gj . It follows that

∑

(i,j)∈F×G Yij|f ′ig′j | ≤
2
∑

(i,j)∈F×G Yij |fi||gj | (using only ǫ0 < 1/4). Since E[Yij] = 1/k, we have

E[
∑

(i,j)∈F×G
Yij|fi||gj |] ≤

1

k
‖f‖1‖g‖1

By Markov’s inequality with k = 1002/ǫ, it follows that |∑i 6=j,(i,j)∈F×GXij | ≤ 2
∑

(i,j)∈F×G Yij
|fi||gj | ≤ ǫ‖f‖1‖g‖1 with probability greater than 1 − (1/1000 + O(n−c)) > 99/100, where the
O(n−c) comes from conditioning on the high probability events from Lemma 1. Call this event E1.

Now let FC = [n] \ F , and GC = [n] \ G. Let A ⊂ [n]2 be the set of all (i, j) with i 6= j and
such that either i ∈ FC or j ∈ GC . Now consider the variables {|Xij |}i<j , and let Xij ,Xpq be
two such distinct variables. Then E[XijXpq] = E[f ′ig

′
if

′
pg

′
qYijYpqσiσjσpσq]. Now the variables σ are

independent from YijYpq, which are determined by h. Since i < j and p < q and (i, j) 6= (p, q), it
follows that one of i, j, p, q is unique among them. WLOG it is i, so by 4-wise independence of σ
we have E[f ′ig

′
if

′
pg

′
qYijYpqσiσjσpσq] = E[f ′ig

′
if

′
pg

′
qYijYpqσjσpσq]E[σi] = 0 = E[Xij ]E[Xpq]. Thus the

variables {|Xij |}i<j (and symmetrically {|Xij |}i>j) are uncorrelated so

Var(
∑

i<j,(i,j)∈A
Xij) =

∑

i<j,(i,j)∈A
Var(Xij) ≤

∑

(i,j)∈A
(f ′ig

′
j)

2/k

Since E[
∑

i<j,(i,j)∈AXij ] = 0, by Chebyshev’s inequality with k = 1002/ǫ, we have |∑i<j,(i,j)∈AXij| ≤
(ǫ
∑

(i,j)∈A(f
′
ig

′
j)

2)1/2 with probability 99/100. So by the union bound and a symmetric arguement

for j > i, we have |∑(i,j)∈AXij | ≤ |
∑

i<j,(i,j)∈AXij| + |
∑

i>j,(i,j)∈AXij | ≤ 2(ǫ
∑

(i,j)∈A(f
′
ig

′
j)

2)1/2

with probability 1− (2/100) = 49/50. Call this event E2. We have

∑

(i,j)∈A
(f ′ig

′
j)

2 =
∑

i 6=j,(i,j)∈F×GC

(f ′ig
′
j)

2 +
∑

i 6=j,(i,j)∈FC×G
(f ′ig

′
j)

2

+
∑

i 6=j,(i,j)∈FC×GC

(f ′ig
′
j)

2

Now the last term is at most ‖f ′FC‖22‖g′GC‖22, which is at most 16‖f‖21‖g‖21/T 2 ≤ ǫ4‖f‖21‖g‖21 w.h.p.

by Lemma 3 applied to both f and g and union bounding (note that FC ,GC are exactly the set
small in Lemma 3 for their respective vectors). We hereafter condition on this w.h.p. event that
‖f ′FC‖22 ≤ 4‖f‖21/T and ‖g′GC‖22 ≤ 4‖g‖21/T (note T > 1/ǫ2).

Now as noted earlier, w.h.p. we have f ′i = (1 ± ǫ0)fi and f ′j = (1 ± ǫ0)fj for i ∈ F and j ∈ G.
Thus ‖f ′F‖22 = (1±O(ǫ0))‖fF‖22 < 2‖f‖21 and ‖g′G‖22 ≤ 2‖g‖21. Now the term

∑

i 6=j,(i,j)∈F×GC(f ′ig
′
j)

2

is at most
∑

i∈F (f
′
i)

2‖g′Gc‖22 ≤ O(ǫ2)‖f ′F‖22‖g‖21 ≤ O(ǫ2)‖f‖21‖g‖21. Applying a symmetric argument,
we obtain

∑

i 6=j,(i,j)∈FC×G(f
′
ig

′
j)

2 ≤ O(ǫ2)‖f‖21‖g‖21 with high probability. Thus each of the three

terms is O(ǫ2)‖f‖21‖g‖21, so
∑

(i,j)∈A
(f ′ig

′
j)

2 = O(ǫ2)‖f‖21‖g‖21

14



with high probability. Call this event E3. Now by the union bound, Pr[E1 ∪ E2 ∪ E3] > 1− (1/50 +
1/100+O(n−c)) > 24/25. Conditioned on this, the error term |∑i 6=jXij | ≤ |

∑

i 6=j,(i,j)∈F×GXij |+
|∑(i,j)∈AXij | is at most ǫ‖f ||1‖g‖1+2(ǫ

∑

(i,j)∈A(f
′
ig

′
j)

2)1/2 = ǫ‖f ||1‖g‖1+2(O(ǫ3)‖f‖21‖g‖21)1/2 =
O(ǫ)‖f‖1‖g|1 as desired. Thus with probability 24/25 we have

∑k
i=1AiBi = 〈f ′, g′〉±O(ǫ)‖f‖1‖g‖1.

By Lemma 6, noting that in the notation of this Lemma the vectors f ′, g′ have already been scaled
by p−1

f and p−1
g , we have 〈f ′, g′〉 = 〈f, g〉 ± ǫ‖f‖1‖g‖1 with probability 99/100. Altogether, with

probability 1− (1/25 + 1/100) > 11/13 we have
∑k

i=1AiBi = 〈f, g〉 ± O(ǫ)‖f‖1‖g‖1, which is the
desired result after a constant rescaling of ǫ.

We will apply Lemma 8 to complete our proof of our main Theorem.

Theorem 2. Given two general-turnstile stream vectors f, g with the α-property, there is a one-
pass algorithm which with probability 11/13 produces an estimate IP(f, g) such that IP(f, g) =

〈f, g〉 ±O(ǫ)‖f‖1‖g‖1 using O(ǫ−1 log(α log(n)
ǫ )) bits of space.

Proof. Let s = Θ(α2 log(n)7/ǫ10), and let Ir = [sr, sr+2]. Then for every r = 1, 2, . . . , logs(n), we
choose a random prime P = [D,D3] where D = 100s4. We then do the following for the stream
f (and apply the same following procedure for g). For every interval Ir and time step t ∈ Ir,
we sample the t-th update (it,∆t) to f with probability s−r (we assume ∆t ∈ {1,−1}, for bigger
updates we expand them into multiple such unit updates.). If sampled, we let i′t be the log(|P |)
bit identity obtained by taking it modulo P . We then feed the unscaled update (i′t,∆t) into an

instance of count-sketch with k = O(1/ǫ) buckets. Call this instance CS
f
r . At any time step t, we

only store the instance CS
f
r and CS

f
r+1 such that t ∈ Ir ∩ Ir+1. At the end of the stream it is time

step mf , and fix r such that mf ∈ Ir ∩ Ir+1.
Now let f ′ ∈ Rn be the (scaled up by sr) sample of f taken in Ir. Let f

′′ ∈ Rp be the (unscaled)

stream on |P | items that is actually fed into CS
f
r . Then CS

f
r is run on the stream f ′′ which has a

universe of |P | items. Let F ∈ Rk be the Countsketch vector from the instance CSfr .
Let f̂ be the frequency vector f restricted to the suffix of the stream sr, sr + 1, . . . ,mf (these

were the updates that were being sampled from while running CSr). Since mf ∈ Ir+1, we have
mf ≥ sr+1, so ‖f (sr)‖1 ≤ m/s < ǫ‖f‖1 (by the α property), meaning the L1 mass of the prefix of
the stream 1, 2, . . . , sr is an ǫ fraction of the whole stream L1, so removing it changes the L1 by at
most ǫ‖f‖1. It follows that ‖f̂ − f‖1 ≤ O(ǫ)‖f‖1 and thus ‖f̂‖1 = (1 ± O(ǫ))‖f‖1. If we let ĝ be
defined analogously by replacing f with g in the previous paragraphs, we obtain ‖ĝ−g‖1 ≤ O(ǫ)‖g‖1
and ‖ĝ‖1 = (1±O(ǫ))‖g‖1 as well.

Now with high probability we sampled fewer than 2sj+2/sj = 2s2 distinct identities when
creating f ′, so f ′ is 2s2-sparse. Let J ⊂ [n]× [n] be the set of pairs pf indices i, j with f ′i , f

′
j non-

zero. Then |J | < 2s4. Let Qi,j be the event that i− j = 0 (mod P ). For this to happen, P must
divide the difference. By standard results on the density of primes, there are s8 primes in [D,D3],
and since |i− j| ≤ n it follows that |i− j| has at most log(n) prime factors. So Pr[Qi,j] < log(n)/s8,
Let Q = ∪(i,j)∈JQi,j, then by the union bound Pr[Q] < s−3. It follows that no two sampled
identities collide when being hashed to the universe of p elements with probability 1− 1/s3.

Let supp(f ′) ⊂ [n] be the support of f ′ (non-zero indices of f ′). Conditioned on Q, we have
p−1
f f ′′i (mod p) = f ′i for all i ∈ supp(f ′), and f ′′i = 0 if i 6= j (mod p) for any j ∈ supp(f ′). Thus

there is a bijection between supp(f ′) and supp(f ′′), and the values of the respective coordinates of
f ′, f ′′ are equal under this bijection. Let g, g′′, ĝ,mg, pg be defined analogously to f, f ′′ by replacing
f with g in the past paragraphs, and let G ∈ Rk be the Countsketch vector obtained by running
Countsketch on f just as we did to obtain F ∈ Rk.
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Conditioned on Q occurring (no collisions in samples) for both f ′′ and g′′ (call these Qf and
Qg respectively), which together hold with probability 1−O(s−3) by a union bound, the non-zero
entries of p−1

f f ′′ and f ′ and of p−1
g g′′ and g′ are identical. Thus the scaled up Countsketch vectors

p−1
f F and p−1

g G of F,G obtained from running Countsketch on f ′′, g′′ are identical in distribution
to running Countsketch on f ′, g′. This holds because Countsketch hashes the non-zero coordinates
4-wise independently into k buckets A,B ∈ Rk. Thus conditioned on Qf , Qg, we can assume that
p−1
f F and p−1

g G are the result of running Countsketch on f ′ and g′. We claim that p−1
f p−1

g 〈F,G〉
is the desired estimator.

Now recall that f ′ is a uniform sample of f̂ , as is g′ of ĝ. Then applying the Countsketch
error of Lemma 8, we have p−1

f p−1
g 〈F,G〉 = 〈f̂ , ĝ〉 + ǫ‖f̂‖1‖ĝ‖1 = 〈f̂ , ĝ〉 + O(ǫ)‖f‖1‖g‖1 with

probability 11/13. Now since ‖f̂ − f‖1 ≤ O(ǫ)‖f‖1 and ‖ĝ − g‖1 ≤ O(ǫ)‖g‖1, we have 〈f̂ , ĝ〉 =
〈f, g〉 ±∑n

i=1(ǫgi‖f‖1 + ǫfi‖g‖1 + ǫ2‖f‖1‖g‖1 = 〈f, g〉 ±O(ǫ)‖f‖1‖g‖1. Thus

p−1
f p−1

g 〈F,G〉 = 〈f, g〉 ±O(ǫ)‖f‖1‖g‖1

as required. This last fact holds deterministically using only the α-property, so the probability of
success is 11/13 as stated.

For the space, at most 2s2 samples were sent to each of f ′′, g′′ with high probability. Thus the
length of each stream was at most poly(α log(n)/ǫ), and each stream had P = poly(α log(n)/ǫ)
items. Thus each counter in A,B ∈ Rk can be stored with O(log(α log(n)/ǫ)) bits. So storing A,B
requires O(ǫ−1 log(α log(n)/ǫ)) bits. Note we can safely terminate if too many samples are sent
and the counters become too large, as this happens with probability O(poly(1/n)) . The 4-wise
independent hash function h : [P ]→ [k] used to create A,B requires O(log(α log(n)/ǫ)) bits.

Next, by Lemma 7, the space required to hash the log(n)-bit identities down to [P ] is log(P ) +
log log(n), which is dominated by the space for Countsketch. Finally, we can assume that s is a
power of two so p−1

f , p−1
g = poly(s) = 2q can be stored by just storing the exponent q, which takes

log log(n) bits. To sample we then flip log(n) coins sequentially, and keep a counter to check if the
number of heads reaches q before a tail is seen.

3 L1 Heavy Hitters

As an application of the Countsketch sampling algorithm presented in the last section, we give
an improved upper bound for the classic L1 ǫ-heavy hitters problem in the α-property setting.
Formally, given ǫ ∈ (0, 1), the L1 ǫ-heavy hitters problem asks to return a subset of [n] that
contains all items i such that |fi| ≥ ǫ‖f‖1, and no items j such that |fj| < (ǫ/2)‖f‖1.

The heavy hitters problem is one of the most well-studied problems in the data stream lit-
erature. For general turnstile unbounded deletion streams, there is a known lower bound of
Ω(ǫ−1 log(n) log(ǫn)) (see [8], in the language of compressed sensing, and [38]), and the Counts-
ketch of [14] gives a matching upper bound (assuming ǫ−1 = o(n)). In the insertion only case,
however, the problem can be solved using O(ǫ−1 log(n)) bits [10], and for the strictly harder
L2 heavy hitters problem (where ‖f‖1 is replaced with ‖f‖2 in the problem definition), there
is an O(ǫ−2 log(1/ǫ) log(n))-bit algorithm [11]. In this section, we beat the lower bounds for un-
bounded deletion streams in the α-property case. We first run a subroutine to obtain a value
R = (1± 1/8)‖f‖1 with probability 1− δ. To do this, we use the following algorithm from [39].

Fact 1 ([39]). There is an algorithm which gives a (1± ǫ) multiplicative approximation with prob-
ability 1− δ of the value ‖f‖1 using space O(ǫ−2 log(n) log(1/δ)).
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Next, we run an instance of CSSS with parameters k = 32/ǫ and ǫ/32 to obtain our estimate y∗

of f . This requires space O(ǫ−1 log(n) log(α log(n)
ǫ )), and by Theorem 1 gives an estimate y∗ ∈ Rn

such that |y∗i − fi| < 2(
√

ǫ/32Errk2(f) + ǫ‖f‖1/32) for all i ∈ [n] with high probability. We then
return all items i with |y∗i | ≥ 3ǫR/4. Since the top 1/ǫ elements do not contribute to Errk2(f), the
quantity is maximized by having k elements with weight ‖f‖1/k, so Errk2(f) ≤ k−1/2‖f‖1. Thus
‖y∗i − f‖∞ < (ǫ/8)‖f‖1.

