
(and
Efficient Verifiable Encryption
Fair Exchange) of Digital Signatures

G i u s e p p e A t e n i e s e

IBM Zurich Research Laboratory and
Department of Computer Science (DISI), University of Genoa.

Abstract

A fair exchange protocol allows two users to exchange items
so that either each user gets the other's item or neither user
does. In [2], versfiable eneryptionis introduced as a primitive
that can be used to build extremely efficient fair exchange
protocols where the items exchanged represent digital sig-
natures. Such protocols may be used to digitally sign con-
tracts.

This paper presents new simple schemes for verifiable
encryption of digital signatures. We make use of a trusted
third party (TTP) but in an optsmist:c sense, i.e., the TTP
takes part in the protocol only if one user cheats or sim-
ply crashes. The performance of our schemes significantly
surpasses that of prior art.
Keywords: Fair Exchange, Verifiable Encryption, Con-
tract Signing Problem, Public-key Cryptography, Digital
Signatures, Proof of Knowledge.

1 Introduction

Exchanging items over the Internet is becoming a major
business opportunity. Electronic commerce usually involves
two distrusted parties exchanging one item for another, for
instance an electronic check for an electronic ticket. Spe-
eiahzed applications may include contract s:gnzng, electronsc
purchase, and cert:fied electronic mail delivery. In simul-
taneous contract signing, Alice and Bob have agreed on a
contract but neither wishes to sign unless the other signs
as well. Face to face, this is easily solved: both simultane-
ously sign the contract. Unfortunately, simultaneity cannot
be met in the discrete world.

There have been several approaches to solve the fair ex-
change problem depending on the definition of fairness on
which they are based. In [16], fairness is interpreted as equal
computational effort. That is, both Alice and Sob generate
a signature of the contract and then they communicate by
taking turns and sending bit-by-bit their signatures to each
other. It is assumed that, at any stage, the computational
effort required from the parties to obtain each other's se-
cret is approximately equal. This approach does not require

Perrnlsslon to make digital or hard copies of all or part of th,s work for
personal Or classroom use ,s granted wi thout fee prov,ded that
cop,es are not made of dlstr,b~Jted for prof i t or commerc,al advant
-age and that copies bear th,s notice and the full citation on the first page
To copy otherwise, to republ,sh, to post on servers or to
red,strlbute to bsts, requires pnor spec,hc perrmss,on and~or a fee
CCS "99 11/99 S,ngapore
© t 9 9 9 ACM 1 -58113 -148 -8 /99 /0010 . $5.00

the intervention of a trusted third party; however it requires
many rounds of interactions and, more importantly, that the
two parties have equal computing power, an often unrealistic
and undesirable assumption.

In [6], a probabilistic approach is adopted, i.e., the proba-
bility of correctness is gradually increased over several rounds
of communication. Such an approach requires the existence
and eventually the intervention of a trusted third party in-
voked only in case of dispute. However, the major drawback
of the resulting protocol is its impracticality.

In [I], the authors introduce the opt:mistzc approach. It
also relies on the existence of a trusted third party but only
invoked in the case of an exception. The protocol is op-
tiraistic since one party (the originator) takes the risk of
sending its item firstr optimistically hoping that the other
party will respond by sending its item. If the other party
does not reply as expected, the originator asks the third
party to resolve the dispute (this implies that sufficient evi-
dence must be accumulated during the protocol to support
the resolution of the dispute). This approach results in par-
ticularly efficient fair exchange protocols for generic items
([1, 3]), although their correctness remains unproved.

We focus our attention on the optimistic fair exchange
of digital signatures. Recently, papers [2] and [4] have pre-
sented protocols for optimistically exchange commonly used
digital signature schemes. Both show that it is possible to
build fair exchange protocols by means of what the authors
in [2] have called verifiable encrypt;on of digital signatures
(i.e., a way to encrypt a signature under a designated public-
key and subsequently prove that the resulting ciphertext in-
deed contains such a signature). The authors in [8] show
how to generalize the schemes in [2] achieving more efficient
schemes that can be proved secure without relying on ran-
dom oracles.

In this paper we present new protocols for verifiable en-
cryption of digital signatures with improved efficiency, thus
providing a valid primitive that is of interest in designing
fair exchange protocols (although there might be other ap-
plications to consider). We provide a security analysis in
Appendix A, however we do not provide any formal security
proofs for the fair exchange protocols that might be built by
means of our verifiable encryption protocols (as rigorously
done in [2]).

The rest of the paper is organized as follows. In Section
2, we briefly describe some types of building blocks neces-
sary in the subsequent design of our schemes. In Section 4,
we present verifiable encryption protocols for several digital
signature schemes. In Section 5, we analyze our protocols in
terms of both the number of modular exponentiations and

138

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319709.319728&domain=pdf&date_stamp=1999-11-01

the amount of da ta t ransmit ted.

2 Prel |m;narles

We assume that each communication par ty has the ability
to generate and verify digital signatures. We say that the
trusted third par ty 7" is visible if the end result of the fair ex-
change protocol makes i t obvious tha t T par t ic ipated during
the protocol. The involvement of T may happen when either
of the par ty cheats or simply crashes. A fair exchange pro-
tocol is ,nvas=ve if one can tell that it was used to exchange
signatures just by looking at such signatures. Typically, if
the trusted third party 7" is visible then the fair exchange
protocol is invasive (notice that the reverse is not true).

Given an instance s of a digital signature scheme on an
arbitrary message, we make a T-verifiable encryption c(s) of
s if such an encryption can be verified to contain s in a way
that no useful information is revealed about s itself. Only
7" is able to recover s from c(s) (during the recovery phase).

Finally, a fair exchange protocol provides perfect fairness
if, when both parties follow the protocol properly, the pro-
tocol terminates with both parties having either the each
other 's i tem or nothing useful.

2.1 Cryptographlc Tools

In this section we present signature schemes allowing a prover
to convince a verifier of the equality of discrete logarithms
(even when working in different groups). In short, the prob-
lem is, given g~, g~ and a message m, generating a signs-
ture on m and, at the same time, showing that Dlogg~ g~ =
Dlogg g~ without revealing any useful information a~out z
~tself. We will denote an instance of this mgnature technique
by EQ_DLOG(m;g~, g~; g,,g~).

