
The Educational Insights and Opportunities Afforded by the
Nuances of Prim’s and Kruskal’s MST Algorithms

Ali Erkan

Ithaca College

Ithaca, NY, USA

aerkan@ithaca.edu

ABSTRACT
The computation of a minimum spanning tree (MST) is a fundamen-

tal topic in any algorithms course. In this paper, we outline a series

of projects based on a thorough exploration of the performances of

two well-known MST algorithms: Prim’s and Kruskal’s. For a graph

of n nodes and e edges, both run in O (e lgn) time but these results

are based on picking the right data structures. Prim’s relies on a

priority queue that supports priority modification in O (lgn) time

while Kruskal’s relies on a disjoint-set that supports find/union

operations in O (lgn) time. The performance ramifications of using

simpler data structures allow students to thoroughly understand

the operations of these two algorithms, get a deeper comprehension

of asymptotic complexity analysis, negotiate empirical results with

analytical predictions, and illustrate the value of “programming

to the interface”. Our study also includes the performance conse-

quences of the qualities of the graphs on which MSTs are computed:

structure (random vs scale-free), density (sparse vs dense), and edge

cost distribution. Finally, as an additional inquiry to engage stu-

dents in a somewhat unexplored direction, we focus on the average

pairwise-distance of the MSTs produced by Prim’s vs Kruskal’s.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Theory
of computation → Graph algorithms analysis; Data struc-
tures design and analysis; Shortest paths; • Software and its
engineering → Abstract data types;

KEYWORDS
Minimum Spanning Trees, Prim’s algorithm, Kruskal’s algorithm,

Data Structures, Empirical results, Asymptotic complexity

ACM Reference Format:
Ali Erkan. 2018. The Educational Insights and Opportunities Afforded by

the Nuances of Prim’s and Kruskal’s MST Algorithms. In Proceedings of
23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’18). ACM, New York, NY, USA, 6 pages. https:

//doi.org/10.1145/3197091.3197129

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5707-4/18/07. . . $15.00

https://doi.org/10.1145/3197091.3197129

1 INTRODUCTION
This paper is based on the academic value of an extensive eval-

uation of the two most well-known solutions to the minimum

spanning tree (MST) problem in a conventional “Algorithms” or

“Data Structures and Algorithms” course. Our work is based on

engaging students with an empirical performance comparison of

Prim’s and Kruskal’s MST algorithms (referred to simply as “Prim’s”

and “Kruskal’s” from here on) so that students (i) witness a signifi-

cant validation of asymptotic complexity analysis, (ii) understand

aspects of performance that are filtered away when using an an-

alytical lens, (iii) advance their empirical experimentation skills,

and (iv) engage in a modest yet non-trivial guided inquiry on a

characterization of the resulting MSTs (average pairwise distance).

This Prim’s/Kruskal’s comparison takes the form of a culminating

project at the end of the semester but students are continuously

engaged in weekly self-contained scaffolding labs to construct and

test building blocks to be eventually integrated for the study. Our

approach has been refined over a two-year period at two institu-

tions and has helped students acquire a deeper and more holistic

comprehension of algorithmic concepts and performance analysis.

The primary institution is the author’s academic home while the

secondary institution is an R1 university. In both contexts, class size

was capped at 25 and incoming students had thorough knowledge

of linear data structures as well as binary trees.

The importance of empirical analysis in Computer Science edu-

cation has been an ongoing thread during the past 15 years [2, 5, 8].

Our pedagogical philosophy, on the other hand, is rooted in in-
ductive learning as it provides operational specifics for students to

construct their own comprehension and high-level principles [4].

In particular, given the conventional challenges associated with

teaching algorithms, we are trying to make a non-trivial portion of

the course to be learner-centered where students take responsibility

for building their own version of reality. Our attempts to have stu-

dents negotiate different forms of assessment (such as asymptotic

vs empirical) is based on inquiry-based learning since they actively

participate in the formulation of the main questions, the explana-

tion of their own observations, and the hypothesizing of resolutions

to negotiate (seemingly) conflicting results [1]. According to the

categories provided by Staver and Bay [7], we also follow structured
inquiry where students are given a problem as well as the outline

of a potential solution for them to complete the missing pieces.

The use of programming is a substantial intervention in an Al-

gorithms course so we start by providing a justification for it. We

then move to an outline of the project and show the anticipated

results of a Prim’s/Kruskal’s performance comparison as well as the

structural differences to be discovered in the MSTs they construct.

The paper concludes with a few self-reflective remarks.