Given this, it follows that for any i ∈ [n] if |fi| ≥ ǫ‖f‖1, then |y∗i | > (7ǫ/8)‖f‖1 > (3ǫ/4)R.
Similarly if |fi| < (ǫ/2)‖f‖1, then |y∗i | < (5ǫ/8)‖f‖1 < (3ǫ/4)R. So our algorithm correctly
distinguishes ǫ heavy hitters from items with weight less than ǫ/2. The probability of failure is

O(n−c) from CSSS and δ for estimating R, and the space required is O(ǫ−1 log(n) log(α log(n)
ǫ )) for

running CSSS and O(log(n) log(1/δ)) to obtain the estimate R. This gives the following theorem.

Theorem 3. Given ǫ ∈ (0, 1), there is an algorithm that solves the ǫ-heavy hitters problem for

general turnstile α-property streams with probability 1 − δ using space O(ǫ−1 log(n) log(α log(n)
ǫ ) +

log(n) log(1/δ)).

Now note for strict turnstile streams, we can compute R = ‖f‖1 exactly with probability 1
using an O(log(n))-bit counter. Since the error bounds from CSSS holds with high probability, we
obtain the following result.

Theorem 4. Given ǫ ∈ (0, 1), there is an algorithm that solves the ǫ-heavy hitters problem for
strict turnstile α-property streams with high probability using space O(ǫ−1 log(n) log(α log(n)/ǫ)).

4 L1 Sampling

Another problem of interest is the problem of designing Lp samplers. First introduced by Mon-
emizadeh and Woodruff in [47], it has since been observed that Lp samplers lead to alternative
algorithms for many important streaming problems, such as heavy hitters, Lp estimation, and
finding duplicates [7, 47, 38].

Formally, given a data stream frequency vector f , the problem of returning an ǫ-approximate
relative error uniform Lp sampler is to design an algorithm that returns an index i ∈ [n] such that

Pr[i = j] = (1± ǫ) |fj|
p

‖f‖pp

for every j ∈ [n]. An approximate Lp sampler is allowed to fail with some probability δ, however
in this case it must not output any index. For the case of p = 1, the best known upper bound is
O(ǫ−1 log(ǫ−1) log2(n) log(δ−1)) bits of space, and there is also an Ω(log2(n)) lower bound for Lp

samplers with ǫ = O(1) for any p [38]. In this section, using the data structure CSSS of Section 2,
we will design an L1 sampler for strict-turnstile strong L1 α-property streams using O(ǫ−1 log(ǫ−1)

log(n) log(α log(n)
ǫ ) log(δ−1)) bits of space. Throughout the section we use α-property to refer to the

L1 α-property.

4.1 The L1 Sampler

Our algorithm employs the technique of precision sampling in a similar fashion as in the L1 sampler
of [38]. The idea is to scale every item fi by 1/ti where ti ∈ [0, 1] is a uniform random variable, and

return any index i such that zi = |fi|/ti > 1
ǫ‖f‖1, since this occurs with probability exactly ǫ |fi|

‖f‖1 .
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αL1Sampler: L1 sampling algorithm for strict-turnstile strong α-property streams:
Initialization

1. Instantiate CSSS with k = O(log(ǫ−1)) columns and parameter ǫ′ = ǫ3/ log2(n).
2. Select k = O(log(1ǫ ))-wise independent uniform scaling factors ti ∈ [0, 1] for i ∈ [n].
3. Run CSSS on scaled input z where zi = fi/ti.
4. Keep log(n)-bit counters r, q to store r = ‖f‖1 and q = ‖z‖1.

Recovery
1. Compute estimate y∗ via CSSS.

2. Via algorithm of Lemma 5, compute v such that Errk2(z) ≤ v ≤ 45 k1/2ǫ3

log2(n)
‖z‖1 + 20Errk2(z).

3. Find i with |y∗i | maximal.

4. If v > k1/2r + 45 k1/2ǫ3

log2(n)
q, or |y∗i | < max{1ǫ r,

(c/2)ǫ2

log2(n)
q} where the constant c > 0 is as in

Proposition 1, output FAIL, otherwise output i and tiy
∗
i as the estimate for fi.

Figure 3: Our L1 sampling algorithm with sucsess probability Θ(ǫ)

One can then run a traditional Countsketch on the scaled stream z to determine when an element
passes this threshold.

In this section, we will adapt this idea to strong α-property streams (Definition 2). The necessity
of the strong α-property arises from the fact that if f has the strong α-property, then any coordinate-
wise scaling z of f still has the α-property with probability 1. Thus the stream z given by zi = fi/ti
has the α-property (in fact, it again has the strong α-property, but we will only need the fact that
z has the α-property). Our full L1 sampler is given in Figure 3.

By running CSSS to find the heavy hitters of z, we introduce error additive in O(ǫ′‖z‖1) =
O(ǫ3/ log2(n)‖z‖1), but as we will see the heaviest item in z is an Ω(ǫ2/ log2(n)) heavy hitter with
probability 1 − O(ǫ) conditioned on an arbitrary value of ti, so this error will only be an O(ǫ)
fraction of the weight of the maximum weight element. Note that we use the term c-heavy hitter
for c ∈ (0, 1) to denote an item with weight at least c‖z‖1. Our algorithm then attempts to return
an item zi which crosses the threshold ‖f‖1/ǫ, and we will be correct in doing so if the tail error
Errk2(z) from CSSS is not too great.

To determine if this is the case, since we are in the strict turnstile case we can compute r = ‖f‖1
and q = ‖z‖1 exactly by keeping a log(n)-bit counter (note however that we will only need constant
factor approximations for these). Next, using the result of Lemma 5 we can accurately estimate
Errk2(z), and abort if it is too large in Recovery Step 4 of Figure 3. If the conditions of this step
hold, we will be guaranteed that if i is the maximal element, then y∗i = (1 ± O(ǫ))zi. This allows
us to sample ǫ-approximately, as well as guarantee that our estimate of zi has relative error ǫ. We
now begin our analysis our L1 sampler. First, the proof of the following fact can be found in [38].

Lemma 9. Given that the values of ti are k = log(1/ǫ)-wise independent, then conditioned on
an arbitrary fixed value t = tl ∈ [0, 1] for a single l ∈ [n], we have Pr[20Errk2(z) > k1/2‖f‖1] =
O(ǫ+ n−c).

The following proposition shows that the ǫ/ log2(n) term in the additive error of our CSSS will
be an ǫ fraction of the maximal element with high probability.

Proposition 1. There exists some constant c > 0 such that conditioned on an arbitrary fixed value
t = tl ∈ [0, 1] for a single l ∈ [n], if j is such that |zj | is maximal, then with probability 1−O(ǫ) we
have |zj | ≥ cǫ2/ log2(n)‖z‖1.
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Proof. Let f ′i = fi, z
′
i = zi for all i 6= l, and let f ′l = 0 = z′l. Let It = {i ∈ [n] \ l | zi ∈

[‖f
′‖1

2t+1 ,
‖f ′‖1
2t )}. Then Pr[i ∈ It, i 6= l] = 2t|fi|/‖f ′‖1, so E[|It|] = 2t and by Markov’s inequality

Pr[|It| > log(n)ǫ−12t] < ǫ/ log(n). By the union bound
∑

t∈[log(n)]
∑

i∈It |zi| ≤ log2(n)‖f ′‖1/ǫ
with probability 1 − ǫ. Call this event E . Now for i 6= l let Xi indicate zi ≥ ǫ‖f ′‖/2. Then
Var(Xi) = (2/ǫ)|fi|/‖f ′‖1 − ((2/ǫ)|fi|/‖f ′‖1)2 < E[Xi], and so pairwise independence of the ti is
enough to conclude that Var(

∑

i 6=lXi) < E[
∑

i 6=lXi] = 2/ǫ. So by Chebyshev’s inequality,

Pr
[

∣

∣

∑

i 6=l

Xi − 2ǫ−1
∣

∣ > ǫ−1
]

< 2ǫ

so there is at least one and at most 3/ǫ items in z′ with weight ǫ‖f ′‖1/2 with probability 1−O(ǫ).
Call these “heavy items”. By the union bound, both this and E occur with probability 1 − O(ǫ).
Now the largest heavy item will be greater than the average of them, and thus it will be an ǫ/3-
heavy hitter among the heavy items. Moreover, we have shown that the non-heavy items in z′ have
weight at most log2(n)‖f ′‖1/ǫ with probability 1 − ǫ, so it follows that the maximum item in z′

will have weight at least ǫ2/(2 log2(n))‖z‖1 with probability 1−O(ǫ).
Now if zl is less than the heaviest item in z′, then that item will still be an ǫ2/(4 log2(n)) heavy

hitter. If zl is greater, then zl will be an ǫ2/(4 log2(n)) heavy hitter, which completes the proof
with c = 1/4.

Lemma 10. The probability that αL1Sampler outputs the index i ∈ [n] is (ǫ±O(ǫ2)) |fi|
‖f‖1 +O(n−c).

The relative error of the estimate of fi is O(ǫ) with high probability.

Proof. Ideally, we would like to output i ∈ [n] with |zi| ≥ ǫ−1r, as this happens if ti ≤ ǫ|fi|/r, which
occurs with probability precisely ǫ|fi|/r. We now examine what could go wrong and cause us to
output i when this condition is not met or vice-versa. We condition first on the fact that v satisfies
Errk2(z) ≤ v ≤ (45k1/2ǫ3/ log2(n))‖z‖1 + 20Errk2(z) as in Lemma 5 with parameter ǫ′ = ǫ3/ log2(n),
and on the fact that |y∗j − zj | ≤ 2(k−1/2Errk2(z) + (ǫ3/ log2(n))‖z‖1) for all j ∈ [n] as detailed in
Theorem 1, each of which occur with high probability.

The first type of error is if zi ≥ ǫ−1‖f‖1 but the algorithm fails and we do not output i.
First, condition on the fact that 20Errk2(z) < k1/2‖f‖1 and that |zj∗ | ≥ cǫ2/ log2(n)‖z‖1 where
j∗ ∈ [n] is such that |zj∗ | is maximal, which by the union bound using Lemma 9 and Proposition
1 together hold with probability 1 − O(ǫ) conditioned on any value of ti. Call this conditional
event E . Since v ≤ 20Errk2(z) + (45k1/2ǫ3/ log2(n))‖z‖1 w.h.p., it follows that conditioned on E
we have v ≤ k1/2‖f‖1 + (45k1/2ǫ3/ log2(n))‖z‖1. So the algorithm does not fail due to the first
condition in Recovery Step 4. of Figure 3. Since v ≥ Errk2(z) w.h.p, we now have 1

k1/2
Errk2(z) ≤

‖f‖1 +45 ǫ3

log2(n)
‖z‖1, and so |y∗j − zj | ≤ 2( 1

k1/2
Errk2(z) +

ǫ3

log2(n)
‖z‖1) ≤ 2‖f‖1 +92 ǫ3

log2(n)
‖z‖1 for all

j ∈ [n].
The second way we output FAIL when we should not have is if |y∗i | < ((c/2)ǫ2/ log2(n))‖z‖1 but

|zi| ≥ ǫ−1‖f‖1. Now E gives us that |zj∗ | ≥ cǫ2/ log2(n)‖z‖1 where |zj∗ | is maximal in z, and since

|y∗i | was maximal in y∗, it follows that |y∗i | ≥ |y∗j∗| > |zj∗ | − (2‖f‖1 + 92 ǫ3

log2(n)
‖z‖1). But |zj∗ | is

maximal, so |zj∗ | ≥ |zi| ≥ ǫ−1‖f‖1. The two lower bounds on |zj∗ | give us (2‖f‖1+92 ǫ3

log2(n)
‖z‖1) =

O(ǫ)|zj∗ | < |zj∗ |/2, so |y∗i | ≥ |zj∗ |/2 ≥ ((c/2)ǫ2/ log2(n))‖z‖1. So conditioned on E , this type of
failure can never occur. Thus the probability that we output FAIL for either of the last two reasons
when |zi| ≥ ǫ−1‖f‖1 is O(ǫ2 |fi|

‖f‖1 ) as needed. So we can now assume that y∗i > ((c/2)ǫ2/ log2(n))‖z‖1.
Given this, if an index i was returned we must have y∗i >

1
ǫ r =

1
ǫ‖f‖ and y∗i > ((c/2)ǫ2/ log2(n))‖z‖1.

These two facts together imply that our additive error from CSSS is at most O(ǫ)|y∗i |, and thus at
most O(ǫ)|zi|, so |y∗i − zi| ≤ O(ǫ)|zi|.
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With this in mind, another source of error is if we output i with y∗i ≥ ǫ−1r but zi < ǫ−1r, so we
should not have output i. This can only happen if zi is close to the threshold rǫ

−1. Since the additive
error from our Countsketch is O(ǫ)|zi|, it must be that ti lies in the interval |fi|

r (1/ǫ + O(1))−1 ≤
ti ≤ |fi|

r (1/ǫ−O(1))−1, which occurs with probability O(1)
1/ǫ2−O(1)

|fi|
r = O(ǫ2 |fi|

‖f‖1 ) as needed.

Finally, an error can occur if we should have output i because zi ≥ ǫ−1‖f‖1, but we output

another index i′ 6= i because y∗i′ > y∗i . This can only occur if ti′ < (1/ǫ−O(1))−1 |fi′ |
r , which occurs

with probability O(ǫ
|fi′ |
‖f‖1 ). By the union bound, the probability that such an i′ exists is O(ǫ),

and by pairwise independence this bound holds conditioned on the fact that zi > ǫ−1r. So the
probability of this type of error is O(ǫ2 |fi|

‖f‖1 ) as needed.

Altogether, this gives the stated ǫ |fi|
‖f‖1 (1 ± O(ǫ)) + O(n−c) probability of outputting i, where

the O(n−c) comes from conditioning on the high probability events. For the O(ǫ) relative error
estimate, if we return an index i we have shown that our additive error from CSSS was at most
O(ǫ)|zi|, thus tiy∗i = (1±O(ǫ))tizi = (1±O(ǫ))fi as needed.

Theorem 5. For ǫ, δ > 0, there is an O(ǫ)-relative error one-pass L1 sampler for α-property
streams which also returns an O(ǫ)-relative error approximation of the returned item. The algorithm
outputs FAIL with probability at most δ, and the space is O(1ǫ log(

1
ǫ ) log(n) log(α log(n)/ǫ) log(1δ )).

Proof. By the last lemma, it follows that the prior algorithm fails with probability at most 1 −
ǫ + O(n−c). Conditioned on the fact that an index i is output, the probability that i = j is

(1 ± O(ǫ)) |fi|
‖f‖1 + O(n−c). By running O(1/ǫ log(1/δ)) copies of this algorithm in parallel and

returning the first index returned by the copies, we obtain an O(ǫ) relative error sampler with
failure probability at most δ. The O(ǫ) relative error estimation of fi follows from Lemma 10.