We make use of so-called "proof-of-knowledge" systems
that allow demonstrating knowledge of a secret such that
no useful information is revealed in the process. Namely, we
define Schnorr-like signature schemes [28] in order to show
knowledge of relations among secrets. Substantially, these
are signature schemes based on proofs of knowledge per-
formed non-interactively making use of an ideal hash func-
tion 7-/(') (~ la Fiat-Shamir [17]).

Let G~ denote the unique subgroup of Z~ of order q.
The parameters p, q are primes such that q divides p - 1, for
instance p = 2q + I.

Let g, h E G~ be publicly known bases. The prover se-
lects a secret z rood q and computes yz = g= and y~ = h =.
The prover must convince the verifier that:

Dloga y~ = Dlog~ y~.

The protocol, described in [14] by Chaum and Pedersen,
is run as follows:

1. The prover randomly chooses t E ~e and sends (a,b) =
(g=, h t) to the verifier.

2. The verifier chooses a random challenge c E ~ and
sends it to the prover•

3. The prover, then, sends s = t - c x rood q to the verifier.

4• The verifier accepts the proof if:

$ ¢
h y ~ . a = g Yl and b = • =

To turn the protocol above into a signature on an ar-
bi t rary message m, the signer can compute the pair" (c, s)
as:

c - - ~ t (~ l l u , l l u = l l g l l h l l a ' l l h ') , s = t - c = .

where ~(-) is a suitable hash function. To verify the sig-
nature (c, s) on ra, it is sufficient to check whether c' = c,
where

m h S ~ h = C c = "t"/(Ily, lly=llgll l i t u, II y=)•
This signature scheme works properly also into accu-

rately chosen subgroup of Z~, where n is an RSA-like com-
posite. In particular, in this paper we work into the sub-
group of all quadratic residues modulo n, denoted by Q,~.
Explicitly, Q, C Z: is the set of elements a E Z~, such that
there exists an z E Z*~ with z 2 _~ a rood n. We select n as
product of two safe primes p and q, i.e., such that p = 2p' + 1
and q = 2q s + 1 with/, q' primes. Thus, notice that Q, is
a cyclic group of order/qt

EQUALITY OF DISCRETB LOGARITHMS IN A GROUP OF UN-
KNOWN ORDER, A c t u a l l y , t h e s a m e s i g n a t u r e s c h e m e w o r k s
properly even when the signer is working over a cyclic sub-
group of Z~, G = <g), whose order ~ G = p'q' is ,mknown
but its bit-length tG (i.e., the integer IG s.t. 2 l ° -1 <_ # G <
2 z°) is publicly known.

We, now, show how the signer can generate a signature
on a message m E {0, 1}* working with elements in G and, at
the same time, showing knowhdge of the discrete logarithm
w.r.t, bases 9 and h satisfying yl = 9 = and V= = h =• We
make use of a hash function "H : {0,1}* ---r {0,1} k, which
maps a binary string of arbitrary length to a k-bit hash
value. We also assume a security parameter ~ > 1. The
signer computes a pair (c, s) E {0, 1} ~ x :E{0, 1} =(z°+~)+l
such that c = 7t(mllmll~=llglthllg'u~llh'u~)• ' This shows
that the discrete logarithms of m = g=, w.r.t, base g, and

= h ~, w•r.t, base h, are equal.
The signer, in possession of the secret z, is able to com-

pute the signature (c,s), provided that z = Dloggm
Dlogh y2, by choosing a random t E ::k{0, 1} s{t°+k) and then
computing c and s as:

c = ~ l (m l l v , l hn l lg l lhUg ' l lh=) , s = t - cz (in Z) •

A way of proving the security of the signature scheme
above is via the oracle replay technique formalized in [25]
by Pointcheval and Stem. In particular, the Schnorr signa-
ture with composite modulus has been proved secure in the
random oracle model [5] by Poupard and Stem [26]. They
showed that if an adversary is able to forge a signature un-
der an adaptively chosen message attack (i.e., the strongest
attack), then she is able to compute discrete logarithms in
G (although, it may be possible to mount a chosen-message
attack for a non-negligible proportion of public-keys).

EQUALITY OF DISCRETE LOGARITHMS FROM DIFFERENT
GROUPS. Suppose now that g and h have different orders,
q~ and q2,respectively. Thus, given two elements yl = g=
and y2 = h = of different groups G1 = <g), G2 = (h), the
verifier can only conclude that the signer knows a value x
such tha t x mod ql = Dlogg yl and z mod q~ = Dlog h y2.
However, it is possible to prove that a secret z lies in a
specific interval, more precisely given g= with - 2 t < x < 2 t
for an integer l , it is possible to prove that x lies in the
extended interval] - 2 dz+k), 2 ~(t+k) [. Hence, we might build

XThe (abused) no ta tmn s E :E{Ool} "(zo+~)+l denotes ~s[<
2 . (z o + ~) + z

139

a signature scheme for showing that Dlogs, y, = Dlog h y2 in
Z by combining the scheme for showing knowledge of a value
z with z mod ql = Dloggm and z mod q2 = Dlogh y2, and

the scheme for showing that - 2 .(t+k) < z < 2 .(z+k). Clearly,
this can be done only if the length l can be chosen such that
2 "(z+k)+l < min{ql, q~}, where q~, q~ are the orders o f g and
h, respectively.

This idea is formalized in [12] by Camenisch and Michels.
They present, in [12], a concrete protocol for proving equal-
ity of discrete logarithms from different groups. Their pro-
tocol is mostly based on a technique developed by Fujisaki
and Okamoto [18].

To provide a viable example of how it is possible to
show that z lies in the extended interval]-2 ~(~+~), 2'(z+O[,
we present a signature scheme derived from a protocol due
to Chan, Frankel and Tsiotmis [13], and Camenisch and
Michels [9]. The scheme can trivially be extended to the
more general interval]X - 2 "(z+~), X + 2"(~+~)[, for a given
integer X [9]. The signature on a message m 6 {0, 1}*,
is the pair (c, s) 6 {0, I} ~ x =h{O, I} "(t+~)+* such that c =
~(,~divllallg'v°). This shows knowledge of the discrete log-
ar i thm of y = 9= w.r.t, base 9 and tha t this logarithm lies
in]-2"(~+~), 2,(~+~) [.