129

https://doi.org/10.1145/3197091.3197129
https://doi.org/10.1145/3197091.3197129
https://doi.org/10.1145/3197091.3197129
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3197091.3197129&domain=pdf&date_stamp=2018-07-02

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Ali Erkan

2 JUSTIFICATION
For a setN of nodes and a set E of undirected edges over those nodes

that carry positive weights/costs, a MST for a graph G = (N ,E)
is a selection of |N | − 1 edges in the configuration of a tree that

directly/indirectly makes every node reachable from every other

node in the cheapest possible way for the whole graph. Prim’s is

a greedy algorithm that selects these edges by a single “wave” of

consideration starting from a designated node. Kruskal’s is another

greedy algorithm that independently grows many minimum span-

ning “saplings” until they all converge into a single tree. Prim’s

asymptotic complexity isO (|E | lg |N |) since it has to do aO (lg |N |)-
cost lookup for each of the |E | edges. Kruskal’s asymptotic complex-

ity is O (|E | lg |N |) since it has to do a O (lg |N |)-cost disjoint-set
union/find operation on |E | edges. The O (|E | lg |E |)-cost sorting of

the edges required by Kruskal’s does not make an asymptotic com-

plexity difference because |E | ≤ |N |2 and thus lg |E | ≤ lg |N |2 =
2 lg |N | = O (lg |N |). Therefore, our expectations are that if we are
to see an empirical performance difference, it might be with Prim’s

over Kruskal’s in the context of dense graphs [3, 6].

Once the graph data structure is covered and greedy algorithms

are outlined, pseudocode comprehension and complexity analysis

of both algorithms typically take one lecture; proof of correctness (if

also done) requires another. So what would motivate us to “stretch”

this comparison to a semester-long theme? We believe that if the

asymptotic complexity analysis of these two algorithms is the tip of

the learning iceberg, then the educational value of their thorough

evaluation corresponds to the submerged part due to comprehen-

sion opportunities that go beyond MSTs. The formation of this

hypothesis
1
was based on a multi-year period of observation and

self-reflection on our own Algorithms course that resulted in three

tiers of justification for change:

• The primary and most overarching one is based on whether

there should even be a programming component in an algorithms

course. It can be said that while programming is the central tool of

our discipline, the details that unavoidably come with it pollute the

elegance of algorithmic ideas. This is a timeless invariant within

CS education, one in which the author wholeheartedly believes.

However, it hinges on a hidden assumption: what might be a “detail”

to a computer scientist may not yet be a detail to a computer science

student. When compared to the CS curricula designed to serve

simpler computational landscapes of previous decades, we are now

navigating our students through a more technologically-complex

academic and professional world. For example, web development

and mobile development (neither of which is simple enough to be

sufficiently addressed in one or two courses) are now seen as parts

of basic competence. Since the number of credits to major in CS

has remained somewhat constant, students are more likely to have

seen a wider range of topics just once than a more limited range

of topics multiple times by the time they enroll in an algorithms

course. That is, they may not yet have had sufficient repetition of

central ideas to be able to distinguish the fundamental from the

detail. Therefore, instead of clouding elegance, programming (in

1
We use the word “hypothesis” simply because small class size and the inevitable

curricular refinements consequential to other changes in the major make it very

difficult to conduct a long-term investigation expected of robust large-scale learning-

science experiments.

the context of algorithms course) could be helping to develop skills

to recognize “detail” and to reiterate the fundamental.

• The secondary justification is based on the academic value

of empirical analysis. In the context of an algorithms course, time

becomes an abstraction based on counting the number of times the

most frequently encountered atomic operation is executed; runtime

complexity is then expressed as a mathematical way to produce

this number as a function of input size. At a time when a single-

semester discrete math course is potentially the sole mathematical

preparation for many students, the abstract notions ofO (N), Θ(N),
Ω(N) as well as their Θ-exclusive versions of o(N) and ω (N) take
time to digest. Empirical justification of performance based on the

conventional notion of time helps students with this abstraction.

Second, for students who do not take a research-methods course (a

group not trivial in numbers), the basics of empirical analysis is a

necessary area of growth since analytical methods cannot be em-

ployed on all real-world systems. Third, empirical analysis allows

students to get a wider sense of average case behavior, a perspec-

tive that asymptotic complexity affords only in a few select cases

(e.g. binary search, quick-sort). Finally, empirical analysis allows us

to contextualize concepts that students may otherwise remember

only as definitions from a discrete math course: independent vari-

able (factors that influence runtime duration), dependent variable

(time), Cartesian product (all possible independent variable value

combinations as performance impactful subsets), etc.