For space, note that CSSS requires O(k log(n) log(α log(n)/ǫ) = O(log(n) log(1/ǫ) log(α log(n)
ǫ ))

bits of space, which dominates the cost of storing r, q and the cost of computing v via Lemma 5,
as well as the cost of storing the randomness to compute k-wise independent scaling factors ti.
Running O(1/ǫ log(1/δ)) copies in parallel gives the stated space bound.

Remark 1. Note that the only action taken by our algorithm which requires more space in the
general turnstile case is the L1 estimation step, obtaining r, q in step 2 of the Recovery in Figure
3. Note that r, q, need only be constant factor approximations in our proof, and such constant
factor approximations can be obtained with high probability using O(log2(n)) bits (see Fact 1).

This gives an O(1ǫ log(
1
ǫ ) log(n) log(

α log(n)
ǫ ) + log2(n))-bit algorithm for the general turnstile case.

5 L1 estimation

We now consider the well-studied L1 estimation problem in the α-property setting (in this section we
write α-property to refer to the L1 α-property). We remark that in the general turnstile unbounded
deletion setting, an O(1) estimation of ‖f‖1 can be accomplished inO(log(n)) space [39]. We show in
Section 8, however, that even for α as small as 3/2, estimating ‖f‖1 in general turnstile α-property
streams still requires Ω(log(n))-bits of space. Nevertheless, in 5.2 we show that for α-property
general turnstile streams there is a Õ(ǫ−2 log(α) + log(n)) bits of space algorithm, where Õ hides
log(1/ǫ) and log log(n) terms, thereby separating the ǫ−2 and log n factors. Furthermore, we show
a nearly matching lower bound of Ω( 1

ǫ2 log(ǫ
2α)) for the problem (Theorem 14).
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αL1Estimator: Input (ǫ, δ) to estimate L1 of an α-property strict turnstile stream.
1. Initialization: Set s← O(α2δ−1 log3(n)/ǫ2), and initialize Morris-Counter vt with param-

eter δ′. Define Ij = [sj, sj+2].
2. Processing: on update ut, for each j such that vt ∈ Ij , sample ut with probability s−j.
3. For each update ut sampled while vt ∈ Ij, keep counters c+j , c

−
j initialized to 0. Store all

positive updates sampled in c+j , and (the absolute value of) all negative updates sampled in

c−j .

4. if vt /∈ Ij for any j, delete the counters c+j , c
−
j .

5. Return: s−j∗(c+j∗ − c−j∗) for which j∗ is such that c+j∗ , c
−
j∗ have existed the longest (the stored

counters which have been receiving updates for the most time steps).

Figure 4: L1 Estimator for strict turnstile α-property streams.

5.1 Strict Turnstile L1 Estimation

Now for strict-turnstile α-property streams, we show that the problem can be solved with Õ(log(α))-
bits. Ideally, to do so we would sample poly(α log(n)/ǫ) updates uniformly from the stream and
apply Lemma 1. To do this without knowing the length of the stream in advance, we sample in
exponentially increasing intervals, throwing away a prefix of the stream. At any given time, we will
sample at two different rates in two overlapping intervals, and we will return the estimate given
by the sample corresponding to the interval from which we have sampled from the longest upon
termination. We first give a looser analysis of the well known Morris counting algorithm.

Lemma 11. There is an algorithm, Morris-Counter, that given δ ∈ (0, 1) and a sequence of m
events, produces non-decreasing estimates vt of t such that

δ/(12 log(m))t ≤ vt ≤ 1/δt

for a fixed t ∈ [m] with probability 1− δ. The algorithm uses O(log log(m)) bits of space.

Proof. The well known Morris Counter algorithm is as follows. We initialize a counter v0 = 0, and
on each update t we set vt = vt−1 + 1 with probability 1/2vt , otherwise vt = vt−1. The estimate
of t at time t is 2vt − 1. It is easily shown that E[2vt ] = t + 1, and thus by Markov’s bound,
Pr[2vt − 1 > t/δ] < δ.

For the lower bound consider any interval Ei = [2i, 2i+1]. Now suppose our estimate of t = 2i

is less than 6(2iδ/ log(n)). Then we expect to sample at least 3 log(n)/δ updates in Ei at 1/2 the
current rate of sampling (note that the sampling rate would decrease below this if we did sample
more than 2 updates). Then by Chernoff bounds, with high probability w.r.t. n and δ we sample
at least two updates. Thus our relative error decreases by a factor of at least 2 by the time we
reach the interval Ei+1. Union bounding over all log(m) = O(log(n)) intervals, the estimate never
drops below δ/12 log(n)t for all t ∈ [m] w.h.p. in n and δ. The counter is O(log log(n)) bits with
the same probability, which gives the stated space bound.

Our full L1 estimation algorithm is given in Figure 4. Note that the value s−j∗ can be returned
symbolically by storing s and j∗, without explicitly computing the entire value. Also observe that
we can assume that s is a power of 2 by rescaling, and sample with probability s−i by flipping
log(s)i fair coins sequentially and sampling only if all are heads, which requires O(log log(n)) bits
of space.
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Theorem 6. The algorithm αL1Estimator gives a (1±ǫ) approximation of the value ‖f‖1 of a strict
turnstile stream with the α-property with probability 1−δ using O(log(α/ǫ)+log(1/δ)+log(log(n))))
bits of space.

Proof. Let ψ = 12 log2(m)/δ. By the union bound on Lemma 11, with probability 1 − δ the
Morris counter vt will produce estimates vt such that t/ψ ≤ vt ≤ ψt for all points t = si/ψ
and t = ψsi for i = 1, . . . , log(m)/ log(s). Conditioned on this, Ij will be initialized by time ψsj

and not deleted before sj+2/ψ for every j = 1, 2, . . . , log(n)/ log(s). Thus, upon termination, the
oldest set of counters c+j∗ , c

−
j∗ must have been receiving samples from an interval of size at least

m− 2ψm/s, with sampling probability s−j∗ ≥ s/(2ψm). Since s ≥ 2ψα2/ǫ2, it follows by Lemma
1 that s−j∗(c+j∗ − c−j∗) =

∑n
i=1 f̂i ± ǫ‖f̂‖1 w.h.p., where f̂ is the frequency vector of all updates

after time t∗ and t∗ is the time step where c+j∗ , c
−
j∗ started receiving updates. By correctness of

our Morris counter, we know that t∗ < 2ψm/s < ǫ‖f‖1, where the last inequality follows from the
size of s and the the α-property, so the number of updates we missed before initializing c+j∗ , c

−
j∗

is at most ǫ‖f‖1. Since f is a strict turnstile stream,
∑n

i=1 f̂i = ‖f‖1 ± t∗ = (1 ± O(ǫ))‖f‖1 and

‖f̂‖1 = (1±O(ǫ))‖f‖1. After rescaling of ǫ we obtain s−j∗(c+j∗ − c−j∗) = (1± ǫ)‖f‖1 as needed.
For space, conditioned on the success of the Morris counter, which requires O(log log(n))-bits

of space, we never sample from an interval Ij for more than ψsj+2 steps, and thus the maximum
expected number of samples is ψs2, and is at most s3 with high probability by Chernoff bounds.
Union bounding over all intervals, we never have more than s2 samples in any interval with high
probability. At any given time we store counters for at most 2 intervals, so the space required is
O(log(s) + log log(m)) = O(log(α/ǫ) + log(1/δ) + log log(n)) as stated.

Remark 2. Note that if an update ∆t to some coordinate it arrives with |∆t| > 1, our algorithm
must implicitly expand ∆t to updates in {−1, 1} by updating the counters by Sign(∆t)·Bin(|∆t|, s−j)
for some j. Note that computing this requires O(log(|∆t|)) bits of working memory, which is poten-
tially larger than O(log(α log(n)/ǫ)). However, if the updates are streamed to the algorithm using
O(log(|∆t|)) bits then it is reasonable to allow the algorithm to have at least this much working
memory. Once computed, this working memory is no longer needed and does not factor into the
space complexity of maintaining the sketch of αL1Estimator.

5.2 General Turnstile L1 Estimator

In [39], an O(ǫ−2 log(n))-bit algorithm is given for general turnstile L1 estimation. We show how
modifications to this algorithm can result in improved algorithms for α-property streams. We state
their algorithm in Figure 5, along with the results given in [39]. Here D1 is the distribution of a
1-stable random variable. In [35, 39], the variables X = tan(θ) are used, where θ is drawn uniformly
from [−π

2 ,
π
2 ]. We refer the reader to [35] for a further discussion of p-stable distributions.

Lemma 12 ( A.6 [39]). The entries of A,A′ can be generated to precision δ = Θ(ǫ/m) using
O(k log(n/ǫ)) bits.

Theorem 7 (Theorem 2.2 [39]). The algorithm above can be implemented using precision δ in
the variables Ai,j, A

′
i,j , and thus precision δ in the entries yi, y

′
i, such that the output L̃ satisfies

L̃ = (1± ǫ)‖f‖1 with probability 3/4, where δ = Θ(ǫ/m). In this setting, we have y′med = Θ(1)‖f ||1,
and

∣

∣

∣

(1

r

r
∑

i=1

cos(
yi
y′med

)
)

− e
−(

‖f‖1
y′
med

)
∣

∣

∣
≤ O(ǫ)

.

22



1. Initialization: Generate random matrices A ∈ Rr×n and A ∈ Rr′×n of variables drawn
from D1, where r = Θ(1/ǫ2) and r′ = Θ(1). The variables Aij are k-wise independent, for
k = Θ(log(1/ǫ)/ log log(1/ǫ)) , and the variables A′

ij are k′-wise independent for k′ = Θ(1).
For i 6= i′, the seeds used to generate the variables {Ai,j}nj=1 and {Ai′,j}nj=1 are pairwise
independent

2. Processing: Maintain vectors y = Af and y′ = A′f .
3. Return: Let y′med = median{|y′i|}r

′

i=1. Output L̃ = y′med

(

− ln
(

1
r

∑r
i=1 cos(

yi
y′med

)
))

Figure 5: L1 estimator of [39] for general turnstile unbounded deletion streams.

We demonstrate that this algorithm can be implemented with reduced space complexity for
α-property streams by sampling to estimate the values yi, y

′
i. We first prove an alternative version

of our earlier sampling Lemma.

Lemma 13. Suppose a sequence of I insertions and D deletions are made to a single item, and
let m = I + D be the total number of updates. Then if X is the result of sampling updates with
probability p = Ω(γ−3 log(n)/m), then with high probability

X = (I −D)± γm

Proof. Let X+ be the positive samples and X− be the negative samples. First suppose I > ǫm,

then Pr[|p−1X− − I| > γm] < 2 exp
(

− γ2pI
3

)

< exp
(

− γ3pm
3

)

= 1/poly(n). Next, if I < γm, we
have Pr[p−1X+ > 2γm] < exp

(

− (γmp/3
)

< 1/poly(n) as needed. A similar bound shows that
X− = D ±O(γ)m, thus X = X+ −X− = I −D ±O(γm) as desired after rescaling γ.

Theorem 8. There is an algorithm that, given a general turnstile α-property stream f , produces

an estimate L̃ = (1±O(ǫ))‖f‖1 with probability 2/3 using O(ǫ−2 log(α log(n)/ǫ) +
log( 1

ǫ
) log(n)

log log( 1
ǫ
)
) bits

of space.

Proof. Using Lemma 12, we can generate the matrices A,A′ usingO(k log(n)/ǫ) = O(log(1ǫ ) log(n/ǫ)
/ log log(1ǫ )) bits of space, with precision δ = Θ(ǫ/m). Every time an update (it,∆t) arrives, we
compute the update ηi = ∆tAi,it to yi for i ∈ [r], and the update η′i′ = ∆tA

′
i′,it

to y′i′ for i
′ ∈ [r′].

Let X ∼ D1 for a 1-stable distribution D1. We think of yi and y
′
i′ as streams on one variable,

and we will sample from them and apply Lemma 13. We condition on the success of the algorithm
of Theorem 7, which occurs with probability 3/4. Conditioned on this, this estimator L̃ of Figure
5 is a (1± ǫ) approximation, so we need only show we can estimate L̃ in small space.

Now the number of updates to yi is
∑n

q=1 |Aiq|Fq, where Fq = Iq+Dq is the number of updates

to fq. Conditioned on maxj∈[n] |Aij | = O(n2), which occurs with probability 1 − O(1/n) by a
union bound, E[|Aiq|] = Θ(log(n)) (see, e.g., [35]). Then E[

∑n
q=1 |Aiq|Fq] = O(log(n))‖F‖1 is the

expected number of updates to yi, so by Markov’s inequality
∑n

q=1 |Aiq|Fq = O(log(n)/ǫ2‖F‖1)
with probability 1− 1/(100(r + r′)), and so with probability 99/100, by a union bound this holds
for all i ∈ [r], i′ ∈ [r′]. We condition on this now.

Our algorithm then is as follows. We then scale ∆i up by δ−1 to make each update ηi, η
′
i an

integer, and sample updates to each yi with probability p = Ω(ǫ−3
0 log(n)/m) and store the result

in a counter ci. Note that scaling by δ−1 only blows up the size of the stream by a factor of m/ǫ.
Furthermore, if we can (1± ǫ) approximation the L1 of this stream, scaling our estimate down by
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a factor of δ gives a (1± ǫ) approximation of the actual L1, so we can assume from now on that all
updates are integers.