To produce (c, s), the signer in possession of the secret
z = Dlog~ y ~] -2 z, 2t[chooses a random t 6 ~{0, 1} "(z+0
and then computes c and 8 as:

= ~(~ l ly l lg l lg ') , • = t- =~ (in z) .

The underlying interactive protocol is proved to be a
proof of knowledge (statistical honest-verifier zero knowl-
edge),under the strong RSA assumption, in [10].

3 A Fair Exchange Protocol

To bet ter clarify how a fair exchange may be built via ver-
ifiable encryptions, in this section we present an optimistic
fair exchange protocol of digital signatures.

The protocol is essentially what is described in [4], it is
non-invasive and provides perfect fairness. It may be used
for signing contracts over a reliable communication network.
Let Alice and Bob be two users willing to exchange digital
signatures on a message m. Let 7- be a t rusted third par ty
and let Pu(m) denote the encryption of the message m with
U's public key, whereas Su(m) denotes the signature, gen-
erated by U, on the message m.

The fair exchange p ro tocd is run as follows:

1. Alice sends Bob the message Pr(SA,c,(m)) along with
an evsde,ce V stating that she has correctly encrypted
her signature on m, i.e., tha t she has made a T-verifi-
able encryption of SA,i~,(m).

2. Bob verifies V and, if valid, sends Ss0b(m) to Alice,
otherwise does nothing.

3. Alice verifies Bob's signature and, if valid, sends SA,;~,(m)
to Bob.

4. If Bob does not receive anything or if Alice's signature
is invalid, then he sends PT(SA,~:,(m)) and Ssob(m)
to T- This provides a vehicle for 7" to understand
whether the protocol was correctly carried out. If this
is the case, T sends SAJi~,(m) to Bob and forwards
Seob(m) to Alice.

One drawback of this three-pass protocol is that Bob
can ask 7- to reveal Alice's signature at any time after the
step i above. Needless to say, this is undesirable for some
(but not all!) applications. For instance, Alice may receive
Bob's signature after a certain amount of t ime (at Bob's
convenience), making the signature itself completely useless.

However, the protocol above is simple and suitable for
our discussions. A be t te r model for exchanging digital sig-
natures is defined in [2].

Whatever protocol one might use, the building block re-
mains the verifiable encryption of a digital signature. In the
next sections we provide efficient constructions for verifiable
encryption of commonly used signature schemes as well as
newly proposed signature schemes provably secure against
the most powerful attack.

4 Efficient Verifiable Encryptlons

Suppose that Alice and Bob have agreed on a common mes-
sage m. Alice generates a signature SA(m) and sends it "en-
crypted" to Bob by computing C(SA(m)) = PT(SA(m)) .
The problem, now, is that Alice must prove that the signa-
ture is valid and that 7-is able to get SA(m) from C(SA(m)) .
In most of our protocols, P r (') is the E1Gamal encryption
scheme. That is, given a secret key z and a corresponding
public key g ®, a message m is encrypted by generating a
random r and computing / f l = m9 =', K~ = 9". To get

from K1, it is sufficient to compute m = Ki/(K2) =. A
security analysis of our protocols is provided in Appendix
A.

4.1 RSA Signatures

Let n = Ix/, with p = 2p'-{-1 a n d q = 2q'-k I wherep',q' are
primes . Let (e, n) be Alice's public key with e prime and d
the corresponding secret key, i.e., ed ~ 1 mod p 'q ' . To sign
a message ¢rh it is sufficient to compute C = ~(¢n) d mod n
where ~(-) is a hash function defined as ~ : {0, 1}* ~ Z .
[27]. ~ The signature is accepted only if C '~ m o d . matches
~ (r a) . In order to make efficient the verifiable encryption of
RSA signatures, we will make use of an init,alization phase
by which the user and the t rusted third par ty 7- agree on
common parameters.

Let Q . be the subgroup of squares in Z~. During the
initialization phase, Alice sends (e, n) to T (along with a
certificate CERTA). 7- verifies that (e ,n) is the public key
of Alice and randomly selects a 9 E Z~. Then, 7- sets 9 = 9~
rood n, signs and sends back (9 r o o d . , y = 9 = rood .) , where
z is a secret random element s. The details are shown in
Figure 1, where all the operations are taken modulo n and
"A" is a string of da ta identifying Alice. This phase is done
only once and '7- does not need to know the factors of n. 4

Given the message m, Alice computes ~ (r r 0 and then
signs it by computing 7-/(m) d mod n. Then, Alice encrypts
the RSA signature via the EIGamal encryption scheme with
the public-key y = 9=, i.e., by selecting a random r and
computing K1 = 7-/(m)dp" and K2 = 9 ~. To prove that

2For the sake of slmphclty, we employ the hashoand-sign paxadigm
but, in practice, ~ () is ra ther a redundancy function as defined in
PKCS#I, ISO/IEC 9796, etc (see [22] p 442)

SBy definition g q Q. and with overwhelming probability the
order of g is p'q' (nevertheless paranoids may test whether gcd(9 :h
1,'n,) = I)

4However, we assume tha t Afice prov*des a proof o f . be*ng a prod-
uct of safe primes during either the pubhc-key certification process
(executed with a Certification Authomty) or the mltlahzation phase
(with 7" itself) See [11]

140

Alice

,I

T
(e, n), CERTA

[.
Verify CERT ~

Generate a random
Choose ~ £ Z: at random, and set g = ~

CERTT A = ST(g, Y = g=, A, (e,n))
I

Figure h Initialization phase

she has correctly generated a T-verifiable encryption, Alice
releases an evidence showing that Dlog~.(y e') = Dlogg(g")
(via EQ..DLOG(.) , see section 2). The resulting message is
composed of four elements as shown in Figure 2.

After receiving the message from Alice, Bob must verify
that it is a T-verifiable encryption of Afice's signature on m.
Hence, he computes ~ (m) and then verifies EQ_DLOG(m;
K~/7. l(m), K:; ye, g), where the bases y = g= and 9 are
taken from C E R T T.,4. Since n is product of sale primes,
with overwhelming probability g, g~ and 9 ~* generate the
same group, i.e., Q , .