•The third justification has to dowith choosing theMST problem

(among other options) as the basis of the programming thread to in-

terweave throughout an algorithms course. TheMST problem is nat-

urally associated with a multiplicity of algorithms. Prim’s, being the

asymptotically favored one, can either be implemented with a sim-

ple binary heap (albeit in ω (|E | lg |N |) time for non-sparse graphs)

or with one that supports the more non-trivial ‘decreaseKey()’
operation for a uniformO (|E | lg |N |) performance. The disjoint-set

used by Kruskal’s, on the other hand, can be based on either an ar-

ray (with a costly ‘union()’ operation) or a tree (with an amortized

logarithmic cost for ‘union()’) with performance ramifications.

The graph data structure used by both algorithms can utilize array-

or linked-lists for maintaining adjacency lists. Finally, assessing

average pairwise distance of the resulting MST (a factor that’s not

typically covered in theoretical treatments of the topic) creates a

natural use of Floyd’s algorithm; this gives us a conceptual thread

that starts with the basics of the graph data structure and spans all

the way to dynamic programming. MSTs also have a wealth of ap-

plications to motivate students. These include printed circuit board

design, cancer imaging, large-scale cosmological structure identifi-

cation, feature extraction from remotely-sensed images, weather

data interpretation, clustering, approximation algorithms for NP

problems in addition to the more frequently cited uses such as route

discovery and cycle avoidance in network design
2
.

3 PROJECT DESCRIPTION
As implied earlier, there are two components to the overall struc-

ture of the project. First, there is the series of weekly labs designed

to guide students build components to be (eventually) integrated

to conduct the empirical study; these include the implementation

2
Geometry in Action: http://www.ics.uci.edu/~eppstein/gina/mst.html

130

The Educational Insights and Opportunities Afforded by... ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

Data Structure concepts

Directed graph Undirected graph

Algorithmic concepts

Floyd's algorithm MST

Adjacency listAdjacency matrix

ArrayList LinkedList Array Based
Disjoint Set

2) Disjoint set impact test

Tree Based
Disjoint Set

[PrimE] PQ with
priority modification

3) Comparison of Kruskal, PrimE, and PrimN)

[PrimN] PQ without
priority modification

Graphviz Pivot
tables

Scaffolding

Empirical testing vs
asymptotic complexity

4) MST characterization

1) Adjacency list impact test

KruskalPrim

Figure 1: A big-picture view of the MST project: The underlying data-structures are on the left while the associated algorithms
are on the center and right. Single-line arrows represent topic hierarchies (which imply dependencies) and double-line arrows
to the boxes represent a subset of the performance comparisons tests done throughout the semester (the numbers loosely
indicating their order). The dotted lines associate the two central algorithms (minimumspanning trees and all-to-allminimum
edge costs) with the graph data structures with which they naturally couple. Finally, three scaffolding topics are shown in the
top-right because in addition to being associated with three labs, they are extremely consequential in making this project
beneficial, meaningful, and enjoyable for students.

and testing of (i) a binary heap, (ii) a disjoint-set, (iii) a directed

graph, (iv) an undirected graph, (v) Kruskal’s algorithm, (vi) Prim’s

without priority modification, and (vii) Prim’s with priority modi-

fication
3
. Then there is the empirical study itself which typically

occurs as an culmination exercise towards the end of semester. The

primary deliverable we expect is a technical report that shows stu-

dents’ findings in which they identify their random variables, show

their empirical results, outline how they negotiate these results

with the predictions of asymptotic complexity analysis, and their

characterization of the structure of the resulting MSTs.

It is important to note that labs are not readily declared to be

pieces of the project. In fact, each is intentionally designed and

framed as stand-alone entities to support the algorithmic topics of

the corresponding week. By making sure that the weekly imple-

mentations produced by students ‘implement’ interfaces issued by

the instructor (in the literal programming sense), their eventual

integration is ensured to be simple. This loose coupling between the

building blocks and the final project is an important consideration

because we want all students (even those who do not do well with

a few of the labs) to be able to attempt the final project.

