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Abstract 

A fair exchange protocol allows two users to exchange items 
so that either each user gets the other's item or neither user 
does. In [2], versfiable eneryptionis introduced as a primitive 
that can be used to build extremely efficient fair exchange 
protocols where the items exchanged represent digital sig- 
natures. Such protocols may be used to digitally sign con- 
tracts. 

This paper presents new simple schemes for verifiable 
encryption of digital signatures. We make use of a trusted 
third party (TTP) but in an optsmist:c sense, i.e., the TTP 
takes part in the protocol only if one user cheats or sim- 
ply crashes. The performance of our schemes significantly 
surpasses that of prior art. 
Keywords: Fair Exchange, Verifiable Encryption, Con- 
tract Signing Problem, Public-key Cryptography, Digital 
Signatures, Proof of Knowledge. 

1 Introduction 

Exchanging items over the Internet is becoming a major 
business opportunity. Electronic commerce usually involves 
two distrusted parties exchanging one item for another, for 
instance an electronic check for an electronic ticket. Spe- 
eiahzed applications may include contract s:gnzng, electronsc 
purchase, and cert:fied electronic mail delivery. In simul- 
taneous contract signing, Alice and Bob have agreed on a 
contract  but  neither wishes to sign unless the other signs 
as well. Face to face, this is easily solved: both simultane- 
ously sign the contract. Unfortunately, simultaneity cannot 
be met in the discrete world. 

There have been several approaches to solve the fair ex- 
change problem depending on the definition of fairness on 
which they are based. In [16], fairness is interpreted as equal 
computational effort. That is, both Alice and Sob generate 
a signature of the contract and then they communicate by 
taking turns and sending bit-by-bit their signatures to each 
other. It is assumed that, at any stage, the computational 
effort required from the parties to obtain each other's se- 
cret is approximately equal. This approach does not require 
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the intervention of a trusted third party; however it requires 
many rounds of interactions and, more importantly, that the 
two parties have equal computing power, an often unrealistic 
and undesirable assumption. 

In [6], a probabilistic approach is adopted, i.e., the proba- 
bility of correctness is gradually increased over several rounds 
of communication. Such an approach requires the existence 
and eventually the intervention of a trusted third party in- 
voked only in case of dispute. However, the major drawback 
of the resulting protocol is its impracticality. 

In [I], the authors introduce the opt:mistzc approach. It 
also relies on the existence of a trusted third party but only 
invoked in the case of an exception. The protocol is op- 
tiraistic since one party (the originator) takes the risk of 
sending its item firstr optimistically hoping that the other 
party will respond by sending its item. If the other party 
does not reply as expected, the originator asks the third 
party to resolve the dispute (this implies that sufficient evi- 
dence must be accumulated during the protocol to support 
the resolution of the dispute). This approach results in par- 
ticularly efficient fair exchange protocols for generic items 
([1, 3]), although their correctness remains unproved. 

We focus our attention on the optimistic fair exchange 
of digital signatures. Recently, papers [2] and [4] have pre- 
sented protocols for optimistically exchange commonly used 
digital signature schemes. Both show that it is possible to 
build fair exchange protocols by means of what the authors 
in [2] have called verifiable encrypt;on of digital  signatures 
(i.e., a way to encrypt a signature under a designated public- 
key and subsequently prove that the resulting ciphertext in- 
deed contains such a signature). The authors in [8] show 
how to generalize the schemes in [2] achieving more efficient 
schemes that  can be proved secure without relying on ran- 
dom oracles. 

In this paper we present new protocols for verifiable en- 
cryption of digital signatures with improved efficiency, thus 
providing a valid primitive that is of interest in designing 
fair exchange protocols (although there might be other ap- 
plications to consider). We provide a security analysis in 
Appendix A, however we do not provide any formal security 
proofs for the fair exchange protocols that might be built by 
means of our verifiable encryption protocols (as rigorously 
done in [2]). 

The rest of the paper  is organized as follows. In Section 
2, we briefly describe some types of building blocks neces- 
sary in the subsequent design of our schemes. In Section 4, 
we present verifiable encryption protocols for several digital 
signature schemes. In Section 5, we analyze our protocols in 
terms of both  the number of modular  exponentiations and 
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the amount of da ta  t ransmit ted.  

2 Prel |m;narles  

We assume that  each communication par ty  has the ability 
to generate and verify digital signatures. We say that  the 
trusted third par ty  7" is visible if the end result of the fair ex- 
change protocol makes i t  obvious tha t  T par t ic ipated during 
the protocol. The involvement of T may happen when either 
of the par ty  cheats or simply crashes. A fair exchange pro- 
tocol is ,nvas=ve if one can tell that it was used to exchange 
signatures just by looking at such signatures. Typically, if 
the trusted third party 7" is visible then the fair exchange 
protocol is invasive (notice that the reverse is not true). 

Given an instance s of a digital signature scheme on an 
arbitrary message, we make a T-verifiable encryption c(s) of 
s if such an encryption can be verified to contain s in a way 
that no useful information is revealed about s itself. Only 
7" is able to recover s from c(s) (during the recovery phase). 

Finally, a fair exchange protocol provides perfect fairness 
if, when both parties follow the protocol properly, the pro- 
tocol terminates with both  parties having either the each 
other 's  i tem or nothing useful. 

2.1 Cryptographlc Tools 

In this section we present signature schemes allowing a prover 
to convince a verifier of the equality of discrete logarithms 
(even when working in different groups). In short, the prob- 
lem is, given g~, g~ and a message m, generating a signs- 
ture on m and, at the same time, showing that Dlogg~ g~ = 
Dlogg g~ without revealing any useful information a~out z 
~tself. We will denote an instance of this mgnature technique 
by EQ_DLOG(m;g~, g~; g,,g~). 