Embedding our scheme in a fair exchange protocol needs
more careful thoughts which also apply to other schemes in
this paper. First of all, T may avoid to store secret values
per capita. In our example, T has to store z for Alice. This
can be avoided by simply inserting a symmetric encryption
of z into C E R T r A during the initialization phase. Thus, T
needs to store only the symmetric encryption key.

Secondly, Alice should sign the message sent to Bob. This
message should include the verifiable encryption of the Al-
ice's signature and a label describing what Alice expects from
Bob. This would assure the correctness of the recovery phase
performed by T in case of dispute.

Thirdly, it helps to have semantic security 5. If the
message space is the same as the group generated by 9, i.e.,
Q- = (g), then it is well-known that DDH s implies the
semantic security of the E1Gamal encryption scheme mod-
ulo a composite. In our protocol, it is suffcient to square

d 2d 7-/(m) then encrypt a = 7/(m) (d is odd since e is prime).
At 8ob's side, he can compute W as (K z) ' / 7 l (m) 2. Notice
that, in case of dispute, T may get 7-l(m) d from a = 7-/(m) 2d
by simply using the Euclidean algorithm, i.e., the mapping
into Q~ does not affect the recovery algorithm. Namely,
since a" = 7-/(rn) 2 and gcd(e, 2) = 1, there exist two in-
tegers a~ and a2 such that "~-~(m) d = a az n(m) aa. If Bob
needs to know that he is working with quadratic residues
modulo n (as presumably required by a proof of soundness),
he can just square all the parameters (even the bases) before
performing any modular operations with them.

Remark 1. Adding semantic security by squaring the digi-
tal signature suggests a simple and effective way to encrypt
via the EIGamal encryption over a composite modulus. The
EIGamal encryption scheme working in Z~, where n is a

SIntmtwely, a cryptosystem is semantically secure if, a passive
attacker, who knows that one of just tWO possible messages has been
encrypted, cannot yield any information about which of the two was
actually encrypted by rumply analymng the clphertext.

SRoughly svad, g~ven G = (g), the Dec*sional D~.ffle-Hellman as-
a~raptio~ (DDH) states that no ei~.cmnt algorithm can distinguish be-
tween the two distributions (g~, g~, 9 ~b) and (ga gb, gO) where a, b, c
are random elements in [1,]G]] The DDH Is believed to be intractable
in Q,~ (see [z])

composite integer, was proposed by McCurley [21]. Given
the encryption of a message m, i.e., my ~, g~, where y = g=
is a designated public-key, McCurhy proved that learning
m is at least as difficult as factoring the modulus n. How-
ever, the scheme may not be semantically secure since the
Jacobi-symbol of g= and 9 ~ map leak information about y~
(although this is not always the case).

The standard solution is to use (under some conditions)
a suitable hash function, then hashing y~ and xoring the
result with ~ . Alternatively, it is possible to rely only on
modular operations by selecting g of order p'q', generator
of Q . (n is product of safe primes). Encryption of m can
be done by computing [R(m)]2y ~ and g ~, where R(.) is a
redundancy function. Therefore, the semantic security de-
rives from the DDH assumption. The encryption function
costs only 1.2 exponentiations via the exponent array algo-
rithm (see Section 5). Decryption can be done by recovering
c = [R(m)] 2 and computing the four square roots z of c. It is
then sufficient to select the square root (the plaintext) that
possesses the proper redundancy.

4.2 Gennaro-Halevi-Rabin Signatures

Let n be the product of two safe primes p = 2p' + 1 and
q = 2q' + I. Alice's certified public-key is (n, s), where s
is randomly chosen in l ~ . In order to sign a message m,
Alice computes e = ~ (m) and a = s lIe mod n. To verify
the signature, Sob computes e = 7~(m) and checks whether
a" = s rood n. The Gennaro-Halevi-Rabin signature scheme
[19] has been proved to be resistant against adaptive cho-
sen message attack (i.e., where the attacker can dynamically
ask the signer to sign any message, using him as an oracle),
in the random oracle model [5], under the strong RSA as-
sumption s. The authors in [19] provide other constructions
eliminating the need for the random oracle model.

To make a y-verifiable encryption of the signature o',
Alice performs an initialization phase, the same as in the
RSA scheme. Thus, Alice gets the certificate C E R T r A =
St(g , y = g=, A, (n, s)) from T, with g of order p'q', gener-
ator of Q,~. The resulting protocol is shown in Figure 3 (all
the operations are modulo n).

The output length of the hash function ~/(.) should be
su~ciently large, it is suggested that it should be Inl-bit
long. Furthermore, ~(-) outputs primes and must satisfy
some additional properties rigorously described in the orig-
inal paper [19]. Finally, note that finding an odd integer
that is not co-prime with ~b(n) is as hard as factoring n
(this assures the existence of the multiplicative inverse of

7If gcd(R(m),n) ~ I then c has only one or two distinct square
roots, but this happens very unlikely

SThe strong RSA assumption states that g~ven a random z E Z,~
wxth n an lISA modulus, finding a pair (u,e) E Z~ x ~ such that
e > 1 and u" = z m hard to solve

141

Alice Bob
Kx = ~l(m)dy ~ , K~ = g~, EQ_DLOG(m, y", g', y', g), CERTT A

I II I.
Verify CERT r A

C o m p u t e W = (K ,) " ~ (m) - * rood ,
Verlfy EQ_DLOG(m, W, K2, y', g)

0 e, compute c' = n(mllWll~llv'llgll(~')'W°llg'K~)
and check w h e t h e r ¢ = c)

, l~Q-o~°a(~' ~", g', ~', g) = (c, ,) I
= u(lip IIg IIv"l'i'gll(~) IIg)[

Figure 2: Verifiable encryption of an RSA signature

Alice Bob
K, = ay ~, K= = g~, EQ_DLOG(m, y'~, g"; y', g), CERT.r A

t.
Verify C E R T T A

C o m p u t e • = 7-L(ra)
C o m p u t e W = (KI)'S -x m o d

Verify EQ.D LOG(m, W, Ka, y', g)

Figure 3: Verifiable encryption of a Gennaro-Halevi-Rabin signature

e = 7~(m) for any m in the message space). To get semantic
security, it is sufficient to square a (since (a 2)n('~) = s2 and
gcd(7{(m), 2) = 1, it is easy to recover a) or, alternatively,
to select a priori the parameter s as a quadratic residue,
consequently a E Qn.