Let ỹi = p−1ci. We know by Lemma 13 that ỹi = yi±ǫ0(
∑n

q=1 |Aiq|Fq) = yi±O(ǫ0 log(n)‖F‖1/ǫ2)
with high probability. Setting ǫ0 = ǫ3/(α log(n)), we have |ỹi − yi| < ǫ/α‖F‖1 ≤ ǫ‖f‖1 by the α-
property for all i ∈ [r]. Note that we can deal with the issue of not knowing the length of the
stream by sampling in exponentially increasing intervals [s1, s3], [s2, s4], . . . of size s = poly(α/ǫ0)
as in Figure 4, throwing out a ǫ0 fraction of the stream. Since our error is an additive ǫ0 fraction
of the length of the stream already, our error does not change. We run the same routine to obtain
estimates ỹ′i of y

′
i with the same error guarantee, and output

L′ = ỹ′med

(

− ln
(1

r

r
∑

i=1

cos(
ỹi
ỹ′med

)
)

)

where ỹ′med = median(ỹi
′). By Theorem 7, we have that y′med = Θ(‖f‖1), thus ỹ′med = y′med± ǫ‖f‖1

since |ỹ′i − y′i| < ǫ‖f‖1 for all i. Using the fact that y′med = Θ(‖f‖1) by Theorem 7, we have:

L′ = (y′med ± ǫ‖f‖1)
(

− ln
(1

r

r
∑

i=1

cos(
yi

y′med(1±O(ǫ))
± ǫ‖f‖1
y′med(1±O(ǫ))

)
)

)

= (y′med ± ǫ‖f‖1)
(

− ln
(1

r

r
∑

i=1

cos(
yi
y′med

)±O(ǫ)
)

)

Where the last equation follows from the angle formula cos(ν + β) = cos(ν) cos(β) − sin(ν) sin(β)

and the Taylor series expansion of sin and cos. Next, since |
(

1
r

∑r
i=1 cos(

yi
y′med

)
)

− e
−(

‖f‖1
y′
med

)
| < O(ǫ)

and y′med = Θ(‖f‖1) by Theorem 7, it follows that
(

1
r

∑r
i=1 cos(

yi
y′med

)
)

= Θ(1), so using the fact that

ln(1±O(ǫ)) = Θ(ǫ), this is (y′med± ǫ‖f‖1)
(

− ln
(

1
r

∑r
i=1 cos(

yi
y′med

)
)

±O(ǫ)
)

, which is L̃±O(ǫ)‖f‖1,
where L̃ is the output of Figure 5, which satisfies L̃ = (1± ǫ)‖f‖1 by Theorem 7. It follows that our
estimate L′ satisfies L = (1±O(ǫ))‖f‖1, which is the desired result. Note that we only conditioned
on the success of Figure 5, which occurs with probability 3/4, and the bound on the number of
updates to every yi, y

′
i, which occurs with probability 99/100, and high probability events, by the

union bound our result holds with probability 2/3 as needed.
For space, generating the entries of A,A′ requires O(log(1ǫ ) log(n/ǫ)/ log log(

1
ǫ )) bits as noted,

which dominates the cost of storing δ. Moreover, every counter ỹi, ỹ
′
i is at most poly(p

∑n
q=1 |Aiq|Fq) =

poly(α log(n)/ǫ) with high probability, and can thus be stored with O(log(α log(n)/ǫ)) bits each
by storing a counter and separately storing p (which is the same for every counter). As there are
O(1/ǫ2) counters, the total space is as stated.

6 L0 Estimation

The problem of estimating the support size of a stream is known as L0 estimation. In other
words, this is L0 = |{i ∈ [n] | fi 6= 0}|. L0 estimation is a fundamental problem for network
traffic monitoring, query optimization, and database analytics [54, 1, 25]. The problem also has
applications in detecting DDoS attacks [4] and port scans [24].

For general turnstile streams, Kane, Nelson, and Woodruff gave an O(ǫ−2 log(n)(log(ǫ−1) +
log log(n)))-bit algorithm with constant probability of success [40], which nearly matches the known
lower bound of Ω(ǫ−2 log(ǫ2n)) [39]. For insertion only streams, they also demonstrated an O(ǫ−2+
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L0Estimator: L0 estimation algorithm
Input: ǫ > 0

1. Set K = 1/ǫ2, and instantiate log(n)×K matrix B to 0.
2. Fix random h1 ∈ H2([n], {0, . . . , n − 1}), h2 ∈ H2([n], [K

3]), h3 ∈ Hk([K
3], [K]), and h4 ∈

H2([K
3], [K]), for k = Ω(log(ǫ−1)/ log log(ǫ−1)).

3. Randomly choose prime p ∈ [D,D3], for D = 100K log(mM), and vector ~u ∈ FK
p .

4. On Update (i,∆): set

Blsb(h1(i)),h3(h2(i)) ←
(

Blsb(h1(i)),h3(h2(i)) +∆ · ~uh4(h2(i))

)

(mod p)

5. Return: run RoughL0Estimator to obtain R ∈ [L0, 110L0]. Set T = |{j ∈ [K] | Bi∗,j 6= 0}|,
where i∗ = max{0, log(16R/K)}. Return estimate L̃0 =

32R
K

ln(1−T/K)
ln(1−1/K) .

Figure 6: L0 Estimation Algorithm of [40]

log(n)) upper bound. In this section we show that the ideas of [40] can be adapted to yield more
efficient algorithms for general turnstile L0 α-property streams. For the rest of the section, we will
simply write α-property to refer to the L0 α-property.

The idea of the algorithm stems from the observation that if A = Θ(K), then the number
of non-empty bins after hashing A balls into K bins is well concentrated around its expectation.
Treating this expectation as a function of A and inverting it, one can then recover A with good
probability. By treating the (non-zero) elements of the stream as balls, we can hash the universe
down into K = 1/ǫ2 bins and recover L0 if L0 = Θ(K). The primary challenge will be to ensure
this last condition. In order to do so, we subsample the elements of the stream at log(n) levels, and
simultaneously run an O(1) estimator R of the L0. To recover a (1 ± ǫ) approximation, we use R
to index into the level of subsampling corresponding to a substream with Θ(K) non-zero elements.
We then invert the number of non-empty bins and scale up by a factor to account for the degree
of subsampling.

6.1 Review of Unbounded Deletion Case

For sets U, V and integer k, let Hk(U, V ) denote some k-wise independent hash family of functions
mapping U into V . Assuming that |U |, |V | are powers of 2, such hash functions can be represented
using O(k log(|U | + |V |)) bits [13] (without loss of generality we assume n, ǫ−1 are powers of 2
for the remainder of the section). For x ∈ Z≥0, we write lsb(x) to denote the (0-based index of)
the least significant bit of x written in binary. For instance, lsb(6) = 1 and lsb(5) = 0. We set
lsb(0) = log(n). In order to fulfill the algorithmic template outlined above, we need to obtain a
constant factor approximation R to L0. This is done using the following result which can be found
in [40].

Lemma 14. Given a fixed constant δ > 0, there is an algorithm, RoughL0Estimator, that with
probability 1−δ outputs a value R = L̃0 satisfying L0 ≤ R ≤ 110L0, using space O(log(n) log log(n)).

The main algorithm then subsamples the stream at log(n) levels. This is accomplished by
choosing a hash function h1 : [n] → {0, . . . , n − 1}, and subsampling an item i at level lsb(h1(i)).
Then at each level of subsampling, the updates to the subsampled items are hashed intoK = 1

ǫ2 bins
k = Ω(log(ǫ−1/ log(log(ǫ−1))))-wise independently. The entire data structure is then represented
by a log(n) × K matrix B. The matrix B is stored modulo a sufficiently large prime p, and the
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updates to the rows are scaled via a random linear function to reduce the probability that deletions
to one item cancel with insertions to another, resulting in false negatives in the number of buckets
hit by items from the support. At the termination of the algorithm, we count the number T of
non-empty bins in the i∗-th row of B, where i∗ = max{0, log(16RK )}. We then return the value

L̃0 = 32R
K

ln(1−T/K)
ln(1−1/K) . The full algorithm is given in Figure 6. First, the following Lemma can be

found in [40].

Lemma 15. There exists a constant ǫ0 such that the following holds. Let A balls be mapped into
K = 1/ǫ2 bins using a random h ∈ Hk([A], [K]) for k = c log(1/ǫ)/ log log(1/ǫ) for a sufficiently
large constant c. Let X be a random variable which counts the number of non-empty bins after all
balls are mapped, and assume 100 ≤ A ≤ K/20 and ǫ ≤ ǫ0. Then E[X] = K(1− (1−K−1)A) and

Pr[
∣

∣X − E[X]
∣

∣ ≤ 8ǫE[X]] ≥ 4/5

Let A be the log(n) × K bit matrix such that Ai,j = 1 iff there is at least one v ∈ [n] with
fv 6= 0 such that lsb(h1(v)) = i and h3(h2(v)) = j. In other words, Ai,j is an indicator bit which is
1 if an element from the support of f is hashed to the entry Bi,j in the above algorithm. Clearly
if Bi,j 6= 0, then Ai,j 6= 0. However, the other direction may not always hold. The proofs of the
following facts and lemmas can be found in [40]. However we give them here for completeness.

Fact 2. Let t, r > 0 be integers. Pick h ∈ H2([r], [t]). For any S ⊂ [r], E[
∑s

i=1

(|h−1(i)∩S|
2

)

] ≤
|S|2/(2t).

Proof. Let Xi,j be an indicator variable which is 1 if h(i) = j. Utilizing linearity of expectation,

the desired expectation is then t
∑

i<i′ E[Xi,1]E[Xi′,1] = t
(|S|

2

)

1
t2
≤ |S|2

2t .

Fact 3. Let Fq be a finite field and v ∈ Fd
q be a non-zero vector. Then, if w ∈ Fd

q is selected
randomly, we have Pr[v · w = 0] = 1/q where v · w is the inner product over Fq.

Proof. The set of vectors orthogonal to v is a linear subspace V ⊂ Fd
q of dimension d − 1, and

therefore contains qd−1 points. Thus Pr[w ∈ V ] = 1/q as needed.

Lemma 16 (Lemma 6 of [40]). Assuming that L0 ≥ K/32, with probability 3/4, for all j ∈ [K]
we have Ai∗,j = 0 if and only if Bi∗,j = 0. Moreover, the space required to store each Bi,j is
O(log log(n) + log(1/ǫ)).

Proof. The space follows by the choice of p ∈ O(D3), and thus it suffices to bound the probability
that Bi∗,j = 0 when Ai∗,j 6= 0. Define Ii∗ = {j ∈ [n] | lsb(h1(j)) = i∗, fj 6= 0}. This is the set of non-
zero coordinates of f which are subsampled to row i∗ of B. Now conditioned on R ∈ [L0, 110L0],
which occurs with arbitrarily large constant probability δ = Θ(1), we have E[|Ii∗ |] ≤ K/32, and
using the pairwise independence of h1 we have that Var(|Ii∗ |) < E[|Ii∗ |]. So by Chebyshev’s
inequality Pr[|Ii∗ | ≤ K/20] = 1−O(1/K), which we now condition on. Given this, since the range
of h2 has sizeK

3, the indices of Ii∗ are perfectly hashed by h2 with probability 1−O(1/K) = 1−o(1),
an event we call Q and condition on occurring.

Since we choose a prime p ∈ [D,D3], with D = 100K log(mM), for mM larger than some
constant, by standard results on the density of primes there are at least (K2 log2(mM)) primes
in the interval [D,D3]. Since each fj has magnitude at most mM and thus has at most log(mM)
prime factors, it follows that fj 6= 0 (mod p) with probability 1 − O(1/K2) = 1 − o(1). Union
bounding over all j ∈ Ii∗ , it follows that p does not divide |fj | for any j ∈ Ii∗ with probability
1− o(1/K) = 1− o(1). Call this event Q′ and condition on it occurring. Also let Q′′ be the event
that h4(h2(j)) 6= h4(h2(j

′)) for any distinct j, j′ ∈ Ii∗ such that h3(h2(j)) = h3(h2(j
′)).
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To bound Pr[¬Q′′], let Xj,j′ indicate h3(h2(j)) = h3(h2(j
′)), and let X =

∑

j<j′ Xj,j′. By

Fact 2 with r = K3, t = K and |S| = |Ii∗ | < K/20, we have that E[X] ≤ K/800. Let Z =
{(j, j′) | h3(h2(j)) = h3(h2(j

′))}. For (j, j′) ∈ Z, let Yj,j′ indicate h4(h2(j)) = h4(h2(j
′)), and let

Y =
∑

(j,j′)∈Z Yj,j′. By the pairwise independence of h4 and our conditioning on Q, we have E[Y ] =
∑

(j,j′)∈Z Pr[h4(h2(j)) = h4(h2(j
′))] = |Z|/K = X/K. Now conditioned on X < 20E[X] = K/40

which occurs with probability 19/20 by Markov’s inequality, we have E[Y ] ≤ 1/40, so Pr[Y ≥ 1] ≤
1/40. So we have shown that Q′′ holds with probability (19/20)(39/40) ≥ 7/8.

Now for each j ∈ [K] such that Ai∗,j = 1, we can view Bi∗,j as the dot product of the vector
v, which is f restricted to the coordinates of Ii∗ that hashed to j, with a random vector w ∈ Fp

which is u restricted to coordinates of Ii∗ that hashed to j. Conditioned on Q′ it follows that v is
non-zero, and conditioned on Q′′ it follows that w is indeed random. So by Fact 3 with q = p, union
bounding over all K counters Bi∗,j, we have that Bi∗,j 6= 0 whenever Ai∗,j 6= 0 with probability
1 − K/p ≥ 99/100. Altogether, the success probability is then (7/8)(99/100) − o(1) ≥ 3/4 as
desired.

Theorem 9. Assuming that L0 > K/32, the value returned by L0Estimator is a (1 ± ǫ) approxi-
mation of the L0 using space O(ǫ−2 log(n)(log(1ǫ )+log(log(n)) log(1δ )), with 3/4 success probability.

Proof. By Lemma 16, we have shown that TA = |{j ∈ [K] | Ai∗,j 6= 0}| = T with probability 3/4,

where T is as in Figure 6. So it suffices to show that L̃A
0 = 32R

K
ln(1−TA/K)
ln(1−1/K) is a (1±ǫ) approximation.

Condition on the event E where R ∈ [L0, 110L0], which occurs with large constant probability
δ = Θ(1). Let Ii∗ = {j ∈ [n] | lsb(h1(j)) = i∗, fj 6= 0}. Then E[|Ii∗ |] = L0/2

i∗+1 = L0K/(32R)
(assuming L0 > K/32) and Var(|Ii∗ |) < E[|Ii∗ |] by the pairwise independence of h1. ThenK/3520 ≤
E[|Ii∗ |] ≤ K/32 by E , and by Chebyshev’s inequality K/4224 ≤ |Ii∗ | ≤ K/20 with probability
1 − O(1/K) = 1 − o(1). Call this event E ′, and condition on it. We then condition on the event
E ′′ that the indices of Ii∗ are perfectly hashed, meaning they do not collide with each other in
any bucket, by h2. Given E ′, then by the pairwise independence of h2 the event E ′′ occurs with
probability 1−O(1/K) as well.