We make use of so-called "proof-of-knowledge" systems 
that allow demonstrating knowledge of a secret such that 
no useful information is revealed in the process. Namely, we 
define Schnorr-like signature schemes [28] in order to show 
knowledge of relations among secrets. Substantially, these 
are signature schemes based on proofs of knowledge per- 
formed non-interactively making use of an ideal hash func- 
tion 7-/(') (~ la Fiat-Shamir  [17]). 

Let G~ denote the unique subgroup of Z~ of order q. 
The parameters p, q are primes such that q divides p - 1, for 
instance p = 2q + I. 

Let g, h E G~ be publicly known bases. The prover se- 
lects a secret z rood q and computes yz = g= and y~ = h =. 
The prover must convince the verifier that: 

Dloga y~ = Dlog~ y~. 

The protocol, described in [14] by Chaum and Pedersen, 
is run as follows: 

1. The prover randomly chooses t E ~e  and sends (a,b) = 
(g=, h t) to the verifier. 

2. The verifier chooses a random challenge c E ~ and 
sends it to the prover• 

3. The prover, then, sends s = t - c x  rood q to the verifier. 

4• The verifier accepts the proof  if: 

$ ¢ 
h y ~ .  a = g  Yl and b =  • = 

To turn the protocol above into a signature on an ar- 
bi t rary message m,  the signer can compute the pair" (c, s) 
as:  

c - -  ~ t ( ~ l l u ,  l l u = l l g l l h l l a ' l l h ' ) ,  s = t - c = .  

where ~(-) is a suitable hash function. To verify the sig- 
nature (c, s) on ra, it is sufficient to check whether c' = c, 
where 

m h S ~ h = C  c = "t"/( Ily, lly=llgll l i t  u, II y=)• 
This signature scheme works properly also into accu- 

rately chosen subgroup of Z~, where n is an RSA-like com- 
posite. In particular, in this paper we work into the sub- 
group of all quadratic residues modulo n, denoted by Q,~. 
Explicitly, Q, C Z: is the set of elements a E Z~, such that 
there exists an z E Z*~ with z 2 _~ a rood n. We select n as 
product of two safe primes p and q, i.e., such that p = 2p' + 1 
and q = 2q s + 1 with/, q' primes. Thus, notice that Q, is 
a cyclic group of order/qt 

EQUALITY OF DISCRETB LOGARITHMS IN A GROUP OF UN- 
KNOWN ORDER, A c t u a l l y ,  t h e  s a m e  s i g n a t u r e  s c h e m e  w o r k s  
properly even when the signer is working over a cyclic sub- 
group of Z~,  G = <g), whose order ~ G  = p'q' is ,mknown 
but  its bit-length tG (i.e., the integer IG s.t. 2 l ° -1  <_ # G  < 
2 z°)  is publicly known. 

We, now, show how the signer can generate a signature 
on a message m E {0, 1}* working with elements in G and, at 
the same time, showing knowhdge of the discrete logarithm 
w.r.t, bases 9 and h satisfying yl = 9 = and V= = h =• We 
make use of a hash function "H : {0,1}* ---r {0,1} k, which 
maps a binary string of arbitrary length to a k-bit hash 
value. We also assume a security parameter ~ > 1. The 
signer computes a pair  (c, s) E {0, 1} ~ x :E{0, 1} =(z°+~)+l 
such that c = 7t(mllmll~=llglthllg'u~llh'u~)• ' This shows 
that  the discrete logarithms of m = g=, w.r.t,  base g, and 

= h ~, w•r.t, base h, are equal. 
The signer, in possession of the secret z, is able to com- 

pute the signature (c,s),  provided that  z = Dloggm 
Dlogh y2, by choosing a random t E ::k{0, 1} s{t°+k) and then 
computing c and s as: 

c = ~ l ( m l l v ,  l hn l lg l lhUg ' l lh=) ,  s = t -  cz  (in Z)  • 

A way of proving the security of the signature scheme 
above is via the oracle replay technique formalized in [25] 
by Pointcheval and Stem. In particular, the Schnorr signa- 
ture with composite modulus has been proved secure in the 
random oracle model [5] by Poupard and Stem [26]. They 
showed that if an adversary is able to forge a signature un- 
der an adaptively chosen message attack (i.e., the strongest 
attack), then she is able to compute discrete logarithms in 
G (although, it may be possible to mount a chosen-message 
attack for a non-negligible proportion of public-keys). 

EQUALITY OF DISCRETE LOGARITHMS FROM DIFFERENT 
GROUPS. Suppose now that g and h have different orders, 
q~ and q2,respectively. Thus, given two elements yl = g= 
and y2 = h = of different groups G1 = <g), G2 = (h), the 
verifier can only conclude that  the signer knows a value x 
such tha t  x mod ql = Dlogg yl and z mod q~ = Dlog h y2. 
However, it  is possible to prove that  a secret z lies in a 
specific interval, more precisely given g= with - 2  t < x < 2 t 
for an integer l ,  it is possible to prove that  x lies in the 
extended interval ] - 2 dz+k), 2 ~(t+k) [. Hence, we might build 

XThe (abused) no ta tmn  s E :E{Ool} "(zo+~)+l denotes ~s[ < 
2 . ( z o + ~ ) + z  
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a signature scheme for showing that  Dlogs, y, = Dlog h y2 in 
Z by combining the scheme for showing knowledge of a value 
z with z mod ql = Dloggm and z mod q2 = Dlogh y2, and 

the scheme for showing that  - 2  .(t+k) < z < 2 .(z+k). Clearly, 
this can be done only if the length l can be chosen such that  
2 "(z+k)+l < min{ql, q~}, where q~, q~ are the orders o f g  and 
h, respectively. 