4.3 Cramer-Shoup Signatures

Let 3 and z be two security parameters such that 3 + I <
z. Let n = pc/, where p and q are z-bit safe primes, i.e.,
p = 2p' + 1 and q = 2q' + 1 with both p',q' primes. Al-
ice's public-key is (n, b, x, e'), where b, z are randomly cho-
sen in the subgroup of quadratic residues modulo n, Q,,
and e' is a random (3 + 1)-bit prime. To generate a Cramer-
Shoup signature [15] on a message rn, Afice randomly selects
a (j + l) - b i t prime e ~ e' and u' E Q, . Then, she com-
putes x ' = (u')"b -n(m) and, finally, u = (zbn(=')) 1/e. 9
The resulting signature on rn is (e, u, u'). To verify it, Bob
checks that e is a (j + 1)-bit number different from e' and
computes z' = (u')~'b -n(m) . Then, Bob checks whether

z ---- u% -n(®'). The Cramer-Shoup signature is quite ef-
ficient but, more importantly, it is provably secure (in the
standard model) against adaptive chosen message attack un-
der the strong RSA assumption.

To make a T-verifiable encryption of the signature (e, u,
u'), Alice performs an initiaiization phase, the same as in the
RSA scheme. Thus, Alice gets the certificate CERTr.A =
ST-(g, y = g=, A, (n, b, z, e')) from T, with g of order p'q'.
Then, Alice releases (e, u ') along with the verifiable encryp-
tion of u. The details are shown in Figure 4.

In the matter of semantic security, it should be noted
that u E Q , , hence K1 = uy ~" is a quadratic residue.

'7~() m a hash funct ion 7~ {0, 1} --.-.4- {0, 1} J

4.4 Guillou-Qulsquater Signatures

A trusted third party generates common parameters v, n =
/x/and, for each user, a secret key B and an lD-based public-
key J such that BVJ -: I rood n. Only the trusted third
party knows the order of Z~. The Guillou-Quisquater signs-
ture [20] on a message m is computed as follows: randomly
choose r q Z~ and compute T = r ~ rood n, d = ~(rallT)
and D = rB ~ rood n, where ?-t(') is a suitable hash func-
tion. The resulting signature is the pair (d, D). The trusted
third party, which has generated the system parameters,
may cease to exist after the initialization phase.

To verify the signature, it is sufficient to check whether
d = 7.1(ml[D"Jd), in fact notice that D~'J ~ .~ (rBd)~'J ~ --:
r~(B~J) d ~ r ~ rood n.

To make a verifiable encryption of a Guillou-Quisquater
signature (d, D), we slightly modify the idea proposed in [4]
since the derivative protocol, although quite elegant, can
easily be broken as shown in Remark 2. Basically, the
modulus n is generated as product of two safe primes, i.e.,
n = pc/ with p = 2p' + 1 and q = 2q' + 1, and an ele-
ment g E Q , of order p'q' is selected. The public-key of
T is y = g~ rood n. To generate a T-verifiable encryp-
tion of (d, D), Alice sends the ElGamal encryption of D,
i.e., Ki = Dy ~, K2 = g~, along with V = D ~, d itself and
a signature showing knowledge of two equal discrete loga-
rithms, EQ_D LOG(m; y~", g" ; y~', g) (notice that Alice does
not know the order of g). The signature is verified by check-
ing the correctness of EQ_D LOG(m; K~' /V, K2; y~, g) and
testing whether d = ~(ml lVJa) .

R e m a r k 2. The protocol described in [4] is the same as
above but n is generated such that it is straightforward to
select a prime-order subgroup G = {g) of Z,~. Specifically,
n = (2 p ' q + l) (2 p q + l) for primes p',p, q. Then, g is selected

as g = fl~pF, where fi is a generator of both ~p,q+l and
Z~pq+ 1 . Unfortunately, this implies that the subgroup G =
(g) is of order the publicly known prime q (see [4]), fact

142

Alice Bob

(e, u'), K, = uy', K2 = g', EQ.DLOG(rn,y", g', y', 9), CERTT:A
l [.

Verify CERT. r a
Check that • zs a (j + l)-bit number and • # e '

Compute =~ = (ut)'Ib- n('~)

Compute W = (K1)'a~-Xb - 7t(~) rood n
Verify EQ_DLOG(m, W, K ~ , y ' , g)

Figure 4: Verifiable encryption of a Cramer-Shoup signature

which can be exploited by a passive at tacker in order to get
the encrypted value D. In fact, given K1 = Dg=" rood n,
the attacker may compute K~ yielding D q (because gq = 1).
Since V = D ~ is known, it is enough to note that gcd(v, q) =
1, then there exist two integers a l , a2 such that alv + a2q =
1. Therefore, D = (D ~)~ (D ~) a2. Other at tacks are possible
since the inverse of v rood q always exists (since q is prime).

4.5 Discrete Logarithms

In this section we present methods for making verifiable en-
cryptions of discrete logarithms. These methods allow us to
make verifiable encryptions of digital signatures like DSA,
EIGamal, and Schnorr.

Given a large prime P, we are actually working in prime-
order subgroup of Z~ where finding the discrete logarithm is
supposed to be hard. The problem we are facing, now, is the
following: Afice and Bob agree on a common value a = and
Alice would like to generate a T-verifiable encryption of x,
given or=. We propose two approaches to solve this problem
in the following sections.

4.5.1 Tokens Approach

During the initialization phase, T generates and sends Alice
tokens that can be used to perform one-time verifiable en-
cryptions (a similar approach is also proposed in [2]). More
concretely, Alice sends her certified public-key (p, q, a, c(') to
T who generates tokens of the form a ¢" with 1 < i < k and
sends back the values t l , . . , t~ and the signatures S T (A , al =
a n) , . . . ,S t (A , ak = a t~) i.e., certificates binding the tokens
to Alice's identity. Given y = a= rood p, to generate a
T-verifiable encryption of x, Alice selects 1 < j < k and
encrypts x by computing t = t~ - x rood q. Then, she sends
this encryption and the corresponding token to Bob. See
Figure 5 for details.