Figure 1 is a high-level view of the components threaded together

throughout semester; due to space constraints, we focus only on a

few of the pertinent components:

• Kruskal’s Evaluation: Kruskal’s operation requires the use

of a disjoint-set to keep track of sets of node-subsets, each con-

taining a “local” MST. There are two common implementations of

3
In a semester arrangement of 14 weeks, these seven labs along with the three that we

use for scaffolding matters leave four labs for other topics to be covered.

disjoint-sets, each with different asymptotic complexity costs for

set-membership tests and subset union operations. Since this is an

under-the-hood matter, the implementation of Kruskal’s doesn’t

change based on the data structure. But the performance ramifica-

tions can be mathematically expressed and empirically detected.

• Prim’s Evaluation: Prim’s operation requires the use of a

priority queue in which “known” (but not “done”) nodes are main-

tained; however, during the course of its traversal, encountering

cheaper edges to known nodes requires the priority of enqueued

elements to be modified. If this feature cannot be supported, then

Prim’s can be implemented in a simpler manner by maintaining

edges (instead of nodes) in the queue. However, this modification

not only increases Prim’s time complexity, but also requires the

algorithm to be implemented differently. In our project, we refer

to the former as PrimN and the latter as PrimE since the letters ’N’

and ’E’ indicate which set of G = (N ,E) is being used to populate

the priority queue. This also means that students end up comparing

three MST algorithms: Kruskal, PrimE, and PrimN.

•Determination of Independent Variables:While graph size

is the most relevant independent variable, out project also considers

edge density (i.e. the average number of edges per node), edge cost

distribution (i.e. the range of values from which edge costs are

drawn), and graph structure (random graphs vs scale-free graphs,

as explained below). This means that when coupled with algorithm

choice, our exploration is over five independent variables.

• Determination of Dependent Variables: While time-to-

completion is the most relevant variable, we also explore the diam-

eter and the average pairwise distance of the MSTs since different

131

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Ali Erkan

A

B

1

C

1

D

12

1

1

(a) Graph

A

B

1

C

1

D

12

1

1

(b) One MST

A

B

1

C

1

D

12

1

1

(c) Another MST

Figure 2: A simple undirected graph and twoMSTs. Since the
diameter of the second MST is less than the diameter of the
first, the second is more compact and (potentially) “better”.

MSTs for a graph may differ in these measures
4
. For example, for

the graph shown in figure 2a, the spanning trees in figures 2b in

2c are both minimal. However, while the MST in 2b has a diameter

of 3 and an average pairwise distance of
1+1+1+2+2+3

6
= 10

6
≊ 1.66,

the one in 2c has a diameter of 2 and an average pairwise distance

of
1+1+1+2+2+2

6
= 9

6
= 1.5. For many applications, the latter one

will be considered “better” due to its compactness.

• Use of Pivot Tables: One of the pitfalls of empirical data col-

lection is the necessity of code instrumentation which runs the risk

of obfuscating students’ work, especially when there is more than

one random variable. What we found to be an effective approach is

to require students save independent-variable/dependent-variable

tuples in a tab delineated text file which can be copied/pasted into

a spreadsheet; this data can be conveniently analyzed with a pivot

table from a variety of angles
5
. For n independent variables (i.e. the

“dials”) and a single dependent variable (i.e. the “measurement”), a

pivot table can freeze any of the

(n
n−2

)
dial combinations and use

the remaining two to define the rows and columns of a table to

display the measurements. The real power of pivot tables comes

from the fact that with just a few trivial steps, the data then can

be sliced/agreegated/viewed in different arrangements so that the

viewer can isolate the most impactful factors observed in the ex-

periment. All of the results we show in section 4 were the results

of pivot tables like the one we see in figure 3.

• Factoring in Graph Structure: Even though it is convenient

to keep graphs as abstract entities in mathematical analysis, it is

interesting to consider how particular structures may (or may not)

influence the performance of the algorithms in empirical testing.

In our project, we consider three particular structures. The first is

constructed by first creating the node set and then by adding the

desired number of edges between randomly chosen node pairs; this

structure is known as a random graph in the literature. The second

is constructed by starting with a small core and by adding nodes

one by one, with each node connecting with a fixed number of

existing nodes. This means that “old” nodes are more likely to have

higher numbers of edges than “young” ones by virtue of having

4
The diameter ofG is the maximum of the minimum path lengths between all

(
|N |
2

)
possible node pairs while average pairwise distance is their average.
5
The pivot table in Google Sheets works very well.

Figure 3: Pivot tables provide convenientways to explore the
interactions between subsets of independent variables and a
single dependent variable of interest.

existed for a longer time. The third and final structure is the same

as the second one with the difference that the likelihood of an

existing node being selected as the destination of a new node edge

is proportional to the existing node’s edge count; this structure is

known as a scale-free graph in the literature. In order to keep our

terminology simple for students, we refer to the second and third

structures as “grown” networks, disambiguation the two with the

phrase “preferential edge selection” when needed.