This idea is formalized in [12] by Camenisch and Michels. 
They present, in [12], a concrete protocol for proving equal- 
ity of discrete logarithms from different groups. Their pro- 
tocol is mostly based on a technique developed by Fujisaki 
and Okamoto [18]. 

To provide a viable example of how it is possible to 
show that z lies in the extended interval ]-2 ~(~+~), 2'(z+O[, 
we present a signature scheme derived from a protocol due 
to Chan, Frankel and Tsiotmis [13], and Camenisch and 
Michels [9]. The scheme can trivially be extended to the 
more general interval ]X - 2 "(z+~), X + 2"(~+~)[, for a given 
integer X [9]. The signature on a message m 6 {0, 1}*, 
is the pair (c, s) 6 {0, I} ~ x =h{O, I} "(t+~)+* such that c = 
~(,~divllallg'v°). This shows knowledge of the discrete log- 
ar i thm of y = 9= w.r.t, base 9 and tha t  this logarithm lies 
in ]-2"(~+~), 2,(~+~) [. 

To produce (c, s), the signer in possession of the secret 
z = Dlog~ y ~ ] -2  z, 2t[ chooses a random t 6 ~{0,  1} "(z+0 
and then computes c and 8 as: 

= ~(~ l ly l lg l lg ' ) ,  • = t- =~ (in z )  . 

The underlying interactive protocol is proved to be a 
proof of knowledge (statistical honest-verifier zero knowl- 
edge),under the strong RSA assumption, in [10]. 

3 A Fair Exchange Protocol 

To bet ter  clarify how a fair exchange may be built via ver- 
ifiable encryptions, in this section we present an optimistic 
fair exchange protocol of digital signatures. 

The protocol is essentially what is described in [4], it is 
non-invasive and provides perfect fairness. It may be used 
for signing contracts over a reliable communication network. 
Let Alice and Bob be two users willing to exchange digital 
signatures on a message m. Let 7- be a t rusted third par ty  
and let Pu(m)  denote the encryption of the message m with 
U's  public key, whereas Su(m)  denotes the signature, gen- 
erated by U, on the message m. 

The fair exchange p ro tocd  is run as follows: 

1. Alice sends Bob the message Pr(SA,c,(m)) along with 
an evsde,ce V stating that  she has correctly encrypted 
her signature on m, i.e., tha t  she has made a T-verifi- 
able encryption of SA,i~,(m). 

2. Bob verifies V and, if valid, sends Ss0b(m) to Alice, 
otherwise does nothing. 

3. Alice verifies Bob's signature and, if valid, sends SA,;~,(m) 
to Bob. 

4. If Bob does not receive anything or if Alice's signature 
is invalid, then he sends PT(SA,~:,(m)) and Ssob(m) 
to T- This provides a vehicle for 7" to understand 
whether the protocol was correctly carried out. If this 
is the case, T sends SAJi~,(m) to Bob and forwards 
Seob(m) to Alice. 

One drawback of this three-pass protocol is that  Bob 
can ask 7- to reveal Alice's signature at any time after the 
step i above. Needless to say, this is undesirable for some 
(but not  all!) applications. For instance, Alice may receive 
Bob's signature after a certain amount of t ime (at Bob's 
convenience), making the signature itself completely useless. 

However, the protocol above is simple and suitable for 
our discussions. A be t te r  model for exchanging digital sig- 
natures is defined in [2]. 

Whatever  protocol one might use, the building block re- 
mains the verifiable encryption of a digital signature. In the 
next sections we provide efficient constructions for verifiable 
encryption of commonly used signature schemes as well as 
newly proposed signature schemes provably secure against 
the most powerful attack. 

4 Efficient Verifiable Encryptlons 

Suppose that  Alice and Bob have agreed on a common mes- 
sage m. Alice generates a signature SA(m) and sends it "en- 
crypted" to Bob by computing C(SA(m)) = PT(SA(m)) .  
The problem, now, is that  Alice must prove that  the signa- 
ture is valid and that  7-is able to get SA(m) from C(SA(m)) .  
In most of our protocols, P r ( ' )  is the E1Gamal encryption 
scheme. That  is, given a secret key z and a corresponding 
public key g ®, a message m is encrypted by generating a 
random r and computing / f l  = m9 =',  K~ = 9". To get 

from K1, it  is sufficient to compute m = Ki/(K2) =. A 
security analysis of our protocols is provided in Appendix 
A. 

4.1 RSA Signatures 

Let n = Ix/, with p = 2p'-{-1 a n d q =  2q'-k I wherep',q' are 
primes . Let (e, n) be Alice's public key with e prime and d 
the corresponding secret key, i.e., ed ~ 1 mod p 'q ' .  To sign 
a message ¢rh it is sufficient to compute C = ~(¢n)  d mod n 
where ~( - )  is a hash function defined as ~ : {0, 1}* ~ Z .  
[27]. ~ The signature is accepted only if C '~ m o d .  matches 
~ ( r a ) .  In order to make efficient the verifiable encryption of 
RSA signatures, we will make use of an init,alization phase 
by which the user and the t rusted third par ty  7- agree on 
common parameters.  