Notice that each certificate ST(A, a~ = a tJ) can be used
only once..After receiving the message from Alice, Bob needs
to verify that Alice has actually encrypted the value Dlog a y
by checking whether a~ = aly.

The drawback of this approach is that one can make ver-
ifiable encryptions of discrete logarithms only for a limited
number of times. In the next section we provide a method
that overcomes this problem.

4.5.2 Trap-door Functions Approach

Given a= rood p, where a is the generator of a prime-order
subgroup of Z~, it is hard to compute x. Suppose, now,
that T selects an appropriate group G of order n in which
computing the discrete logarithm is an easy task i.e., given
an element g E G and g= mod n, getting z is trivial. There-
fore, Alice could make a verifiable encryption of x jus t by

sending or= mod p and 9 = mod n and then proving that
Dlog~ a ® = Dlog~g=. Obviously, only T should be able to
compute discrete logarithms w.r.t, base g, i.e., g and a de-
scription of the group G have to be public and constitute a
t rap .door function of some sort. To the best of our knowl-
edge, there are two possible choices for a suitable t rap.door
function: those defined in the Naccache-Stern [23] and the
Okamoto-Uchiyama [24] public-key cryptosystems, respec-
tively.

The Naccache-Stern cryptosystem can shortly be de-
scribed as follows: let n = p¢l be an RSA modulus and B
a small integer. Compute ~r as a square-free odd B-smooth
integer such that it divides ~b(n) and is prime to ¢(n)/a
(suggested size a > 216°). Let g be an element whose multi-
plicative order modulo n is a large multiple of a. A message
m < o- is encrypted by computing grn rood n. Decryption is
performed using the prime factors of o', getting m by chinese
remaindering (see [23] for details). The resulting scheme is
quite efficient (the optimized version costs a couple of RSA
operations with a similar modulus) and i t has already been
implemented on smart-cards. Although a formal proof is
not provided, the security of the scheme seems based on
the higher residuosity problem that is widely believed to be
infeasible.

The Okamoto-Uchiyama cryptosystem is a probabilistic
encryption scheme provably secure against passive adver-
saries assuming the intractability of factoring, = p2q. Let k
be a security parameter. The public-key is (n, 9, h, k) where
n = p2q with p, q two large primes (]p[= [q] = k), g E Z~
such that 9 = gp-Z rood 92 has order p, and h = g" rood n.
To encrypt a message 0 < m < 2 I¢-* , select a random r E Z ,
and compute C = gmhr rood n. To decrypt it is sufficient
to compute Cp = C ~'-* mod p2 and then m = L(Cp)/L(9)
rood p where L(z) = (x - 1)/p is a function defined on ele-
ments in z;~ congruent to I modulo p (see [241 for det~s).
The efficiency of the scheme depends on the size of m and is
almost the same as that of the RSA scheme, assuming small
size of the messages (e.g., 128 bits).

For the sake of simplicity, we focus on the Naccache-
Stern cryptosystem but all the results can easily be adapted
to work with the Okamoto-Uchiyama cryptosystem. The
verifiable encryption of x given a= is performed by com-
puting g= rood n and showing that Dlog~ a= = Dloggg=
via EQ_D LOG(m; a=, g ®; a, g), for an arbi trary message m.
Although we still use the same notat ion (i.e., EQ_DLOG(.))
as in the rest of the paper , proving equality of discrete loga-
r i thms from different groups requires an additional step by
which the verifier generates an element of secret order that
is subsequently used in the protocol. Without this element,
the proof of equality may not work properly (see [12]).

143

Alice
£---- t j - -= modq, S?- (A ,a~ = aiJ)

Bob

Verify ST(A , =~ ---- ~ =J)
Verify whether aj = sty

Figure 5: Verifiable encryption of a discrete logarithm

4.6 Schnorr and Poupard-Stern Signatures

Let a be a generator of the unique cyclic group of order a
prime q in Z~, where p is some large prime number such that
q divides p - 1. Alice ithe signer) selects the private key 1 <
a ~_ q, computes V = a= mad p and publishes IP, q, a, V). To
generate a Schnorr signature on a message m, Alice selects a
random secret integer k, with 1 < k < q - 1, and computes
r = a k mod p, e = ~/(mllr) 10, and s = a e + k mod q. Alice's
signature on m is the pair i s ,e) . Bob verifies the signature
by checking whether e = e', where e' = 7~(m{ia~y-*).

Notice that, when Bob receives Alice's signature is, e), he
exponentiates a with s. Therefore, to make a 7"-verifiable
encryption of (s, e), Alice could send {a s, e} to Bob, prove
that she knows Dlog a a" and, finally, make a verifiable en-
cryption of s. The details are shown in Figure 6, where
(g, n) denotes the public-key of 7" generated according to the
Naccache-Stern cryptosystem (in particular, we set cr > q).

Showing, via EQ..DLOG(.), that the discrete logarithm
of ~I equals that of w2, implicitly proves that the signer
(Alice) knows Dlog= wt and Dlogg w=, respectively. The ex-
ponent s must satisfy some range constraints as described
in section 2.1; this might affect the choice of the random
element k during the signature process.

The technique above also applies to the Poupard-Stern
[26] signature scheme, that is the Schnorr signature mod-
ulo a composite. The Poupard-S tem signature has formally
been proved to be resistant against chosen message a t tack
in the random oracle model [5], under the discrete logarithm
assumption.

4.7 EIGamal and DSA Signatures

Let o~ be a generator of the unique cyclic group of order a
prime q in Z~, where p is some large prime number such
that q divides p - 1. Alice (the signer) selects the private
key 1 ~ a ~ q, computes V = a= mad p and publishes
(p, q, a , !/)- To generate an EIGamal signature on a message
m, Alice selects a random k E [1 , p - 2 l a n d computes r = a k
mad p and s = ar ÷ ic ~[(m) mad q. i t The signature is the
pair (r, s). To verify it, Bob checks tha t 1 < r < p - 1 and
tests whether a s = !p r ~t('r').

To make a T-verifiable encryption of (r, s), Alice releases
the values a ~, r along with the verifiable encryption of s.
Once again, (g, n) denotes the public-key of 7" generated
according to the Naccache-Stern cryptosystem. The details
are shown in Figure 7.