4 RESULTS
In the preceding sections, we outlined the reasons whywe think this

project is a worthwhile endeavor in an algorithms course. There

is, however, one additional (though somewhat nebulous) factor

that should not be forgotten in any consideration or adoption:

the magnitude of the revelations drawn from these experiments.

Since students will be asked to execute a semester-long plan, it is

important for them to consider that the time and effort they spend

on the project is worth it. We therefore share some of our findings

so that readers can assess how much this can actually happen:

• Figure 4 compares the performance of Kruskal, PrimE, and

PrimN as we scale up the sizes of the graphs; please refer to the

figure caption for the values of remaining variables. Here we see

that for sparse graphs, all three algorithms perform roughly at the

same level. However, as we move to more dense graphs (as in, for

example, when the number of edges per node is equal to the lg
2
of

the number of nodes), the superiority of PrimN becomes apparent

by a few orders of magnitude. In the eyes of students, this is a key

affirmation of the validity of asymptotic complexity analysis.

• Figure 5 is a member of a suite of plots to explore the per-

formance consequences of the structural qualities of the graphs.

In this case, we measure the performance of the three MST algo-

rithms when edges have one, two, three, or four levels of costs, or

(at the other extreme) have mostly unique costs. This variation is

primarily a dial on the number of different MSTs that can be created

for a graph, fewer levels giving us higher numbers of MSTs. We

notice that the performance of Kruskal and PrimE are susceptible to

this variation while PrimN is stable. However, with few cost levels,

Kruskal and PrimE outperform PrimN.

132

The Educational Insights and Opportunities Afforded by... ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

(a) 2 edges per node (b) 4 edges per node (c) log
2
N edges per node

Figure 4: Completion times of Kruskal (circle), PrimE (square), and PrimN (triangle): The x-axis represent the size of the graphs
(number of nodes) and they-axis shows the logarithm (base 2) of the time (milliseconds) it takes to construct anMST. All plots
are based on random graphs and edges have unique cost values. Sub-figures 4a, 4b, and 4c distinguish the results based on the
edge-density of the graph nodes (shown in the sub-captions).

(a) Kruskal (b) PrimE (c) PrimN

Figure 5: Consequences of edge cost distribution on algorithmic performance: The x-axis represent the edge-density of nodes
and the y-axis shows the logarithm (base 2) of the time (milliseconds) it takes to construct an MST. Edge density values of
2, 3, 4, and 5 represent sparse graphs where |E | = O (|N |); edge density values of log

2
(N) and

√
N take us in the “dense graph”

direction where |E | = ω (|N |). All plots are based on grown networks (with preferential attachment) of 32768 nodes. Sub-figures
5a, 5b, and 5c distinguish the results of Kruskal, PrimE, and PrimN. In each subplot, circles represent graphs with no edge cost,
squares represent graphs with only two levels of edge costs, etc, and N represents graphs edges costs are mostly unique.

(a) Kruskal (b) PrimE (c) PrimN

Figure 6: Consequences of graph structure on the compactness of the resulting MSTs: The x-axis represents the edge-density
of nodes and the y-axis represents the ratio of the average pairwise node-distance of the original graph to the same measure
of the corresponding MST. For all plots, the graphs have 256 nodes and edge costs are drawn from three distinct levels. Sub-
figures 5a, 5b, and 5c contrast the results of Kruskal, PrimE, and PrimN. In each subplot, circles represent random graphs,
squares represent grown networks, and triangles represent grown network with preferential attachment.

133

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Ali Erkan

(a) Kruskal (b) PrimE (c) PrimN

Figure 7: Consequences of graph structure on the compactness of the resulting MSTs: The x-axis represents the number of
levels used for edge costs (where the last value of N represents unique costs for most edges) and the y-axis represents the ratio
of the average pairwise node-distance of the graphs to the average pairwise node-distance of the corresponding MSTs (same
as figure 6). For all plots, the graphs have 256 node with edge densities set at lg(|N |). Sub-figures 7a, 7a, and 7a distinguish the
results of Kruskal, PrimE, and PrimN. In each subplot, circles represent random graphs, squares represent grown networks,
and triangles represent grown network with preferential attachment.