Let Q .  be the subgroup of squares in Z~.  During the 
initialization phase, Alice sends (e, n) to T (along with a 
certificate CERTA). 7- verifies that  (e ,n)  is the public key 
of Alice and randomly selects a 9 E Z~. Then, 7- sets 9 = 9~ 
rood n, signs and sends back (9 r o o d . ,  y = 9 = rood . ) ,  where 
z is a secret random element s. The details are shown in 
Figure 1, where all the operations are taken modulo n and 
"A"  is a string of da ta  identifying Alice. This phase is done 
only once and '7- does not need to know the factors of n. 4 

Given the message m, Alice computes ~ ( r r  0 and then 
signs it by computing 7-/(m) d mod n. Then, Alice encrypts 
the RSA signature via the EIGamal encryption scheme with 
the public-key y = 9=, i.e., by selecting a random r and 
computing K1 = 7-/(m)dp" and K2 = 9 ~. To prove that  

2For the sake of slmphclty, we employ the hashoand-sign paxadigm 
but, in practice, ~ (  ) is ra ther  a redundancy function as defined in 
PKCS#I, ISO/IEC 9796, etc (see [22] p 442) 

SBy definition g q Q. and with overwhelming probability the 
order of g is p'q' (nevertheless paranoids may test  whether  gcd(9 :h 
1,'n,) = I) 

4However, we assume tha t  Afice prov*des a proof o f .  be*ng a prod- 
uct of safe primes during either the pubhc-key certification process 
(executed with a Certification Authomty) or the mltlahzation phase 
(with 7" itself) See [11] 
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Alice 

,I 

T 
(e, n), CERTA 

[. 
Verify CERT ~ 

Generate a random 
Choose ~ £ Z: at random, and set g = ~ 

CERTT A = ST(g, Y = g=, A, (e,n)) 
I 

Figure h Initialization phase 

she has correctly generated a T-verifiable encryption, Alice 
releases an evidence showing that Dlog~.(y e') = Dlogg(g" ) 
(via EQ..DLOG(.) ,  see section 2). The resulting message is 
composed of four elements as shown in Figure 2. 

After receiving the message from Alice, Bob must verify 
that  it is a T-verifiable encryption of Afice's signature on m. 
Hence, he computes ~ ( m )  and then verifies EQ_DLOG(m;  
K~/7. l(m),  K:; ye, g), where the bases y = g= and 9 are 
taken from C E R T  T.,4. Since n is product of sale primes, 
with overwhelming probability g, g~ and 9 ~* generate the 
same group, i.e., Q , .  

Embedding our scheme in a fair exchange protocol needs 
more careful thoughts which also apply to other schemes in 
this paper. First of all, T may avoid to store secret values 
per capita. In our example, T has to store z for Alice. This 
can be avoided by simply inserting a symmetric encryption 
of z into C E R T  r A during the initialization phase. Thus, T 
needs to store only the symmetric encryption key. 

Secondly, Alice should sign the message sent to Bob. This 
message should include the verifiable encryption of the Al- 
ice's signature and a label describing what Alice expects from 
Bob. This would assure the correctness of the recovery phase 
performed by T in case of dispute. 

Thirdly, it helps to have semantic security 5. If the 
message space is the same as the group generated by 9, i.e., 
Q-  = (g), then it is well-known that DDH s implies the 
semantic security of the E1Gamal encryption scheme mod- 
ulo a composite. In our protocol, it is suffcient to square 

d 2d 7-/(m) then encrypt a = 7/(m) (d is odd since e is prime). 
At 8ob's side, he can compute W as ( K z ) ' / 7 l ( m )  2. Notice 
that, in case of dispute, T may get 7-l(m) d from a = 7-/(m) 2d 
by simply using the Euclidean algorithm, i.e., the mapping 
into Q~ does not affect the recovery algorithm. Namely, 
since a" = 7-/(rn) 2 and gcd(e, 2) = 1, there exist two in- 
tegers a~ and a2 such that "~-~(m) d = a az  n(m) aa. If Bob 
needs to know that he is working with quadratic residues 
modulo n (as presumably required by a proof of soundness), 
he can just  square all the parameters (even the bases) before 
performing any modular operations with them. 

Remark 1. Adding semantic security by squaring the digi- 
tal signature suggests a simple and effective way to encrypt 
via the EIGamal encryption over a composite modulus. The 
EIGamal encryption scheme working in Z~, where n is a 

SIntmtwely, a cryptosystem is semantically secure if, a passive 
attacker, who knows that one of just tWO possible messages has been 
encrypted, cannot yield any information about which of the two was 
actually encrypted by rumply analymng the clphertext. 

SRoughly svad, g~ven G = (g), the Dec*sional D~.ffle-Hellman as- 
a~raptio~ (DDH) states that no ei~.cmnt algorithm can distinguish be- 
tween the two distributions (g~, g~, 9 ~b) and (ga gb, gO) where a, b, c 
are random elements in [1, ]G]] The DDH Is believed to be intractable 
in Q,~ (see [z]) 

composite integer, was proposed by McCurley [21]. Given 
the encryption of a message m, i.e., my ~, g~, where y = g= 
is a designated public-key, McCurhy proved that learning 
m is at least as difficult as factoring the modulus n. How- 
ever, the scheme may not be semantically secure since the 
Jacobi-symbol of g= and 9 ~ map leak information about y~ 
(although this is not always the case). 

The standard solution is to use (under some conditions) 
a suitable hash function, then hashing y~ and xoring the 
result with ~ .  Alternatively, it is possible to rely only on 
modular operations by selecting g of order p'q', generator 
of Q .  (n is product of safe primes). Encryption of m can 
be done by computing [R(m)]2y ~ and g ~, where R(.) is a 
redundancy function. Therefore, the semantic security de- 
rives from the DDH assumption. The encryption function 
costs only 1.2 exponentiations via the exponent array algo- 
rithm (see Section 5). Decryption can be done by recovering 
c = [R(m)] 2 and computing the four square roots z of c. It is 
then sufficient to select the square root (the plaintext) that 
possesses the proper redundancy. 