The technique for EIGamal signatures could clearly be
extended to work with DSA signatures, although care must
be taken in specifying the size of the secret parameters as
well as the output length of the hash function.

~°74() Is a hash functmn 7-/ {0, I}" ~ Zq
XIThm m actually a rnodlfied verslon of the ~IGarnal slgnature

scheme since we ere working m prime-order subgroup of Z; whereas
the anginal scheme works d:rectly m ~

5 Comparisons

In this section we analyze the proposed verifiable encryption
protocols in terms of the most expensive operation, i.e., the
modular exponentiation. A modular exponentiation in Z~
requires almost 1.5 Iogin) modular multiplications, however
simultaneous exponentiations can be computed more effi-
ciently by means of an exponent array (see [22] page 618).

=' a~ = and a~' a ; = Namely, exponentiations of the form a 1
a~ s are only 16.7%, and 25% more costly than a single ex-
ponentiation, respectively.

In Table 1 we evaluate our schemes with respect to both
the number of modular exponentiations and the amount (ex-
pressed in bytes) of da t a t ransmit ted. The exponentiations
we considered are those performed by both Alice and Bob
=ncluding the amount needed bg each signature algorzthm.
Finally, we are assuming a 1200-bit composite modulus n, a
768-bit prime modulus p, a 160-bit prime modulus q and a
128-bit hash function 7/(').

The efficiency of our protocols is remarkably be t te r than
that of protocols in related works. For instance, compared
to the scheme in [2], our verifiable encryption of RSA sig-
natures is about ten times faster and the amount of da t a
t ransmit ted is about twenty times smaller when choosing
the same modulus for both schemes. Analogously, our verifi-
able encryption of E1Gamal/DSA signatures is about twenty
times faster and nine times shorter than tha t in [2]. Other
verifiable encryptions, like those of Geunaro-Halevi-Rabin
and Cramer-Shoup signatures, do not appear in existing
works, consequently we can only evaluate them.

Table I: Evaluation of our protocols.

S i g n a t u r e

RSA
Oennaro et al
CramerShoup
GQ
Schnorr
EIGamal
DSA

Verifiable E n c r y p t i o n

exponentiations Size (bytes)

7.5 400
7.5 400
8.7 544
10.5 544
8.3 388
8.5 388
11.6 484

6 Conclusion

This paper presented simple and part icularly efficient verifi-
able encryption protocols for digital signatures. These pro-
tocols may be used as building blocks for designing efficient
fair exchange of digital signatures. We have slightly modified
the model of fair exchange by introducing an initialization
phase for some of the digital signature schemes. However,

144

Alice Bob
(w, = ~" rood p, e), zo~ = g" rood n, EQ_DLOG(m, ~ ' , g ' , a, g)

l,
Verify EQ-D LOG(m; ~ , , ~2, a, g)

Verify 7t(mll~tu - °) = •

Figure 6: Verifiable encrypt ion of a Schnolrr s ignature

Alice Bob
(cox = a* rood p, r),vo~ = g" rood n, EQ.DLOG(m, a', g'; ¢c, g)

I,
Verify E Q . D LOG(m; ~,, zu~, c~, g)

C h e c k l < . r _ < p - 1
Verify whether ~ox'= 9"r "~('~)

Figure 7: Verifiable encrypt ion of an EIGamal s ignature

this phase is done only once and the resulting protocols are
much more efficient than those of prior art. We have taken
two directions for future research. First, we would like to
analyze the security of fair exchange protocols built via our
verifiable encryption schemes, eventually in an extended ver-
sion of this paper. Second, as a long-term goal, we would
like to develop a prototype implementation, preferably in a
smart-card environment.

7 Acknowledgments

We are grateful to Victor Shoup for illuminating discussions
concerning the topic of this paper. We would also like to
express our tliank, to Jan Camenisch, Marc Joye, and the
anonymous referees for their insightful comments.

References

[1] N. Asokan, M. Schunter, and M. Waidner. Optimisticproto-
cols for fair exchange. In Jth A C M Conference on Computer
and Communicat ion Security, pages 8-17, ACM Press,
1997

[2] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair ex-
change of digital signatures. In Advances m Cr~ptology -
E U R O C R Y P T 'g8, volume 1403 of Lecture Notes in Com-
puter Science, pages 591-606, Springer-Verlag, 1998.

[3] N. Asokan, V. Shoup, and M. Waidner. Asynchronous Pro-
tocols for Optimistic Fair Exchange. In I E E E Syrapos~ura
on Security and Privacy, Oakland, California, 1998.

[4] F. Bao, R. H. Dead, and W. Mac. Efficient and Practi-
cal Fair Exchange Protocols with Off-line TTP. In I E E E
Symposium on Security and Privacy, Oakland, California,
1998.

[5] M. Bellare and P. Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In 1st
A C M Conference on Computer and Coraraungcation Secu-
rity, pages 62-73, ACM Press, 1993.

[6] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair
protocol for signing contracts. In I E E E Transactions on
Information Theor~d, IT-36(1), pp. 40-46, 1990

[7] D. Bosch. The decision Diffie-Hellman problem. In Algo-
rithmic Number Theory (A N T S - I I I) , volume 1423 of Lec-
ture Notes tn Computer Science, pages 48-63, Springer-
Verlag, 1998.

[8] J. Camenisch and I. B. Damgnrd. Verifiable EnctTption and
Applications to Group Signatures and Signature Sharing.
BRICS Technical Report, RS-98-32.

[9] J. Camenisch and M. Michels. A group signature scheme
with improved efficiency. In Advances zn Cryptology - ASI-
A C R Y P T '98, volume 1514 of Lecture Notes in Computer
Science, pages 160-174, Springer-Verlag, 1998.

[10] J. Camenisch and M. Micheis. A group signature scheme
based on an RSA-variant. Tech. Report RS-98-27, BRICS,
Aarhus, November 1998. An earlier version appears in [9].

[11] J. Camenisch and M. Miehels. Proving in zero-knowledge
that a number is the product of two safe primes. In Ad-
vances In Cryptology - E U R O C R Y P T '99, Lecture Notes
in Computer Science, Springer-Verlag. To appear, 1999.