Conditioned on E ′∧E ′′, it follows that TA is a random variable counting the number of bins hit by
at least one ball under a k-wise independent hash function, where there are C = |Ii∗ | balls, K bins,
and k = Ω(log(K/ǫ)/ log log(K/ǫ)). Then by Lemma 15, we have TA = (1± 8ǫ)K(1− (1− 1/K)C)
with probability 4/5. So

ln(1− TA/K) = ln((1− 1/K)C ± 8ǫ(1 − (1− 1/K)C))

Since we condition on the fact that K/4244 ≤ C ≤ K/32, it follows that (1 − 1/K)C = Θ(1), so
the above is ln((1 ± O(ǫ))(1 − 1/K)C) = C ln(1 − 1/K) ± O(ǫ), and since ln(1 + x) = O(|x|) for
|x| < 1/2, we have L̃A

0 = 32RC
K + O(ǫR). Now the latter term is O(ǫL0), since R = Θ(L0), so it

suffices to show the concentration of C. Now since Var(C) ≤ E[C] by pairwise independence of

h1, so Chebyshev’s inequality gives Pr[
∣

∣C − L0K/(32R)
∣

∣ ≥ c/
√
K] < E[C]

(c2/K)E[C]2
≤ (16c )

2 and this

probability can be made arbitrarily small big increasing c, so set c such that the probability is 1/100.
Note that 1/

√
K = ǫ, so it follows that C = (1 ± O(ǫ))L0K/(32R). From this we conclude that

L̃A
0 = (1±O(ǫ))L0. By the union bound the events E ∧E ′∧E ′′ occur with arbitrarily large constant

probability, say 99/100, and conditioned on this we showed that L̃A
0 = (1 ± ǫ)L0 with probability

4/5−1/100 = 79/100. Finally, L̃A
0 = L̃0 with probability 3/4, and so together we obtain the desired

result with probability 1− 21/100 − 1/100 − 1/4 = 53/100. Running this algorithm O(1) times in
parallel and outputting the median gives the desired probability.
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αL0Estimator: L0 estimator for α-property streams.
1. Initialize instance of L0Estimator, constructing only the top 2 log(4α/ǫ) rows of B. Let all

parameters and hash functions be as in L0Estimator.
2. Initialize αStreamRoughL0Est to obtain a value L̃t

0 ∈ [Lt
0, 8αL0] for all t ∈ [m], and set

Lt
0 = max{L̃t

0, 8 log(n)/ log log(n)}
3. Update the matrix B as in Figure 6, but only store the rows with index i such that i =

log(16Lt
0/K)± 2 log(4α/ǫ).

4. Return: run αStreamConstL0Est to obtain R ∈ [L0, 100L0], and set T = |{j ∈ [K] | Bi∗,j 6=
0}|, where i∗ = log(16R/K). Return estimate L̃0 =

32R
K

ln(1−T/K)
ln(1−1/K) .

Figure 7: Our L0 estimation algorithm for α-property streams with L0 > K/32

6.2 Dealing With Small L0

In the prior section it was assumed that L0 ≥ K/32 = ǫ−2/32. We handle the estimation when this
is not the case the same way as [40]. We consider two cases. First, if L0 ≤ 100 we can perfectly
hash the elements into O(1) buckets and recovery the L0 exactly with large constant probability
by counting the number of nonzero buckets, as each non-zero item will be hashed to its own bucket
with good probability (see Lemma 21).

Now for K/32 > L0 > 100, a similar algorithm as in the last section is used, except we use only
one row of B and no subsampling. In this case, we set K ′ = 2K, and create a vector B′ of length
K ′. We then run the algorithm of the last section, but update Bj instead of Bi,j every time Bi,j is
updated. In other words, B′

j is the j-th column of B collapsed, so the updates to all items in [n]
are hashed into a bucket of B′. Let I = {i ∈ [n] | fi 6= 0}. Note that the only fact about i∗ that
the proof of Lemma 16 uses was that E[|Ii∗ |] < K/32, and since I = L0 < K/32, this is still the
case. Thus by the the same argument given in Lemma 16, with probability 3/4 we can recover a
bitvector A from B satisfying Aj = 1 iff there is some v ∈ [n] with fv 6= 0 and h3(h2(v)) = j. Then
if TA is the number of non-zero bits of A, it follows by a similar argument as in Theorem 9 that
L̃′
0 = ln(1 − TA/K ′)/ ln(1 − 1/K ′) = (1 ± ǫ)L0 for 100 < L0 < K/32. So if L̃′

0 > K ′/32 = K/16,
we return the output of the algorithm from the last section, otherwise we return L̃′

0. The space
required to store B is O(ǫ−2(log log(n) + log(1/ǫ))), giving the following Lemma.

Lemma 17. Let ǫ > 0 be given and let δ > 0 be a fixed constant. Then there is a subroutine using
O(ǫ−2(log(ǫ−1) + log log(n)) + log(n)) bits of space which with probability 1 − δ either returns a
(1± ǫ) approximation to L0, or returns LARGE, with the guarantee that L0 > ǫ−2/16.

6.3 The Algorithm for α-Property Streams

We will give a modified version of the algorithm in Figure 6 for L0 α property streams. Our
algorithm is given in Figure 7. We note first that the return value of the unbounded deletion
algorithm only depends on the row i∗ = log(16R/K), and so we need only ensure that this row
is stored. Our L0 α-property implies that if Lt

0 is the L0 value at time t, then we must have
Lm
0 = L0 ≥ 1/αLt

0. So if we can obtain an O(α) approximation Rt to Lt
0, then at time t we

need only maintain and sample the rows of the matrix with index within c log(α/ǫ) distance of
it = log(16Rt/K), for some small constant c.

By doing this, the output of our algorithm will then be the same as the output of L0Estimator
when run on the suffix of the stream beginning at the time when we first begin sampling to the
row i∗. Since we begin sampling to this row when the current Lt

0 is less than an ǫ fraction of the
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final L0, it will follow that the L0 of this suffix will be an ǫ-relative error approximation of the L0

of the entire stream. Thus by the correctness of L0Estimator, the output of our algorithm will be
a (1± ǫ)2 approximation.

To obtain an O(α) approximation to Lt
0 at all points t in the stream, we employ another

algorithm of [40], which gives an O(1) estimation of the F0 value at all points in the stream,
where F0 = |{i ∈ [n] | f ti 6= 0 for some t ∈ [m]}|. So by definition for any time t ∈ [m] we have
F t
0 ≤ F0 = ‖I +D‖0 ≤ α‖f‖0 = αL0 by the α-property, and also by definition F t

0 ≥ Lt
0 at all times

t. These two facts together imply that [F t
0 , 8F

t
0 ] ⊆ [Lt

0, 8αL0].

Lemma 18 ([40]). There is an algorithm, RoughF0Est, that with probability 1− δ outputs non de-

creasing estimates F̃0
t
such that F̃0

t ∈ [F t
0 , 8F

t
0 ] for all t ∈ [m] such that F t

0 ≥ max{8, log(n)/ log log(n)},
where m is the length of the stream. The spacedrequired is O(log(n) log(1δ ))-bits.

Corollary 2. There is an algorithm, αStreamRoughL0Est, that with probability 1 − δ on an α-

deletion stream outputs non-decreasing estimates L̃0
t
such that L̃0

t ∈ [Lt
0, 8αL0] for all t ∈ [m] such

that F t
0 ≥ max{8, log(n)/ log log(n)}, where m is the length of the stream. The space required is

O(log(n) log(1δ )) bits.

Note that the approximation is only promised for t such that F t
0 ≥ max{8, log(n)/ log log(n)}.

To handle this, we give a subroutine which produces the L0 exactly for F0 < 8 log(n)/ log log(n)
using O(log(n)) bits. Our main algorithm will assume that F0 > 8 log(n)/ log log(n), and initialize

its estimate of L0
0 to be L0

0 = 8 log(n)/ log log(n), where L̃t
0 ∈ [Lt

0.8αL0] is the estimate produced
by αStreamRoughL0Est.

Lemma 19. Given c ≥ 1, there is an algorithm that with probability 49/50 returns the L0 exactly
if F0 ≤ c, and returns LARGE if F0 > c. The space required is O(c log(c) + c log log(n) + log(n))
bits

Proof. The algorithm chooses a random hash function h ∈ H2([n], [C]) for some C = Θ(c2). Every
time an update (it,∆t) arrives, the algorithm hashes the identity it and keeps a counter, initialized
to 0, for each identity h(it) seen. The counter for h(it) is incremented by all updates ∆τ such that
h(iτ ) = h(it). Furthermore, all counters are stored mod p, where p is a random prime picked in
the interval [P,P 3] for P = 1002c log(mM). Finally, if at any time the algorithm has more than
c counters stored, it returns LARGE. Otherwise, the algorithm reports the number of non-zero
counters at the end of the stream.

To prove correctness, first note that at most F0 items will ever be seen in the stream by definition.
Suppose F0 ≤ c. By the pairwise independence of h, and scaling C by a sufficiently large constant
factor, with probability 99/100 none of the F0 ≤ c identities will be hashed to the same bucket.
Condition on this now. Let I ⊂ [n] be the set of non-zero indices of f . Our algorithm will correctly
report |I| if p does not divide fi for any i ∈ I. Now for mM larger then some constant, by standard
results on the density of primes there are at least 100c2 log2(mM) primes in the interval [P,P 3].
Since each fi has magnitude at most mM , and thus at most log(mM) prime factors, it follows that
p does not divide fi with probability 1− 1/(100c2). Since |I| = L0 < F0 ≤ c, union bounding over
all i ∈ I, it follows that p ∤ fi for all i ∈ I with probability 99/100. Thus our algorithm succeeds
with probability 1− (1/100 + 1/100) > 49/50.

If F0 > c then conditioned on no collisions for the first c+ 1 distinct items seen in the stream,
which again occurs with probability 99/100 for sufficiently large C = Θ(c2), the algorithm will
necessarily see c+1 distinct hashed identities once the (c+1)-st item arrives, and correctly return
LARGE.
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For the space, each hashed identity requires O(log(c)) bits to store, and each counter requires
O(log(P )) = log(c log(n)) bits to store. There are at most c pairs of identities and counters, and
the hash function h can be stored using O(log(n)) bits, giving the stated bound.

Finally, to remove the log(n) log log(n) memory overhead of running the RoughL0Estimator

procedure to determine the row i∗, we show that the exact same O(1) approximation of the final
L0 can be obtained using O(log(α log(n)) log(log(n))+ log(n)) bits of space for α-property streams.
We defer the proof of the following Lemma to Section 6.4

Lemma 20. Given a fixed constant δ, there is an algorithm, αStreamConstL0Est that with proba-
bility 1− δ when run on an α property stream outputs a value R = L̂0 satisfying L0 ≤ R ≤ 100L0,
using space O(log(α) log log(n) + log(n)).

Theorem 10. There is an algorithm that gives a (1± ǫ) approximation of the L0 value of a general
turnstile stream with the α-property, using space O( 1

ǫ2
log(αǫ )(log(

1
ǫ ) + log log(n)) + log(n)), with

2/3 success probability.

Proof. The case of L0 < K/32 can be handled by Lemma 17 with probability 49/50, thus we
can assume L0 ≥ K/32. Now if F0 < 8 log(n)/ log log(n), we can use Lemma 19 with c =
8 log(n)/ log log(n) to compute the L0 exactly. Conditioning on the success of Lemma 19, which oc-
curs with probability 49/50, we will know whether or not F0 < 8 log(n)/ log log(n), and can correctly
output the result corresponding to the correct algorithm. So we can assume that F0 > 8 log(n)/ log
log(n). Then by the α-property, it follows that L0 > 8 log(n)/(α log log(n)).

Let t∗ be the time step when our algorithm initialized and began sampling to row i∗. Conditioned
on the success of αStreamRoughL0Est and αStreamConstL0Est, which by the union bound together
occur with probability 49/50 for constant δ, we argue that t∗ exists

First, we know that i∗ = log(16R/K) > log(16L0/K) > log(16 · (8 log(n)/(log log(n)))/K) −
log(α) by the success of αStreamConstL0Est. Moreover, at the start of the algorithm we ini-
tialize all rows with indices i = log(16 · (8 log log(n)/ log(n))/K) ± 2 log(4α/ǫ), so if i∗ < log(16 ·
(8 log log(n)/ log(n))/K) + 2 log(4α/ǫ) then we initialize i∗ at the very beginning (time t∗ = 0).
Next, if i∗ > log(16 · (8 log log(n)/ log(n))/L) + 2 log(4α/ǫ), then we initialize i∗ at the first time

t when Lt
0 ≥ R(ǫ/(4α))2. We know by termination that L̃0

m ∈ [L0, 8αL0] since F0 > 8 log(n)/ log
log(n) and therefore by the end of the stream αStreamRoughL0Est will give its promised approxi-
mation. So our final estimate satisfies L0

m ≥ L̃0
m ≥ L0 ≥ R/8 > R(ǫ/(4α))2. Thus i∗ will always

be initialized at some time t∗.
Now because the estimates L̃t

0 are non-decreasing and we have L̃0
m ∈ [L0, 8αL0], it follows that

L̃0
t
< 8αL0 for all t. Then, since Lt

0 < max{8αL0, 8 log(n)/ log log(n)} < L0(4α/ǫ)
2, it follows that

at the termination of our algorithm the row i∗ was not deleted, and will therefore be stored at the
end of the stream.

Now, at time t∗ − 1 right before row i∗ was initialized we have Lt∗−1
0 ≤ Lt∗−1

0 < R(ǫ/(4α))2,
and since R < 110L0 we have Lt∗−1

0 /L0 ≤ O(ǫ2). It follows that the L0 value of the stream
suffix starting at the time step t∗ is a value L̂0 such that L̂0 = (1±O(ǫ2))Lm

0 . Since our algorithm
produces the same output as running L0Estimator on this suffix, we obtain a (1±ǫ) approximation
of L̂0 by the proof of Theorem 9 with probability 3/4, which in turn is a (1 ± ǫ)2 approximation
of the actual L0, so the desired result follows after rescaling ǫ. Thus the probability of success is
1− (3/50 + 1/4) > 2/3.

For space, note that we only ever store O(log(α/ǫ)) rows of the matrix B, each with entries
of value at most the prime p ∈ O((K log(n))3), and thus storing all rows of the matrix requires
O(1/ǫ2 log(α/ǫ)(log(1/ǫ) + log log(n))) bits. The space required to run αStreamConstL0Est is

30



an additional additive O(log(α) log log(n) + log(n)) bits. The cost of storing the hash functions
h1, h2, h3, h4 is O(log(n) + log2(1/ǫ)) which dominates the cost of running αStreamRoughL0Est.
Along with the cost of storing the matrix, this dominates the space required to run the small
L0 algorithm of Lemma 17 and the small F0 algorithm of Lemma 19 with c on the order of
O(log(n)/ log log(n)). Putting these together yields the stated bound.

6.4 Our Constant Factor L0 Estimator for α-Property Streams

In this section we prove Lemma 20. Our algorithm αStreamConstL0Est is a modification of the
RoughL0Estimator of [40], which gives the same approximation for turnstile streams. Their algo-
rithm subsamples the stream at log(n) levels, and our improvement comes from the observation
that for α-property streams we need only consider O(log(α)) levels at a time. Both algorithms uti-
lize the following lemma, which states that if the L0 is at most some small constant c, then it can
be computed exactly using O(c2 log log(mM)) space. The lemma follows from picking a random
prime p = Θ(log(mM) log log(mM)) and pairwise independently hashing the universe into [Θ(c2)]
buckets. Each bucket is a counter which contains the sum of frequencies modulo p of updates to
the universe which land in that bucket. The L0 estimate of the algorithm is the total number of
non-zero counters. The maximum estimate is returned after O(log(1/η)) trials.