4.2 Gennaro-Halevi-Rabin Signatures 

Let n be the product of two safe primes p = 2p' + 1 and 
q = 2q' + I. Alice's certified public-key is (n, s), where s 
is randomly chosen in l ~ .  In order to sign a message m, 
Alice computes e = ~ ( m )  and a = s lIe mod n. To verify 
the signature, Sob computes e = 7~(m) and checks whether 
a" = s rood n. The Gennaro-Halevi-Rabin signature scheme 
[19] has been proved to be resistant against adaptive cho- 
sen message attack (i.e., where the attacker can dynamically 
ask the signer to sign any message, using him as an oracle), 
in the random oracle model [5], under the strong RSA as- 
sumption s. The authors in [19] provide other constructions 
eliminating the need for the random oracle model. 

To make a y-verifiable encryption of the signature o', 
Alice performs an initialization phase, the same as in the 
RSA scheme. Thus, Alice gets the certificate C E R T r  A = 
St(g ,  y = g=, A, (n, s)) from T, with g of order p'q', gener- 
ator of Q,~. The resulting protocol is shown in Figure 3 (all 
the operations are modulo n). 

The output length of the hash function ~/(.) should be 
su~ciently large, it is suggested that  it should be Inl-bit 
long. Furthermore, ~(- )  outputs primes and must satisfy 
some additional properties rigorously described in the orig- 
inal paper [19]. Finally, note that  finding an odd integer 
that is not co-prime with ~b(n) is as hard as factoring n 
(this assures the existence of the multiplicative inverse of 

7If gcd(R(m),n) ~ I then c has only one or two distinct square 
roots, but this happens very unlikely 

SThe strong RSA assumption states that g~ven a random z E Z,~ 
wxth n an lISA modulus, finding a pair (u,e) E Z~ x ~ such that 
e > 1 and u" = z m hard to solve 
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Alice Bob 
Kx = ~l(m)dy ~ , K~ = g~, EQ_DLOG(m, y", g', y', g), CERTT A 

I II I. 
Verify CERT r A 

C o m p u t e  W = ( K , ) "  ~ ( m ) - *  rood , 
Verlfy EQ_DLOG(m, W, K2, y', g) 

0 e, compute c' = n(mllWll~llv'llgll(~')'W°llg'K~) 
and  check w h e t h e r  ¢ = c ) 

, l~Q-o~°a(~' ~", g', ~', g) = (c, ,)  I 
= u( lip IIg IIv"l'i'gll(~ ) IIg )[ 

Figure 2: Verifiable encryption of an RSA signature 

Alice Bob 
K, = ay ~, K= = g~, EQ_DLOG(m, y'~, g"; y', g), CERT.r A 

t. 
Verify C E R T  T A 

C o m p u t e  • = 7-L(ra) 
C o m p u t e  W = (KI)'S -x m o d  

Verify EQ.D LOG(m, W, Ka, y',  g) 

Figure 3: Verifiable encryption of a Gennaro-Halevi-Rabin signature 

e = 7~(m) for any m in the message space). To get semantic 
security, it is sufficient to square a (since (a 2)n('~) = s2 and 
gcd(7{(m), 2) = 1, it is easy to recover a) or, alternatively, 
to select a priori the parameter s as a quadratic residue, 
consequently a E Qn. 

4.3 Cramer-Shoup Signatures 

Let 3 and z be two security parameters such that 3 + I < 
z. Let n = pc/, where p and q are z-bit safe primes, i.e., 
p = 2p' + 1 and q = 2q' + 1 with both p',q' primes. Al- 
ice's public-key is (n, b, x, e'), where b, z are randomly cho- 
sen in the subgroup of quadratic residues modulo n, Q,, 
and e' is a random (3 + 1)-bit prime. To generate a Cramer- 
Shoup signature [15] on a message rn, Afice randomly selects 
a ( j + l ) - b i t  prime e ~ e'  and u'  E Q, .  Then, she com- 
putes x '  = (u')"b -n(m) and, finally, u = (zbn(=')) 1/e. 9 
The resulting signature on rn is (e, u, u'). To verify it, Bob 
checks that  e is a ( j  + 1)-bit number different from e' and 
computes z' = (u')~'b -n(m) .  Then, Bob checks whether 

z ---- u% -n(®'). The Cramer-Shoup signature is quite ef- 
ficient but, more importantly, it is provably secure (in the 
standard model) against adaptive chosen message attack un- 
der the strong RSA assumption. 

To make a T-verifiable encryption of the signature (e, u, 
u'), Alice performs an initiaiization phase, the same as in the 
RSA scheme. Thus, Alice gets the certificate CERTr.A = 
ST-(g, y = g=, A, (n, b, z, e')) from T, with g of order p'q'. 
Then, Alice releases (e, u ' )  along with the verifiable encryp- 
tion of u. The details are shown in Figure 4. 

In the matter  of semantic security, it should be noted 
that u E Q , ,  hence K1 = uy ~" is a quadratic residue. 

'7~( ) m a hash  funct ion  7~ {0, 1} --.-.4- {0, 1} J 

4.4 Guillou-Qulsquater Signatures 

A trusted third party generates common parameters v, n = 
/x/and, for each user, a secret key B and an lD-based public- 
key J such that BVJ -: I rood n. Only the trusted third 
party knows the order of Z~. The Guillou-Quisquater signs- 
ture [20] on a message m is computed as follows: randomly 
choose r q Z~ and compute T = r ~ rood n, d = ~(rallT ) 
and D = rB  ~ rood n, where ?-t(') is a suitable hash func- 
tion. The resulting signature is the pair (d, D). The trusted 
third party, which has generated the system parameters, 
may cease to exist after the initialization phase. 