[12] J. Camenisch and M. Michels. Separability and Efficiency
for Generic Group Signature Schemes. In Advances m Cr~p-
tology - Crypto '99, to appear, 1999.

[13] A. Chan, Y. Frankel and Y. Tsiounis. Easy come - easy
go divisible cash. In Advances in Cryptology - EURO-
C R Y P T '98, volume 1403 of Lecture Notes in Computer
Sczence, pages 561-575, Springer-Verlag, 1998. Updated
and corrected version available as GTE Technical Report.

[14] D. Chaum and T. Pedersen. Wallet databases with ob-
servers. In Advances in Cryptology - Crypto '9~, pages 89-
105, 1992.

[15] R. Cramer and V. Shoup. Signature Schemes Based on the
Strong RSA Assumption. In 6st A C M Conference on Com-
puter and Communicat ion Security, ACM Press, 1999.

[16] S. Even, O. Goldreich, and A. Lempel. A randomized pro-
tocol for signing contracts. Comm. A C M . vol. 28, no. 6,
pp.637-647,1985.

[17] A. Fiat and A. Shamir. How to prove yourself: practical
solutions to identification and signature problems. In Ad-
vances in Cryptology - C R Y P T O '86, volume 263 of Lee-
ture Notes in Computer Science, pages 186--194, Springer-
Verlag, 1987.

[18] E. Fujisaki and T. Oknmoto. Statistical Zero Knowledge
Protocols to Prove Modular Polynomial Relations. In Ad-
vances m Cr~ptology - C R Y P T O '97, volurne 1294 of Lec-
ture Notes m Computer Sczence, pages 16--30, Springer-
Verlag, 1997.

[19] R. Gennaro, S. Halevi, and T. R,~bin. Secure signatures,
without trees or random oracles. In Advances m Cryptol-
ogy - E U R O C R Y P T '99, volume 1592 of Lecture Notes m
Computer Sczence, pages 123-139, Springer-Verlag, 1999

145

[20] L. C. Guiilou and J. J. Quisquater. A paradoxical identity-
based signature scheme resulting from zero-knowledge. In
Advances ,n Cryptology - C R Y P T O '88, volume 403 of Lec-
ture Notes *n Computer Science, pages 216---231, Springer-
Verlag, 1988.

[21] K.S. McCurley. A key distribution system equivalent to fac-
toring. In Journal oJ Cryptology, 1, pages 95-105, 1988.

[22] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone.
Handbook o/applied cryptography. CRC Press, 1996. ISBN
0-8493-8523-7.

[23] D. Haccache and J. Stern. A Hew Public Key Cryptosys-
tem Based on Higher Residues. In 5th A C M Conference
on Computer and Communtcations Secumty, pages 59--66,
ACM Press, 1998.

[24] T. Okamoto and S. Uchiyama. A New Public-Key Cryp-
tosystem as Secure as Factoring. In Advances in Cryptol-
ogy - E U R O C R Y P T '98, volume 1403 of Lecture Notes in
Computer Scsence, pages 308-318, Springer-Verlag, 1998.

[25] D. Pointcheval and J. Stern. Security proofs for signature
schemes. In Advances in Cryptology - E U R O C R Y P T '96,
volume 1070 of Lecture Notes in Computer Science, pages
387-398, Springer-Verlag, 1996.

[26] G. Poupard and J. Stern. Security anMysis of a practi-
cal "on the fly" authentication and signature generation.
In Advances in Cr~ptology - E U R O C R Y P T "98, volume
1403 of Lecture Notes in Computer Science, pages 422-436,
Springer-Verlag, 1998.

[27] R.L. Rivest, A. Shamir, and L. M. Adlemma. A method for
obtaining digital signatures and public-key cryptosystems.
Communications o/the ACM, 21(2):120---126, 1978.

[28] C.P. Schnorr. Efficient signature generation by smart-cards.
Journal of Cryptology , 4(3):161-174, 1991.

A Security Analysis

We concentrate on the interactive protocol underlying the
verifiable encryption of RSA signatures. The result also ap-
plies to the other RSA-based schemes.

Let M = [H(m)] 2, y = g® and h = y ' . The interactive
protocol between Alice (prover) and Bob (verifier) is run as
fonows:

1. Alice chooses at random r, t and sends Bob:

{ g l = M a y ", K2 = g ' , a = h*, b = g*}.

2. Bob chooses a random challenge c E {0, 1} is° and
sends it to Alice.

3. Alice replies with s = t + cr (mod p'q').

4. Bob computes W = K ~ / M and checks whether:

h ~ = a W ~ and g" = bK~.

Suppose, now, that Alice can successfully answer two dis.
tinct challenges. That is, given two challenges ci, c2 from
Bob, Alice answers sl ,s2. As noted in [14], we then have:

h ~1-'2 = W "1-'~ and g~l- '~ = K~1-,2.

Thus, a value r exists such that:

r = Dlog h W = Dlog, K2 = (sl - s,)/(c~ - c2)(mod p'q').

Consequently, W = h ~, K2 = g~ and Ki = (Mh') ~.
This proves that (Ki, K2) is indeed an encryption of Alice's
signature on the message m.

Notice that we do not have to prove that the proto-
col above is a proof of knowledge, nevertheless it is in-
teresting to analyze this possibility. We must rely on the
strong RSA assumption, in fact the knowledge extractor
does not know the group order (p'q'),and thus cannot com-
pute (sl -- s2)/(ci - c2) (modulo p'q). However, this com-
putat ion can be carried out in Z since it is easy to see that,
under the strong RSA assumption, (ci -c2) divides (sl -s2)
(in Z). Furthermore, since Alice (the prover) knows the
factorization of n (excluding the protocol for the Guillou-
Quisquater signatures), we should slightly modify the pro-
tocol as follows:

• During the initialization phase the trusted third party
T selects a composite fi and 0 G Z~, and sends

C E R T 7 - a = S.r(g, y = g=,A,(e,n),O, fi) to Alice.

• Given K , = MCZy ~, K= = g ' , a = h ' , b = g' and
Ks = O r rood fi, Alice now convinces Bob that:

D l o g y (K ~ / M) = Dlog, K~ = Dlog~ Ks.

Therefore, we can apply the proof techniques in [18, 10].

146