Lemma 21 (Lemma 8, [40]). There is an algorithm which, given the promise that L0 ≤ c, outputs
L0 exactly with probability at least 1−η using O(c2 log log(n)) space, in addition to needing to store
O(log(1/η)) pairwise independent hash functions mapping [n] onto [c2].

We now describe the whole algorithm RoughL0Estimator along with our modifications to it.
The algorithm is very similar to the main algorithm of Figure 7. First, a random hash function
h : [n]→ [n] is chosen from a pairwise independent family. For each 0 ≤ j ≤ log(n), a substream Sj
is created which consists of the indices i ∈ [n] with lsb(h(i)) = j. For any t ∈ [m], let St→j denote
the substream of S restricted to the updates t, t+1, . . . ,m, and similarly let Lt→

0 denote the L0 of
the stream suffix t, t+ 1, . . . ,m. Let L0(S) denote the L0 of the substream S.

We then initialize the algorithm RoughαStreamL0-Estimator, which by Corollary 2 gives non-
decreasing estimates L̃t

0 ∈ [Lt
0, 8αL0] at all times t such that F0 > 8 log(n)/ log log(n) with proba-

bility 99/100. Let Lt
0 = max{L̃t

0, 8 log(n)/ log log(n)}, and let Ut ⊂ [log(n)] denote the set of indices

i such that i = log(Lt
0)± 2 log(α/ǫ), for some constant ǫ later specified.

Then at time t, for each Sj with j ∈ Ut, we run an instantiation of Lemma 21 with c = 132 and
η = 1/16 on Sj , and all instantiations share the same O(log(1/η)) hash functions h1, . . . , hΘ(log(1/η)).
If j ∈ Ut but j /∈ Ut+1, then we throw away all data structures related to Sj at time t+1. Similarly,
if j enters Ut at time t, we initialize a new instantiation of Lemma 21 for Sj at time t.

To obtain the final L0 estimate for the entire stream, the largest value j ∈ Um with j < 2Lm
0

such that Bj declares L0(Sj) > 8 is found. Then the L0 estimate is L̂0 = 20000/99 · 2j , and if no
such j exists the estimate is L̂0 = 50. Note that the main difference between our algorithm and
RoughL0Estimator is that RoughL0Estimator sets Ut = [log(n)] for all t ∈ [m], so our proof of
Lemma 20 will follow along the lines of [40].

Proof of Lemma 20 . The space required to store the hash function h is O(log(n)) and each of the
O(log(1/η)) = O(1) hash functions hi takes log(n) bits to store. The remaining space to store a
single Bj is O(log log(n)) by Lemma 21, and thus storing all Bjs for j ∈ Ut at any time t requires
at most O(|Ut| log log(n)) = O(log(α) log log(n)) bits (since ǫ = O(1)), giving the stated bound.

We now argue correctness. First, for F0 ≤ 8 log(n) log log(n), we can run the algorithm of
Lemma 19 to produce the L0 exactly using less space than stated above. So we condition on the
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success of this algorithm, which occurs with probability 49/50, and assume F0 > 8 log(n)/ log log(n).
This gives L0 > 8 log(n)/(α log log(n)) by the α-property, and it follows that Lm

0 ≤ 8αL0.
Now for any t ∈ [m], E[L0(St→j )] = Lt→

0 /2j+1 if j < log(n), and E[L0(St→j )] = Lt→
0 /n if

j = log(n). At the end of the algorithm we have all data structures stored for Bj ’s with j ∈
Um. Now let j ∈ Um be such that j < log(2Lm

0 ), and observe that Bj will be initialized at

time tj such that L
tj
0 > 2Lm

0 (ǫ/α)2, which clearly occurs before the algorithm terminates. If
j = log(8 log(n)/ log log(n)) ± 2 log(α/ǫ), then j ∈ U0 so tj = 0, and otherwise tj is such that

L
tj
0 ≤ L

tj
0 ≤ (ǫ/α)22j ≤ (ǫ/α)2(Lm

0 ) < 8ǫ2/αL0. So L
tj
0 /L0 = O(ǫ2). This means that when Bj was

initialized, the value L
tj
0 was at most an O(ǫ2) fraction of the final L0, from which it follows that

L
tj→
0 = (1 ± ǫ)L0 after rescaling ǫ. Thus the expected output of Bj (if it has not been deleted by

termination) for j < log(2L0) is E[L0(Stj→j )] = (1± ǫ)L0/2
j+1.

Now let j∗ be the largest j satisfying E[L0(Stj→j )] ≥ 1. Then j∗ < log(2L0) < log(2Lm
0 ),

and observe that 1 ≤ E[L0(S
tj∗→
j∗ )] ≤ 2(1 + ǫ) (since the expectations decrease geometrically

with constant (1 ± ǫ)/2). Then for any log(2Lm
0 ) > j > j∗, by Markov’s inequality we have

Pr[L0(Stj→j ) > 8] < (1 + ǫ)1/(8 · 2j−j∗−1). By the union bound, the probability that any such

j ∈ (j∗, log(2Lm
0 )) has L0(Stj→j ) > 8 is at most (1+ǫ)

8

∑log(2Lm
0
)

j=j∗+1 2−(j−j∗−1) ≤ (1 + ǫ)/4. Now let

j∗∗ < j∗ be the largest j such that E[L0(Stj→j )] ≥ 50. Since the expectations are geometrically

decreasing by a factor of 2 (up to a factor of 1± ǫ), we have 100(1 + ǫ) ≥ E[L0(S
tj∗∗→
j∗∗ )] ≥ 50, and

by the pairwise independence of h we have Var[L0(S
tj∗∗→
j∗∗ )] ≤ E[L0(S

tj∗∗→
j∗∗ )], so by Chebyshev’s

inequality we have

Pr[
∣

∣L0(S
tj∗∗→
j∗∗ )− E[L0(S

tj∗∗→
j∗∗ )]

∣

∣ < 3

√

E[L0(S
tj∗∗→
j∗∗ )]]

> 8/9

Then assuming this holds and setting ǫ = 1/100, we have

L0(S
tj∗∗→
j∗∗ ) > 50− 3

√
50 > 28

L0(S
tj∗∗→
j∗∗ ) < 100(1 + ǫ) + 3

√

100(1 + ǫ) < 132

What we have shown is that for every log(2Lm
0 ) > j > j∗, with probability at least 3/4(1− ǫ/3) we

will have L0(Stj→j ) ≤ 8. Since we only consider returning 2j for j ∈ Um with j < log(2Lm
0 ), it follows

that we will not return L̂0 = 2j for any j > j∗. In addition, we have shown that with probability

8/9 we will have 28 < L0(S
tj∗∗→
j∗∗ ) < 132, and by our choice of c = 132 and η = 1/16, it follows that

Bj∗∗ will output the exact value L0(S
tj∗∗→
j∗∗ ) > 8 with probability at least 1− (1/9 +1/16) > 13/16

by Lemma 21. Hence, noting that ǫ = 1/100, with probability 1 − (3/16 + 1/4(1 + ǫ)) < 14/25,
we output 2j for some j∗∗ ≤ j ≤ j∗ for which j ∈ Um. Observe that since Um contains all indices
i = log(Lm

0 ) ± 2 log(α/ǫ), and along with the fact that L0 < Lm
0 < 8αL0, it follows that all

j ∈ [j∗∗, j∗] will be in Um at termination for sufficiently large ǫ ∈ O(1).
Now since (1 + 1/100)L0/2 > 2j

∗
> (1 − 1/100)L0/4, and (1 + 1/100)L0/100 > 2j

∗∗
> (1 −

1/100)L0/200, it follows that (99/100)L0/200 < 2j < 99L0/200, and thus 20000/99·2j ∈ [L0, 100L0]
as desired. If such a j∗∗ does not exist then L0 < 50 and 50 ∈ [L0, 100L0]. Note that because of
the α property, unless the stream is empty (m = 0), then we must have L0 ≥ 1, and our our
approximation is always within the correct range. Finally, if F0 ≤ 8 log(n) log log(n) then with
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α-SupportSampler: support sampling algorithm for α property streams.
Initialization:

1. Set s← 205k, and initialize linear sketch function J : Rn → Rq for q = O(s) via Lemma 22.
2. Select random h ∈ H2([n], [n]), set Ij = {i ∈ [n] | h(i) ≤ 2j}, and set ǫ = 1/48.

Processing:
1. Run αStreamRoughL0Est of Corollary 2 with δ = 1/12 to obtain non-decreasing Rt ∈

[Lt
0, 8αL0].

2. Let Bt =
{

j ∈ [log(n)] | j = log(ns/3Rt)± 2 log(α/ǫ) or j ≥ log
(

ns log log(n)/(24 log(n))
)}

.
3. Let tj ∈ [m] be the first time t such that j ∈ Bt (if one exists). Let t′j be the first time step
t′ > tj such that j /∈ Bt′ (if one exists).

4. For all j ∈ Bt, maintain linear sketch xj = J(f tj :t
′
j |Ij).

Recovery:
1. For j ∈ Bm at the end of the stream, attempt to invert xj into f

tj :m|Ij via Lemma 22. Return
all strictly positive coordinates of all successfully returned f tj :m|Ij ’s.

Figure 8: Our support sampling algorithm for α-property streams.

probability 49/50 Lemma 19 produces the L0 exactly, and for larger F0 we output the result of
the algorithm just stated. This brings the overall sucsess probability to 14/25 − 49/50 > 13/25.
Running O(log(1/δ)) = O(1) copies of the algorithm and returning the median, we can amplify the
probability 13/25 to 1− δ.

7 Support Sampling

The problem of support sampling asks, given a stream vector f ∈ Rn and a parameter k ≥ 1,
return a set U ⊂ [n] of size at least min{k, ‖f‖0} such that for every i ∈ U we have fi 6= 0. Support
samplers are needed crucially as subroutines for many dynamic graph streaming algorithms, such as
connectivity, bipartitness, minimum spanning trees, min-cut, cut sparsifiers, spanners, and spectral
sparsifiers [2]. They have also been applied to solve maximum matching [43], as well as hyperedge
connectivity [32]. A more comprehensive study of their usefulness in dynamic graph applications
can be found in [41].

For strict turnstile streams, an Ω(k log2(n/k)) lower bound is known [41], and for general
turnstile streams there is an O(k log2(n)) algorithm [38]. In this section we demonstrate that for
L0 α-property streams in the strict-turnstile case, more efficient support samplers exist. For the
rest of the section, we write α-property to refer to the L0 α-property, and we use the notation
defined at the beginning of Section 6.1.

First consider the following template for the unbounded deletion case (as in [38]). First, we
subsample the set of items [n] at log(n) levels, where at level j, the set Ij ⊆ [n] is subsampled
with expected size |Ij | = 2j . Let f |Ij be the vector f restricted to the coordinates of Ij (and 0
elsewhere). Then for each Ij, the algorithm creates a small sketch xj of the vector f |Ij . If f |Ij
is sparse, we can use techniques from sparse recovery to recover f |Ij and report all the non-zero
coordinates. We first state the following well known result which we utilize for this recovery.

Lemma 22 ([38]). Given 1 ≤ s ≤ n, there is a linear sketch and a recovery algorithm which, given
f ∈ Rn, constructs a linear sketch J(f) : Rn → Rq for q = O(s) such that if f is s-sparse then the
recovery algorithm returns f on input J(f), otherwise it returns DENSE with high probability. The
space required is O(s log(n)) bits.
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Next, observe that for L0 α-deletion streams, the value F t
0 is at least Lt

0 and at most αL0 for
every t ∈ [m]. Therefore, if we are given an estimate of F t

0 , we show it will suffice to only subsample
at O(log(α))-levels at a time. In order to estimate F t

0 we utilize the estimator αStreamRoughL0Est
from Corollary 2 of Section 6. For t′ ≥ t, let f t:t

′ ∈ Rn be the frequency vector of the stream of
updates t to t′. We use the notation given in our full algorithm in Figure 8. Notice that since Rt

is non-decreasing, once j is removed from Bt at time t′j it will never enter again. So at the time of
termination, we have xj = J(f tj :m|Ij) for all j ∈ Bm.

Theorem 11. Given a strict turnstile stream f with the L0 α-property and k ≥ 1, the algorithm
α-SupportSampler outputs a set U ⊂ [n] such that fi 6= 0 for every i ∈ U , and such that with
probability 1 − δ we have |U | ≥ min{k, ‖f‖0} . The space required is O(k log(n) log(δ−1)(log(α) +
log log(n))) bits.

Proof. First condition on the success of αStreamRoughL0Est, which occurs with probability 11/12.
Set i∗ = min(⌈(log( ns

3L0
))⌉, log(n)). We first argue that ti∗ exists. Now xi∗ would be initialized as

soon as Rt ≥ L0(ǫ/α)
2, but Rt ≥ Lt

0, so this holds before termination of the algorithm. Further-
more, for xi∗ to have been deleted by the end of the algorithm we would need Rt > (α/ǫ)2L0, but
we know Rt < 8αL0, so this can never happen. Finally, if L0 ≤ F0 < 8 log(n)/ log log(n) and our
αStreamRoughL0Est fails, then note i∗ ≥ ⌈log(ns log log(n)/(24 log(n)))⌉, so we store i∗ for the
entire algorithm.

Now we have L
ti∗
0 ≤ Rti∗ < (ǫ/α)L0, and thus L

ti∗
0 /L0 < ǫ. Since f is a turnstile stream, it

follows that the number of strictly positive coordinates in f ti∗ :m is at least L0 − Lti∗
0 and at most

L0. Thus there are (1 ± ǫ)L0 strictly positive coordinates in f ti∗ :m. By same argument, we have
‖f ti∗ :m‖0 = (1± ǫ)L0.

Let Xi indicate the event that f
ti∗ :m
i |Ii∗ 6= 0, and X =

∑

iXi. Using the pairwise inde-

pendence of h, the Xi’s with f
ti∗ :m
i 6= 0 are pairwise independent, so we obtain Var(X) <

E[X] = ‖f ti∗ :m‖0E[|Ii∗ |]/n. First assume L0 > s. Then ns/(3L0) ≤ E[|Ii∗ |] < 2ns/(3L0), so
for ǫ < 1/48, we have E[X] ∈ [15s/48, 33s/48]. Then

√

E[X] < 1/8E[X], so by Chebyshev’s in-

equality, Pr[|X − E[X]| > 1/4E[X]] < 1/4, and thus ‖f ti∗ :mi |Ii∗‖0 ≤ 15/16s with probability 3/4.

In this case, f
ti∗ :m
i |Ii∗ is s-sparse, so we recover the vector w.h.p. by Lemma 22. Now if L0 ≤ s

then F0 < αs, so the index i′ = log(n) will be stored for the entire algorithm. Thus xi′ = J(f) and
since f is s sparse we recover f exactly w.h.p., and return all non-zero elements. So we can assume
that L0 > s.