To verify the signature, it is sufficient to check whether 
d = 7.1(ml[D"Jd), in fact notice that D~'J ~ .~ (rBd)~'J ~ --: 
r~(B~J) d ~ r ~ rood n. 

To make a verifiable encryption of a Guillou-Quisquater 
signature (d, D), we slightly modify the idea proposed in [4] 
since the derivative protocol, although quite elegant, can 
easily be broken as shown in Remark 2. Basically, the 
modulus n is generated as product of two safe primes, i.e., 
n = pc/ with p = 2p' + 1 and q = 2q' + 1, and an ele- 
ment g E Q ,  of order p'q' is selected. The public-key of 
T is y = g~ rood n. To generate a T-verifiable encryp- 
tion of (d, D), Alice sends the ElGamal encryption of D, 
i.e., Ki = Dy ~, K2 = g~, along with V = D ~, d itself and 
a signature showing knowledge of two equal discrete loga- 
rithms, EQ_D LOG(m; y~", g" ; y~', g) (notice that Alice does 
not know the order of g). The signature is verified by check- 
ing the correctness of EQ_D LOG(m; K~' /V, K2; y~, g) and 
testing whether d = ~(ml lVJa) .  

R e m a r k  2. The protocol described in [4] is the same as 
above but  n is generated such that  it is straightforward to 
select a prime-order subgroup G = {g) of Z,~. Specifically, 
n = ( 2 p ' q + l ) ( 2 p q + l )  for primes p',p, q. Then, g is selected 

as g = fl~pF, where fi is a generator of both ~p,q+l and 
Z~pq+ 1 . Unfortunately, this implies that the subgroup G = 
(g) is of order the publicly known prime q (see [4]), fact 
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Alice Bob 

(e, u'), K, = uy', K2 = g', EQ.DLOG(rn,y", g', y', 9), CERTT:A 
l [. 

Verify CERT. r a 
Check that • zs a (j + l)-bit number and • # e '  

Compute =~ = (ut)'Ib- n('~) 

Compute W = (K1)'a~-Xb - 7t(~) rood n 
Verify EQ_DLOG(m, W, K ~ , y ' ,  g) 

Figure 4: Verifiable encryption of a Cramer-Shoup signature 

which can be exploited by a passive at tacker in order to get 
the encrypted value D. In fact, given K1 = Dg=" rood n, 
the attacker may compute K~ yielding D q (because gq = 1). 
Since V = D ~ is known, it is enough to note that  gcd(v, q) = 
1, then there exist two integers a l ,  a2 such that  alv + a2q = 
1. Therefore, D = (D ~)~  (D ~) a2. Other at tacks are possible 
since the inverse of v rood q always exists (since q is prime). 

4.5 Discrete Logarithms 

In this section we present methods for making verifiable en- 
cryptions of discrete logarithms. These methods allow us to 
make verifiable encryptions of digital signatures like DSA, 
EIGamal, and Schnorr. 

Given a large prime P, we are actually working in prime- 
order subgroup of Z~ where finding the discrete logarithm is 
supposed to be hard. The problem we are facing, now, is the 
following: Afice and Bob agree on a common value a = and 
Alice would like to generate a T-verifiable encryption of x, 
given or=. We propose two approaches to solve this problem 
in the following sections. 

4.5.1 Tokens Approach 

During the initialization phase, T generates and sends Alice 
tokens that  can be used to perform one-time verifiable en- 
cryptions (a similar approach is also proposed in [2]). More 
concretely, Alice sends her certified public-key (p, q, a, c(') to 
T who generates tokens of the form a ¢" with 1 < i < k and 
sends back the values t l , . . ,  t~ and the signatures S T ( A  , al = 
a n ) , . .  . ,S t (A ,  ak = a t~) i.e., certificates binding the tokens 
to Alice's identity. Given y = a= rood p, to generate a 
T-verifiable encryption of x, Alice selects 1 < j < k and 
encrypts x by computing t = t~ - x rood q. Then, she sends 
this encryption and the corresponding token to Bob. See 
Figure 5 for details. 

Notice that each certificate ST(A, a~ = a tJ ) can be used 
only once..After receiving the message from Alice, Bob needs 
to verify that Alice has actually encrypted the value Dlog a y 
by checking whether a~ = aly. 

The drawback of this approach is that one can make ver- 
ifiable encryptions of discrete logarithms only for a limited 
number of times. In the next section we provide a method 
that overcomes this problem. 

4.5.2 Trap-door Functions Approach 

Given a= rood p, where a is the generator of a prime-order 
subgroup of Z~, it is hard to compute x. Suppose, now, 
that  T selects an appropriate group G of order n in which 
computing the discrete logarithm is an easy task i.e., given 
an element g E G and g= mod n, getting z is trivial. There- 
fore, Alice could make a verifiable encryption of x jus t  by 

sending or= mod p and 9 = mod n and then proving that  
Dlog~ a ® = Dlog~g=. Obviously, only T should be able to 
compute discrete logarithms w.r.t, base g, i.e., g and a de- 
scription of the group G have to be public and constitute a 
t rap .door  function of some sort. To the best  of our knowl- 
edge, there are two possible choices for a suitable t rap.door  
function: those defined in the Naccache-Stern [23] and the 
Okamoto-Uchiyama [24] public-key cryptosystems, respec- 
tively. 

The Naccache-Stern cryptosystem can shortly be de- 
scribed as follows: let n = p¢l be an RSA modulus and B 
a small integer. Compute ~r as a square-free odd B-smooth 
integer such that it divides ~b(n) and is prime to ¢(n)/a 
(suggested size a > 216°). Let g be an element whose multi- 
plicative order modulo n is a large multiple of a. A message 
m < o- is encrypted by computing grn rood n. Decryption is 
performed using the prime factors of o', getting m by chinese 
remaindering (see [23] for details). The resulting scheme is 
quite efficient (the optimized version costs a couple of RSA 
operations with a similar modulus) and i t  has already been 
implemented on smart-cards.  Although a formal proof is 
not provided, the security of the scheme seems based on 
the higher residuosity problem that  is widely believed to be 
infeasible. 