• As we illustrated earlier in figure 2, the multiple MSTs of

a graph will typically differ in measures such as diameter and

average pairwise node distance. In many realizations of graphs

in the real world (such as communication networks and social

networks), minimal diameterMSTs are desirable because they imply

faster communication. Therefore, we also tracked the ratio of

average pairwise distance of G

average pairwise distance of G’s MST

This value is contained between zero (exclusive) and one (inclusive)

where high values represent greater levels of compaction
6
. We plot-

ted the ratio for the three algorithms as a function of edge density

in figure 6 and as a function of edge cost distribution in figure 7.

PrimN typically produced high-diameter MSTs. In particular, while

PrimN dropped down to 0.2, Kruskal’s ratios hovered around 0.5,

revealing an interesting difference between these two algorithms

that cannot be observed in their time complexity analysis.

5 CONCLUSIONS
This project was tested twice at the author’s home institution. Be-

cause of small class sizes, it was difficult to establish reliable val-

idation results but students were still polled with a brief survey

(five point Likert scale, 1 representing the most negative response

and 5 representing the most positive response) at the end of both

semesters (17 students in the first offering, 21 in the other). What

encouraged us to further invest in this direction (and to try it in the

summer offering of an algorithms course at an R1 institution, lead-

ing to similar positive results) was based on two observations from

this survey. First, when students were asked about the learning

value of this project, their responses went from 4.2 in one semester

to 4.7 in the following semester while the perceived difficulty went

down from 4.4 to 4.1. Aside from wordsmithing edits in the instruc-

tional material, the primary difference between these semesters

were the use of pivot tables for analysis and interfaces (in the pro-

gramming sense) for the integration of the components. From an

6
We computed these ratios by Floyd’s algorithm which is a dynamic programming

instance that elegantly connects the project to one of the end topics of the course.

instructional point of view, observing students negotiating their

empirical results with asymptotic predictions as well as compre-

hending how the scattered nature of Kruskal’s operation (i.e. the

merging of many local MSTs into a final single one) correlates with

the compactness of the MSTs it produces (as evidenced in figures 6

and 7) proved to be a good return to our investment.

In order to prevent the instructional material (and solutions)

from wandering into the wild, the author is happy to share them

with the educational community upon request.

ACKNOWLEDGMENTS
The author would like to thank Keith Schwarz for making available

his ‘FibonacciHeap’ class that was used in our PrimN to provide

an asymptotically efficient ‘decreaskey()’ method
7
.

REFERENCES
[1] Walter L Bateman. 1990. Open to Question. The Art of Teaching and Learning by

Inquiry. ERIC.
[2] Ali Erkan, John Barr, Tony Clear, Cruz Izu, Cristian Jose Lopez del Alamo, Hanan

Mohammed, and Mahadev Nadimpalli. 2017. Developing a Holistic Understanding

of Systems and Algorithms Through Research Papers. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). ACM, New York, NY, USA, 390–390. https://doi.org/10.1145/3059009.

3081329

[3] Jon Kleinberg and Eva Tardos. 2005. Algorithm Design. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[4] Michael J Prince and Richard M Felder. 2006. Inductive teaching and learning

methods: Definitions, comparisons, and research bases. Journal of engineering
education 95, 2 (2006), 123–138.

[5] David Reed, Craig Miller, and Grant Braught. 2000. Empirical Investigation

Throughout the CS Curriculum. In Proceedings of the Thirty-first SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’00). ACM, New York, NY,

USA, 202–206. https://doi.org/10.1145/330908.331855

[6] Robert Sedgewick and Kevin Wayne. 2011. Algorithms (4th ed.). Addison-Wesley

Professional.

[7] John R Staver and Mary Bay. 1987. Analysis of the project synthesis goal cluster

orientation and inquiry emphasis of elementary science textbooks. Journal of
Research in Science Teaching 24, 7 (1987), 629–643.

[8] J. Ángel Velázquez-Iturbide and Antonio Pérez-Carrasco. 2009. Active Learning of

Greedy Algorithms by Means of Interactive Experimentation. SIGCSE Bull. 41, 3
(July 2009), 119–123. https://doi.org/10.1145/1595496.1562917

7
http://www.keithschwarz.com/interesting/code/?dir=fibonacci-heap

134

https://doi.org/10.1145/3059009.3081329
https://doi.org/10.1145/3059009.3081329
https://doi.org/10.1145/330908.331855
https://doi.org/10.1145/1595496.1562917
http://www.keithschwarz.com/interesting/code/?dir=fibonacci-heap

	Abstract
	1 Introduction
	2 Justification
	3 Project Description
	4 Results
	5 Conclusions
	Acknowledgments
	References