It suffices now to show that there are at least k strictly positive coordinates in f
ti∗ :m
i |Ii∗ . Since

this number is also (1 ± L0), letting X
′
i indicate f

ti∗ :m
i |Ii∗ > 0 and using the same inequalities as

in the last paragraph, it follows that there are at least s/15 > k strictly positive coordinates with
probability 3/4. Since the stream is a strict-turnstile stream, every strictly positive coordinate of
a suffix of the stream must be in the support of f , so we successfully return at least k coordinates
from the support with probability at least 1−(1/4+1/4+1/12+1/12) = 1/3. Running O(log(δ−1))
copies in parallel and setting U to be the union of all coordinates returned, it follows that with
probability 1− δ at least min{k, ‖f‖0} distinct coordinates will be returned.

For memory, for each of the O(log(δ−1)) copies we subsample at O(log(α)+ log log(n)) different
levels, and each to a vector of size O(k) (and each coordinate of each vector takes log(n) bits to
store) which gives our desired bound. This dominates the additive O(log(n)) bits needed to run
αStreamRoughL0Est.
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8 Lower Bounds

We now show matching or nearly matching lower bounds for all problems we have considered. Our
lower bounds all follow via reductions from one-way randomized communication complexity. We
consider both the public coin model, where Alice and Bob are given access to infinitely many shared
random bits, as well as the private coin model, where they do not have shared randomness.

We first state the communication complexity problems we will be reducing from. The first such
problem we use is the Augmented-Indexing problem (Ind), which is defined as follows. Alice is
given a vector y ∈ {0, 1}n, and Bob is given a index i∗ ∈ [n], and the values yi∗+1, . . . , yn. Alice
then sends a message M to Bob, from which Bob must output the bit yi∗ correctly. A correct
protocol for Ind is one for which Bob correctly outputs yi∗ with probability at least 2/3. The
communication cost of a correct protocol is the maximum size of the message M that the protocol
specifies to deliver. This problem has a well known lower bound of Ω(n) (see [46], or [39]).

Lemma 23 (Miltersen et al. [46]). The one-way communication cost of any protocol for Augmented
Indexing ( Ind) in the public coin model that succeeds with probability at least 2/3 is Ω(n).

We present the second communication complexity result which we will use for our reductions.
We define the problem equality as follows. Alice is given y ∈ {0, 1}n and Bob is given x ∈ {0, 1}n,
and are required to decide whether x = y. This problem has a well known Ω(log(n))-bit lower bound
when shared randomness is not allowed (see e.g., [6] where it is used).

Lemma 24. The one way communication complexity in the private coin model with 2/3 success
probability of Equality is Ω(log(n)).

We begin with the hardness of the heavy hitters problem in the strict-turnstile setting. Our
hardness result holds not just for α-property streams, but even for the special case of strong
α-property streams (Definition 2). The result matches our upper bound for normal α-property
streams from Theorem 4 up to log log(n) and log(ǫ−1) terms.

Theorem 12. For p ≥ 1 and ǫ ∈ (0, 1), any one-pass Lp heavy hitters algorithm for strong L1

α-property streams in the strict turnstile model which returns a set containing all i ∈ [n] such that
|fi| ≥ ǫ‖f‖p and no i ∈ [n] such that |fi| < (ǫ/2)‖f‖p with probability at least 2/3 requires Ω(
ǫ−p log(nǫp) log(α)) bits.

Proof. Suppose there is such an algorithm which succeeds with probability at least 2/3, and consider
an instance of augmented indexing. Alice receives y ∈ {0, 1}d, and Bob gets i∗ ∈ [d] and yj for
j > i∗. Set D = 6, and let X be the set of all subsets of [n] with ⌊1/(2ǫ)p⌋ elements, and set
d = log6(α/4)⌊log(|X|)⌋. Alice divides y into r = log6(α/4) contiguous chunks y1, y2, . . . , yr each
containing ⌊log(|X|)⌋ bits. She uses yj as an index into X to determine a subset xj ⊂ [n] with
|xj | = ⌊1/(2ǫ)p⌋. Thinking of xj as a binary vector in Rn, Alice defines the vector v ∈ Rn by.

v = (αD + 1)x1 + (αD2 + 1)x2 + · · ·+ (αDr + 1)xr

She then creates a stream and inserts the necessary items so that the current frequency vector of
the stream is v. She then sends the state of her heavy hitters algorithm to Bob, who wants to
know yi∗ ∈ yj for some j = j(i∗). Knowing yi∗+1, . . . , yd already, he can compute u = αDj+1xj+1+
αDj+2xj+2+ · · ·+αDrxr. Bob then runs the stream which subtracts off u from the current stream,
resulting in a final frequency vector of f = v−u. He then runs his heavy hitters algorithm to obtain
a set S ⊂ [n] of heavy hitters.
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We now argue that if correct, his algorithm must produce S = xj. Note that some items in [n]
may belong to multiple sets xi, and would then be inserted as part of multiple xi’s, so we must
deal with this possibility. For p ≥ 1, the weight ‖f‖pp is maximized by having x1 = x2 = · · · = xj ,
and thus

‖f‖pp ≤ 1/(2ǫ)p(

j
∑

i=1

αDi + 1)p

≤ ǫ−p(αDj+1/10 + 1)p

≤ ǫ−pαpDjp

and for every k ∈ xj we have |fk|p ≥ (αDj + 1)p ≥ ǫp‖f‖pp as desired. Furthermore, ‖f‖pp ≥
|xj |αpDjp = ⌊1/(2ǫ)p⌋αpDjp, and the weight of any element k′ ∈ [n] \ xj is at most (

∑j−1
i=1 αD

i +
1)p ≤ (αDj/5+(j−1))p < Djp/4p for α ≥ 3, so fk′ will not be a ǫ/2 heavy hitter. Thus, if correct,
Bob’s heavy hitter algorithm will return S = xj . So Bob obtains S = xj , and thus recovers yj

which indexed xj, and can compute the relevant bit yi∗ ∈ yj and return this value successfully.
Hence Bob solves ind with probability at least 2/3.

Now observe that at the end of the stream each coordinate has frequency at least 1 and re-
ceived fewer than 3α2 updates (assuming updates have magnitude 1). Thus this stream on [n]
items has the strong (3α2)-property. Additionally, the frequencies of the stream are always non-
negative, so the stream is a strict turnstile stream. It follows by Lemma 23 that any heavy hitters
algorithm for strict turnstile strong α-property streams requires Ω(d) = Ω(log(

√

α/3) log(|X|))
= Ω(ǫ−p log(α) log(nǫp)) bits as needed.

Next, we demonstrate the hardness of estimating the L1 norm in the α-property setting. First,
we show that the problem of L1 estimation in the general turnstile model requires Ω(log(n))-bits
even for α property streams with α = O(1). We also give a lower bound of Ω(1/ǫ2 log(α)) bits for
general turnstile L1 estimation for strong α-property streams.

Theorem 13. For any α ≥ 3/2, any algorithm that produces an estimate L̃1 ∈ (1 ± 1/16)‖f‖1 of
a general turnstile stream f with the L1 α property with probability 2/3 requires Ω(log(n)) bits of
space.

Proof. Let G be a family of t = 2Ω(n/2) = 2n
′
subsets of [n/2], each of size n/8 such that no two

sets have more than n/16 elements in common. As noted in [6], the existence of G follows from
standard results in coding theory, and can be derived via a simple counting argument. We now
reduce from equality, where Alice has y ∈ {0, 1}n′

and Bob has x ∈ {0, 1}n′
. Alice can use y

to index into G to obtain a subset sy ⊂ [n/2], and similarly Bob obtains sx ⊂ [n/2] via x. Let
y′, x′ ∈ {0, 1}n be the characteristic vectors of sy, sx respectively, padded with n/2 0’s at the end.

Now Alice creates a stream f on n elements by first inserting y′, and then inserting the vector
v where vi = 1 for i > n/2 and 0 otherwise. She then sends the state of her streaming algorithm to
Bob, who deletes x′ from the stream. Now if x = y, then x′ = y′ and ‖f‖1 = ‖y′ + v − x′‖1 = n/2.
On the other hand, if x 6= y then each of sx, sy have at least n/16 elements in one and not in
the other. Thus ‖y′ − x′‖1 ≥ n/8, so ‖f‖1 ≥ 5n/8. Thus a streaming algorithm that produces
L̃1 ∈ (1±1/16)‖f‖1 with probability 2/3 can distinguish between the two cases, and therefore solve
equality, giving an Ω(log(n′)) lower bound. Since n′ = Ω(n), it follows that such an L1 estimator
requires Ω(log(n)) bits as stated.

Finally, note that at most 3n/4 unit increments were made to f , and ‖f‖1 ≥ n/2, so f indeed
has the α = 3/2 property.
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Theorem 14. Any algorithm that produces an estimate L̃ ∈ (1± ǫ)‖f‖1 with probability 11/12 of a
general turnstile stream f ∈ Rn with the strong L1 α property requires Ω( 1

ǫ2
log(ǫ2α)) bits of space.

To prove Theorem 14, we first define the following communication complexity problem.

Definition 3. In the Gap-Ham communication complexity problem, Alice is given x ∈ {0, 1}n
and Bob is given y ∈ {0, 1}n. Bob is promised that either ‖x− y‖1 < n/2−√n (NO instance) or
that ‖x− y‖1 > n/2 +

√
n (YES instance), and must decide which instance holds.

Our proof of Theorem 14 will use the following reduction. Our proof is similar to the lower
bound proof for unbounded deletion streams in [39].

Theorem 15 ([36], [59] Section 4.3). There is a reduction from Ind to Gap-Ham such that deciding
Gap-Ham with probability at least 11/12 implies a solution to Ind with probability at least 2/3.
Furthermore, in this reduction the parameter n in Ind is within a constant factor of that for the
reduced Gap-Ham instance.

We are now ready to prove Theorem 14.

Proof. Set k = ⌊1/ǫ2⌋, and let t = ⌊log(αǫ2)⌋. The reduction is from Ind. Alice receives x ∈ {0, 1}kt,
and Bob obtains i∗ ∈ [kt] and xj for j > i∗. Alice conceptually breaks her string x up into t
contiguous blocks bi of size k. Bob’s index i

∗ lies in some block bj∗ for j∗ = j∗(i∗), and Bob knows
all the bits of the blocks bi for i > j∗. Alice then applies the reduction of Theorem 15 on each block
bi separately to obtain new vectors yi of length ck for i ∈ [t], where c ≥ 1 is some small constant.
Let β = c2ǫ−2α. Alice then creates a stream f on ckt items by inserting the update ((i, j), β2i +1)
for all (i, j) such that (yi)j = 1. Here we are using (i, j) ∈ [t]× [ck] to index into [ckt]. Alice then
computes the value vi = ‖yi‖1 for i ∈ [t], and sends {v1, . . . , vt} to Bob, along with the state of the
streaming algorithm run on f .

Upon receiving this, since Bob knows the bits yz for z ≥ i∗, Bob can run the same reductions
on the blocks bi as Alice did to obtain yi for i > j∗. He then can make the deletions ((i, j),−β2i)
for all (i, j) such that i > j∗ and (yi)j = 1, leaving these coordinate to be f(i,j) = 1. Bob then
performs the reduction from Ind to Gap-Ham specifically on the block bj∗ to obtain a vector y(B)
of length ck, such that deciding whether ‖y(B)−yj∗‖1 > ck/2+

√
ck or ‖y(B)−yj∗‖1 < ck/2−

√
ck

with probability 11/12 will allow Bob to solve the instance of Ind on block bj∗ with index i∗ in bj∗ .
Then for each i such that y(B)i = 1, Bob makes the update ((j∗, ji),−β2j∗) to the stream f . He
then runs an L1 approximation algorithm to obtain L̃ = (1 ± ǫ)‖f‖1 with probability 11/12. Let
A be the number of indices such that y(B)i > (yj∗)i. Let B be the number of indices such that
y(B)i < (yj∗)i. Let C be the number of indices such that y(B)i = 1 = (yj∗)i, and let D be the
number of indices (i, j) with i > j∗ such that (yi)j = 1. Then we have

‖f‖1 = β2j
∗
A+ (β2j

∗
+ 1)B + C +D +

∑

i<j∗

vi(β2
i + 1)

Let Z = C +D + B, and note that Z < ckt < β. Let η =
∑

i<j∗ vi(β2
i + 1). Bob can compute η

exactly knowing the values {v1, . . . , vt}. Rearranging terms, we have ‖y(B)− yj∗‖1 = (‖f‖1 −Z −
η)/(β2j

∗
) = (‖f‖1−η)/(β2j

∗
)±1. Recall that Bob must decide whether ‖y(B)−yj∗‖1 > ck/2+

√
ck

or ‖y(B) − yj∗‖1 < ck/2 −
√
ck. Thus, in order to solve this instance of Gap-Ham it suffices to

obtain an additive
√
ck/8 approximation of ‖f‖1/(β2j

∗
). Now note that

‖f‖1/(β2j
∗
) ≤ ckt(β2j∗)−1 + (β2j

∗
)−1

j∗
∑

i=1

β2j · ck
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≤ 1 + 4ck

where the ckt < β term comes from the fact that every coordinate that is ever inserted will have
magnitude at least 1 at the end of the stream. Taking ǫ′ =

√
ck/(40ck) = 1/(40

√
ck) = O(1/ǫ), it

follows that a (1±ǫ′) approximation of ‖f‖1 gives a
√
ck/8 additive approximation of ‖f‖1/(β2j

∗
) as

required. Thus suppose there is an algorithm A that can obtain such a (1±O(1/ǫ2)) approximation
with probability 11/12. By the reduction of Theorem 15 and the hardness of Ind in Lemma 23,
it follows that this protocol just described requires Ω(kt) bits of space. Since the only information
communicated between Alice and Bob other than the state of the streaming algorithm was the
set {v1, . . . , vt}, which can be sent with O(t log(k)) = o(kt) bits, it follows that A must have used
Ω(kt) = Ω(ǫ−2 log(αǫ)) bits of space, which is the desired lower bound.

Now note that every coordinate i that was updated in the stream had final magnitude |fi| ≥ 1.
Furthermore, no item was inserted more than β2t + 1 < α2c2 + 1 times, thus the stream has the
strong O(α2) property. We have proven that any algorithm that gives a (1 ± ǫ) approximation
of ‖f‖1 where f is a strong α-property stream with probability 11/12 requires Ω(ǫ−2 log(ǫ2

√
α))

= Ω(ǫ−2 log(ǫ2α)) bits, which completes the proof.

We now give a matching lower bound for L1 estimation of strict-turnstile strong α-property
streams. This exactly matches our upper bound of Theorem 6, which is for the more general
α-property setting.

Theorem 16. For ǫ ∈ (0, 1/2) and α < n, any algorithm which gives an ǫ-relative error approxi-
mation of the L1 of a strong L1 α property stream in the strict turnstile setting with probability at
least 2/3 must use Ω(log(α) + log(1/ǫ) + log log(n)) bits.