The Okamoto-Uchiyama cryptosystem is a probabilistic 
encryption scheme provably secure against passive adver- 
saries assuming the intractability of factoring, = p2q. Let k 
be a security parameter. The public-key is (n, 9, h, k) where 
n = p2q with p, q two large primes (]p[ = [q] = k), g E Z~ 
such that  9 = gp-Z rood 92 has order p, and h = g" rood n. 
To encrypt a message 0 < m < 2 I¢-* , select a random r E Z ,  
and compute C = gmhr rood n. To decrypt  it is sufficient 
to compute Cp = C ~'-* mod p2 and then m = L(Cp)/L(9)  
rood p where L(z)  = (x - 1)/p is a function defined on ele- 
ments in z;~ congruent to I modulo p (see [241 for det~s). 
The efficiency of the scheme depends on the size of m and is 
almost the same as that of the RSA scheme, assuming small 
size of the messages (e.g., 128 bits). 

For the sake of simplicity, we focus on the Naccache- 
Stern cryptosystem but all the results can easily be adapted 
to work with the Okamoto-Uchiyama cryptosystem. The 
verifiable encryption of x given a= is performed by com- 
puting g= rood n and showing that Dlog~ a= = Dloggg= 
via EQ_D LOG(m; a=, g ®; a, g), for an arbi trary message m. 
Although we still use the same notat ion (i.e., EQ_DLOG(.))  
as in the rest of the paper ,  proving equality of discrete loga- 
r i thms from different groups requires an additional step by 
which the verifier generates an element of secret order that  
is subsequently used in the protocol. Without  this element, 
the proof of equality may not work properly (see [12]). 
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Alice 
£---- t j - -=  modq, S?- (A ,a~  = aiJ) 

Bob 

Verify ST(A , =~ ---- ~ =J ) 
Verify whether aj = sty 

Figure 5: Verifiable encryption of a discrete logarithm 

4.6 Schnorr and Poupard-Stern Signatures 

Let a be a generator of the unique cyclic group of order a 
prime q in Z~, where p is some large prime number such that 
q divides p - 1. Alice ithe signer) selects the private key 1 < 
a ~_ q, computes V = a= mad p and publishes IP, q, a, V). To 
generate a Schnorr signature on a message m, Alice selects a 
random secret integer k, with 1 < k < q - 1, and computes 
r = a k mod p, e = ~/(mllr) 10, and s = a e + k  mod q. Alice's 
signature on m is the pair  i s ,e ) .  Bob verifies the signature 
by checking whether e = e', where e' = 7~(m{ia~y-*). 

Notice that, when Bob receives Alice's signature is, e), he 
exponentiates a with s. Therefore, to make a 7"-verifiable 
encryption of (s, e), Alice could send {a  s, e} to Bob, prove 
that she knows Dlog a a"  and, finally, make a verifiable en- 
cryption of s. The details are shown in Figure 6, where 
(g, n) denotes the public-key of 7" generated according to the 
Naccache-Stern cryptosystem (in particular, we set cr > q). 

Showing, via EQ..DLOG(.), that the discrete logarithm 
of ~I equals that of w2, implicitly proves that the signer 
(Alice) knows Dlog= wt and Dlogg w=, respectively. The ex- 
ponent s must satisfy some range constraints as described 
in section 2.1; this might affect the choice of the random 
element k during the signature process. 

The technique above also applies to the Poupard-Stern 
[26] signature scheme, that  is the Schnorr signature mod- 
ulo a composite. The Poupard-S tem signature has formally 
been proved to be resistant against chosen message a t tack 
in the random oracle model [5], under the discrete logarithm 
assumption. 

4.7 EIGamal and DSA Signatures 

Let o~ be a generator of the unique cyclic group of order a 
prime q in Z~, where p is some large prime number such 
that  q divides p -  1. Alice (the signer) selects the private 
key 1 ~ a ~ q, computes V = a= mad  p and publishes 
(p, q, a ,  !/)- To generate an EIGamal signature on a message 
m, Alice selects a random k E [ 1 , p - 2 l a n d  computes r = a k 
mad p and s = ar ÷ ic ~[(m) mad q. i t  The signature is the 
pair (r, s). To verify it, Bob checks tha t  1 < r < p - 1 and 
tests whether a s = !p r  ~t('r'). 

To make a T-verifiable encryption of (r, s), Alice releases 
the values a ~, r along with the verifiable encryption of s. 
Once again, (g, n) denotes the public-key of 7" generated 
according to the Naccache-Stern cryptosystem. The details 
are shown in Figure 7. 

The technique for EIGamal signatures could clearly be 
extended to work with DSA signatures, although care must 
be taken in specifying the size of the secret parameters  as 
well as the output  length of the hash function. 

~°74( ) Is a hash functmn 7-/ {0, I}" ~ Zq 
XIThm m actually a rnodlfied verslon of the ~IGarnal slgnature 

scheme since we ere working m prime-order subgroup of Z; whereas 
the anginal scheme works d:rectly m ~ 

5 Comparisons 

In this section we analyze the proposed verifiable encryption 
protocols in terms of the most expensive operation, i.e., the 
modular exponentiation. A modular exponentiation in Z~ 
requires almost 1.5 Iogin ) modular multiplications, however 
simultaneous exponentiations can be computed more effi- 
ciently by means of an exponent array (see [22] page 618). 