Proof. The reduction is from ind. Alice, given x ∈ {0, 1}t where t = log10(α/4), constructs a
stream u ∈ Rt such that ui = α10ixi + 1. She then sends the state of the stream u to Bob who,
given j ∈ [n] and xj+1, . . . , xt, subtracts off v where vi = α2ixi for i ≥ j + 1, and 0 otherwise. He
then runs the L1 estimation algorithm on u− v, and obtains the value L such that L = (1 ± ǫ)L1

with probability 2/3. We argue that if L = (1± ǫ)L1 (for ǫ < 1/2) then L > (1− ǫ)(α10j ) > α10j/2
iff xj = 1. If xj = 1 then (uj − vj) = α10j + 1, if L > (1 − ǫ)L1 the result follows. If xj = 0, then

the total L1 is at most α/4 + α
∑j−1

i=1 10
i < α10i

9 + α/4 < α10i/3, so L < (1 + ǫ)L1 < α10j/2 as
needed to solve ind. Note that each coordinate has frequency at least 1 at the end of the stream,
and no coordinate received more than α2 updates. Thus the stream has the strong α2-property.
By Lemma 23, it follows that any one pass algorithm for constant factor L1 estimation of a strict
turnstile strong α-property stream requires Ω(log(

√
α)) = Ω(log(α)) bits.

Finally, note that in the restricted insertion only case (i.e. α = 1), estimating the L1 norm
means estimating the value m given only the promise that m ≤M = poly(n). There are log(M)/ǫ
powers of (1+ǫ) that could potentially be a (1±ǫ) approximation of m, so to represent the solution
requires requires log(log(M)/ǫ) = O(log log(n) + log(1/ǫ)) bits of space, which gives the rest of the
stated lower bound.

We now prove a lower bound on L0 estimation. Our lower bound matches our upper bound
of Theorem 10 up to log log(n) and log(1/ǫ) multiplicative factors, and a log(n) additive term.
To do so, we use the following Theorem of [39], which uses a one way two party communication
complexity lower bound.

Theorem 17 (Theorem A.2. [39]). Any one pass algorithm that gives a (1±ǫ) multiplicative approx-
imation of the L0 of a strict turnstile stream with probability at least 11/12 requires Ω(ǫ−2 log(ǫ2n))
bits of space.
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Setting n = O(α) will give us:

Theorem 18. For ǫ ∈ (0, 1/2) and α < n/ log(n), any one pass algorithm that gives a (1 ± ǫ)
multiplicative approximation of the L0 of a L0 α-property stream in the strict turnstile setting with
probability at least 11/12 must use Ω(ǫ−2 log(ǫ2α) + log log(n)) bits of space.

Proof. We can first construct the same stream used in the communication complexity lower bound
of Theorem 17 on n = α− 1 elements, and then allow Bob to insert a final dummy element at the
end of the stream with frequency 1. The stream now has α elements, and the L0 of the resulting
stream, call it R, is exactly 1 larger than the initial L0 (which we will now refer to as L0). Moreover,
this stream has the L0 α property since the final frequency vector is non-zero and there α items
in the stream. If we then obtained an estimate R̃ = (1 ± ǫ)R = (1 ± ǫ)(L0 + 1), then the original
L0 = 0 if R̃ < (1 + ǫ). Otherwise R̃ − 1 = (1 ± O(ǫ)L0, and a constant factor rescaling of ǫ
gives the desired approximation of the initial L0. By Theorem 17, such an approximation requires
Ω(ǫ−2 log(ǫ2α)) bits of space, as needed. The Ω(log log(n)) lower bound follows from the proof of
Lemma 16, replacing the upper bound M ≥ m with n.

Next, we give lower bounds for L1 and support sampling. Our lower bound for L1 samplers
holds in the more restricted strong α-property setting, and for such streams we show that even
those which return an index from a distribution with variation distance at most 1/6 from the L1

distribution |fi|/‖f‖1 requires Ω(log(n) log(α)) bits. In this setting, taking ǫ = o(1), this bound
matches our upper bound from Theorem 5 up to log log(n) terms. For α = o(n), our support
sampling lower bound matches our upper bound in Theorem 11.

Theorem 19. Any one pass L1 sampler of a strong L1 α-property stream f in the strict turnstile
model with an output distribution that has variation distance at most 1/6 from the L1 distribution
|fi|/‖f‖1 and succeeds with probability 2/3 requires Ω(log(n) log(α)) bits of space.

Proof. Consider the same strict turnstile strong O(α2)-property stream constructed by Alice and
Bob in Theorem 12, with ǫ = 1/2. Then X = [n] is the set of all subsets of [n] with 1 item. If
i∗ ∈ [n] is Bob’s index, then let j = j(i∗) be the block yj such that yi∗ ∈ yj . The block yj has
log(|X|) = log(n) bits, and Bob’s goal is to determine the set xj ⊂ [n] of exactly one item which
is indexed by yj . Then for the one sole item k ∈ xj will be a 1/2-heavy hitter, and no other item
will be a 1/4-heavy hitter, so Bob can run O(1) parallel L1 samplers and find the item k′ that is
returned the most number times by his samplers. If his sampler functions as specified, having at
most 1/6 variational distance from the L1 distribution, then k′ = k with large constant probability
and Bob can recovery the bit representation xj of k, from which he recovers the bit yi∗ ∈ yj as
needed. Since Alice’s string had length Ω(log(α) log(|X|)) = Ω(log(α) log(n)), we obtain the stated
lower bound.

Theorem 20. Any one pass support sampler that outputs an arbitrary i ∈ [n] such that fi 6= 0,
of an L0 α-property stream with failure probability at most 1/3, requires Ω(log(n/α) log(α)) bits of
space.

Proof. The reduction is again from Ind. Alice receives y ∈ {0, 1}d, for d = ⌊log(n/α) log(α/4)⌋, and
breaks it into blocks y1, . . . , ylog(α/4), each of size ⌊log(n/α)⌋. She then initializes a stream vector
f ∈ Rn, and breaks f into ⌊4n/α⌋ blocks of size α/4, say B1, . . . , B⌊4n/α⌋. She uses yi as an index
into a block Bj for j = j(i), and then inserts 2i distinct items into block Bj, each exactly once,
and sends the state of her algorithm over to Bob. Bob wants to determine yi∗ for his fixed i∗ ∈ [n].
Let k be such that yi∗ ∈ yj and Bk be the block indexed by yj. He knows yj+1, . . . , ylog(α/4), and
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can delete the corresponding items from f that were inserted by Alice. At the end, the block Bk

has 2j items in it, and the total number of distinct items in the stream is less than 2j+1. Moreover
no other block has more than 2j−1 items.

Now suppose Bob had access to an algorithm that would produce a uniformly random non-zero
item at the end of the stream, and that would report FAIL with probability at most 1/3. He
could then run O(1) such algorithms, and pick the block Bk′ such that more than 4/10 of the
returned indices are in Bk′ . If his algorithms are correct, we then must have Bk′ = Bk with large
constant probability, from which he can recover yj and his bit yj∗, thus solving Ind and giving the
Ω(d) = Ω(log(n/α) log(α)) lower bound by Lemma 23.

We now show how such a random index from the support of f can be obtained using only
a support sampler. Alice and Bob can used public randomness to agree on a uniformly random
permutation π : [n]→ [n], which gives a random relabeling of the items in the stream. Then, Alice
creates the same stream as before, but using the relabeling and inserting the items in a randomized
order into the stream, using separate randomness from that used by the streaming algorithm. In
other words, instead of inserting i ∈ [n] if i was inserted before, Alice inserts π(i) at a random
position in the stream. Bob the receives the state of the streaming algorithm, and then similarly
deletes the items he would have before, but under the relabeling π and in a randomized order
instead.

Let i1, . . . , ir ∈ [n] be the items inserted by Alice that were not deleted by Bob, ordered
by the order in which they were inserted into the stream. If Bob were then to run a support
sampler on this stream, he would obtain an arbitrary i = g(i1, . . . , ir) ∈ {i1, . . . , ir}, where g is
a (possibly randomized) function of the ordering of the sequence i1, . . . , ir. The randomness used
by the streaming algorithm is separate from the randomness which generated the relabeling π and
the randomness which determined the ordering of the items inserted and deleted from the stream.
Thus, even conditioned on the randomness of the streaming algorithm, any ordering and labeling of
the surviving items i1, . . . , ir is equally likely. In particular, i is equally likely to be any of i1, . . . , ir.
It follows that π−1(i) is a uniformly random element of the support of f , which is precisely what
Bob needed to solve Ind, completing the proof.

Finally, we show that estimating inner products even for strong α-property streams requires
Ω(ǫ−1 log(α)) bits of space. Setting α = n, we obtain an Ω(ǫ−1 log(n)) lower bound for unbounded
deletion streams, which our upper bound beats for small α.

Theorem 21. Any one pass algorithm that runs on two strong L1 α-property streams f, g in the
strict turnstile setting and computes a value IP(f, g) such that IP(f, g) = 〈f, g〉 + ǫ‖f‖1‖g‖1 with
probability 2/3 requires Ω(ǫ−1 log(α)) bits of space.

Proof. The reduction is from IND. Alice has y ∈ {0, 1}d where y is broken up into log10(α)/4 blocks
of size 1/(8ǫ), where the indices of the i-th block are called Bi. Bob wants to learn yi∗ and is
given yj for j ≥ i∗, and let j∗ be such that i∗ ∈ Bj∗. Alice creates a stream f on d items, and if
i ∈ Bj , then Alice inserts the items to make fi = bi10

j + 1, where bi = α if yi = 0, and bi = 2α
otherwise. She creates a second stream g = ~0 ∈ Rd, and sends the state of her streaming algorithm
over to Bob. For every yi ∈ Bj = Bj(i) that Bob knows, he subtracts off bi10

j , leaving fi = 1.
He then sets gi∗ = 1, and obtains IP(f, g) via his estimator. We argue that with probability 2/3,
IP(f, g) ≥ 3α10j

∗
/2 iff yi∗ = 1. Note that the error is always at most

ǫ‖f‖1‖g‖1 = ǫ‖f‖1

≤ ǫ
(

d+ (8ǫ)−1(2α10j
∗
) +

∑

j<j∗

∑

i∈Bj

(2α10j)
)
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ǫ
(

1/(8ǫ) log(α)/4 + (4ǫ)−1α10j
∗
+ ǫ−1α10j

∗
/32

)

< α10j∗/3

Now since 〈f, g〉 = (yi∗ + 1)α10j
∗
+ 1, if yi∗ = 0 then if the inner product algorithm succeeds with

probability 2/3 we must have IP(f, g) ≤ α10j +1+α10j/3 < 3α10j
∗
/2, and similarly if yi∗ = 1 we

have IP(f, g) > 2α10j + 1− α10j/3 > 3α10j/2 as needed. So Bob can recover yi∗ with probability
2/3 and solve IND, giving an Ω(d) lower bound via Lemma 23. Since each item in f received at
most 5(α2) updates and had final frequency 1, this stream has the strong 5α2-property, and g was
insertion only. Thus obtaining such an estimate of the inner product between strong α-property
streams requires Ω(ǫ−1 log(

√
α)) = Ω(ǫ−1 log(α) bits, as stated.

9 Conclusion

We have shown that for bounded deletion streams, many important L0 and L1 streaming problems
can be solved more efficiently. For L1, the fact the fi’s are approximately preserved under sampling
poly(α) updates paves the way for our results, whereas for L0 we utilizes the fact that O(log(α))-
levels of sub-sampling are sufficient for several algorithms. Interestingly, it is unclear whether
improved algorithms for α-property streams exist for L2 problems, such as L2 heavy hitters or
L2 estimation. The difficulty stems from the fact that ‖f‖2 is not preserved in any form under
sampling, and thus L2 guarantees seem to require different techniques than those used in this paper.

However, we note that by utilizing the heavy hitters algorithm of [11], one can solve the general
turnstile L2 heavy hitters problem for α-property streams in O(α2 log(n) log(α)) space. A proof
is sketched in Appendix A. Clearly a polynomial dependence on α is not desirable; however, for
the applications in which α is a constant this still represents a significant improvement over the
Ω(log2(n)) lower bound for turnstile streams. We leave it as an open question whether the optimal
dependence on α can be made logarithmic.

Additionally, it is possible that problems in dynamic geometric data streams (see [34]) would
benefit by bounding the number of deletions on the streams in question. We note that several of
these geometric problems directly reduce to problems in the data stream model studied here, for
which our results directly apply.

Finally, it would be interesting to see if analogous models with lower bounds on the “signal
size” of the input would result in improved algorithms for other classes of sketching algorithms.
In particular, determining the appropriate analogue of the α-property for linear algebra problems,
such as row-rank approximation and regression, could be a fruitful direction for further research.
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A Sketch of L2 heavy hitters algorithm

We first note that the BPTree algorithm for [11] solves the L2 heavy hitters problem in space
O(ǫ−2 log(n) log(1/ǫ)) with probability 2/3. Recall that the L2 version of the problem asks to
return a set S ⊂ [n] with all i such that |fi| ≥ ǫ‖f‖2 and no j such that |fj | < (ǫ/2)‖f‖2. Also
recall that the α property states that ‖I + D‖2 ≤ α‖f‖2, where I is the vector of the stream
restricted to the positive updates and D is the entry-wise absolute value of the vector of the
stream restricted to the negative updates. It follows that if i ∈ [n] is an ǫ heavy hitter then
‖I + D‖2 ≤ α‖f‖2 ≤ α/ǫ|fi| ≤ α/ǫ|Ii + Di|. So in the insertion-only stream I + D where every
update is positive, the item i must be an ǫ/α heavy hitter.

Using this observation, we can solve the problem as follows. First run BPTree with ǫ′ = ǫ/α to
obtain a set S ⊂ n with all i such that |Ii +Di| ≥ (ǫ/α)‖I +D‖2 and no j such that |Ij +Dj | <
(ǫ/2α)‖I +D‖2. It follows that |S| = O(α2/ǫ2). So in parallel we run an instance of Countsketch
on the original stream f with O(1/ǫ2) rows and O(log(α/ǫ)) columns. For a fixed i, this gives an
estimate of |fi| with additive error (ǫ/4)‖f‖2 with probability 1−O(ǫ/α). At the end, we then query
the Countsketch for every i ∈ S, and return only those which have estimated weight (3ǫ/4)‖f‖2.
By union bounding over all |S| queries, with constant probability the Countsketch will correctly
identify all i ∈ |S| that are ǫ heavy hitters, and will throw out all items in S with weight less than
(ǫ/2)‖f‖2. Since all ǫ heavy hitters are in S, this solves the problem. The space to run BPTree is
O(α2/ǫ2 log(n) log(α/ǫ), which dominates the cost of the Countsketch.
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