=' a~ = and a~' a ;  = Namely, exponentiations of the form a 1 
a~ s are only 16.7%, and 25% more costly than  a single ex- 
ponentiation, respectively. 

In Table 1 we evaluate our schemes with respect to both  
the number of modular  exponentiations and the amount (ex- 
pressed in bytes) of da t a  t ransmit ted.  The exponentiations 
we considered are those performed by both Alice and Bob 
=ncluding the amount needed bg each signature algorzthm. 
Finally, we are assuming a 1200-bit composite modulus n, a 
768-bit prime modulus p, a 160-bit prime modulus q and a 
128-bit hash function 7/('). 

The  efficiency of our protocols is remarkably be t te r  than 
that  of protocols in related works. For instance, compared 
to the scheme in [2], our verifiable encryption of RSA sig- 
natures is about ten times faster and the amount  of da t a  
t ransmit ted  is about  twenty times smaller when choosing 
the same modulus for both  schemes. Analogously, our verifi- 
able encryption of E1Gamal/DSA signatures is about  twenty 
times faster and nine times shorter than  tha t  in [2]. Other  
verifiable encryptions, like those of Geunaro-Halevi-Rabin 
and Cramer-Shoup signatures, do not  appear  in existing 
works, consequently we can only evaluate them. 

Table I: Evaluation of our protocols. 

S i g n a t u r e  

RSA 
Oennaro et al 
CramerShoup 
GQ 
Schnorr 
EIGamal 
DSA 

Verifiable E n c r y p t i o n  

# exponentiations Size (bytes) 

7.5 400 
7.5 400 
8.7 544 
10.5 544 
8.3 388 
8.5 388 
11.6 484 

6 Conclusion 

This paper  presented simple and part icularly efficient verifi- 
able encryption protocols for digital signatures. These pro- 
tocols may be used as building blocks for designing efficient 
fair exchange of digital signatures. We have slightly modified 
the model of fair exchange by introducing an initialization 
phase for some of the digital signature schemes. However, 
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Alice Bob 
(w, = ~" rood p, e), zo~ = g" rood n, EQ_DLOG(m,  ~ ' ,  g ' ,  a, g) 

l, 
Verify EQ-D LOG( m; ~ ,  , ~2,  a, g) 

Verify 7t(mll~tu - ° )  = • 

Figure 6: Verifiable encrypt ion  of  a Schnolrr s ignature  

Alice Bob 
(cox = a* rood p, r),vo~ = g" rood n, EQ.DLOG(m, a', g'; ¢c, g) 

I, 
Verify E Q . D  LOG(m;  ~,, zu~, c~, g) 

C h e c k l < . r _ < p -  1 
Verify whether ~ox'= 9"r "~('~) 

Figure  7: Verifiable encrypt ion of  an  EIGamal  s ignature  

this phase is done only once and the resulting protocols are 
much more efficient than those of prior art. We have taken 
two directions for future research. First, we would like to 
analyze the security of fair exchange protocols built via our 
verifiable encryption schemes, eventually in an extended ver- 
sion of this paper. Second, as a long-term goal, we would 
like to develop a prototype implementation, preferably in a 
smart-card environment. 
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A Security Analysis 

We concentrate on the interactive protocol underlying the 
verifiable encryption of RSA signatures. The result also ap- 
plies to the other RSA-based schemes. 

Let M = [H(m)] 2, y = g® and h = y ' .  The interactive 
protocol between Alice (prover) and Bob (verifier) is run as 
fonows: 

1. Alice chooses at random r, t and sends Bob: 

{ g l  = M a y  ", K2 = g ' ,  a = h*, b = g*}. 

2. Bob chooses a random challenge c E {0, 1} is° and 
sends it to Alice. 

3. Alice replies with s = t + cr (mod p'q').  

4. Bob computes W = K ~ / M  and checks whether: 

h ~ = a W  ~ and g" = bK~. 

Suppose, now, that Alice can successfully answer two dis. 
tinct challenges. That is, given two challenges ci, c2 from 
Bob, Alice answers sl ,s2. As noted in [14], we then have: 

h ~1-'2 = W "1-'~ and g~l- '~  = K~1-,2. 

Thus, a value r exists such that: 

r = Dlog h W = Dlog, K2 = (sl - s,)/(c~ - c2)(mod p'q'). 

Consequently, W = h ~, K2 = g~ and Ki = (Mh') ~. 
This proves that (Ki, K2) is indeed an encryption of Alice's 
signature on the message m. 

Notice that we do not have to prove that the proto- 
col above is a proof of knowledge, nevertheless it is in- 
teresting to analyze this possibility. We must rely on the 
strong RSA assumption, in fact the knowledge extractor 
does not know the group order (p'q'),and thus cannot com- 
pute (sl -- s2)/(ci - c2) (modulo p'q ). However, this com- 
putat ion can be carried out in Z since it is easy to see that, 
under the strong RSA assumption, (ci -c2) divides (sl -s2) 
(in Z). Furthermore, since Alice (the prover) knows the 
factorization of n (excluding the protocol for the Guillou- 
Quisquater signatures), we should slightly modify the pro- 
tocol as follows: 

• During the initialization phase the trusted third party 
T selects a composite fi and 0 G Z~,  and sends 

C E R T 7 -  a = S.r(g, y = g=,A,(e,n),O, fi) to Alice. 

• Given K ,  = MCZy ~, K= = g ' ,  a = h ' ,  b = g'  and 
Ks = O r rood fi, Alice now convinces Bob that: 

D l o g y ( K ~ / M )  = Dlog, K~ = Dlog~ Ks. 

Therefore, we can apply the proof techniques in [18, 10]. 
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