
Creation and Validation of Low-Stakes Rubrics for K-12
Computer Science

Veronica Cateté
North Carolina State University
Raleigh, North Carolina, USA

vmcatete@ncsu.edu

Nicholas Lytle
North Carolina State University
Raleigh, North Carolina, USA

nalytle@ncsu.edu

Tiffany Barnes
North Carolina State University
Raleigh, North Carolina, USA

tmbarnes@ncsu.edu

ABSTRACT
With increased numbers of K-12 computing courses, we also see
an increase in teachers new to the subject, making it difficult for
them to properly assess student programming assignments. Many
of these teachers require project-specific rubrics to help assess
student learning. Researchers have attempted to create systematic,
validated, and reliable rubrics for these courses with only minor
success. In this research, we make an argument for the validity
of our low-stakes computing rubrics. In doing so, we establish a
validated method for creating a full-suite of project-based rubrics
for K-12 computing courses, helping teachers, researchers, and
practitioners make much-needed course materials. Evaluating these
rubrics, we see grader consistency as well as heatmaps of where
teachers are looking for computational thinking concepts in code.

CCS CONCEPTS
• Social and professional topics→ Student assessment; K-12
education; Computational thinking;

KEYWORDS
Nominal Group Technique; CS Principles; Rubrics; BJC
ACM Reference Format:
Veronica Cateté, Nicholas Lytle, and Tiffany Barnes. 2018. Creation and
Validation of Low-Stakes Rubrics for K-12 Computer Science. In Proceedings
of 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’18). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3197091.3197134

1 INTRODUCTION
New K-12 computer science (CS) courses and modules are being
developed, often based on existing higher education courses or
materials from outreach programs [5]. When transitioning these
courses to formal K-12 classrooms, simple formative assessment
items like rubrics might not be available. This is unfortunate as a
large percentage of the new K-12 computing teachers have limited
computer science backgrounds [5, 7]. Research has shown that
without substantive knowledge on the subject matter, it is difficult
for teachers to give helpful or appropriate feedback [7, 12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5707-4/18/07. . . $15.00
https://doi.org/10.1145/3197091.3197134

In previous research [2, 3, 14], several systematic approaches
to creating rubrics have been developed. However, these are not
cost-effective for the frequent restructuring of CS activities. In this
research we propose using the the Nominal Group Technique (NGT)
[6] to create low-stakes formative assessments for K-12 computing
courses. We hypothesize that this method will lead to improved
practicality in designing rubrics at scale. In this paper, we examine
the methodologies for developing rubrics in novice CS courses. We
present our method for creating assessments, the results of testing
the rubrics with novice computing teachers, and our analysis on the
effectiveness and validity of these rubrics for low-stakes assessment.

2 BACKGROUND
Recently, research on systematic rubric development has increased,
reflecting the need for further instructional support for inexperi-
enced graders [2, 13, 15]. The most common methods for system-
atically generating rubrics has been a mix of surveys of the field
[3, 13] and various group decision making techniques [2, 14, 15]
which require a large amount of effort and administration. We ex-
amine these current methods and then introduce an alternative
methodology (NGT) for timelier group decision making.

2.1 Rubrics in CS
Both Stegeman and our early research attempts at rubric creation
focused on in-depth literature reviews [3, 13]. Stegeman’s effort
examined and cross-referenced code quality handbooks for software
engineering, whereas we investigated literature on auto-graders.
While these initial attempts were successful, the research trend
evolved to focus more on group collaboration [2, 14, 15].

Stegeman et al. revised their rubric scheme through an iterative
design cycle involving instructor feedback and think aloud studies.
The goal was to design a rubric that had category descriptions
which could clarify the differences between levels. Through this,
a student could understand “what good performance on a task
is; how their own performance relates to good performance; and
what to do" to improve their score [14]. Stegeman et al. suggested
construct validity through the literature basis used to initially create
the rubric, as well as through the intense instructor involvement
recurring each iteration cycle.

Our revisit to rubric creation pivoted from the task-oriented
rubric developed using auto-grader literature to learning-oriented
rubrics generated through Delphi surveys [2]. During this process
expert CS teachers reviewed each of the learning objectives pre-
sented in the course framework and selected the best fitting ones to
be a part of the rubric. Consensus was achieved through 3 rounds
of iterative surveys spanning up to 11 weeks. The final rubrics
achieved moderately high reliability among test users.

63

https://doi.org/10.1145/3197091.3197134
https://doi.org/10.1145/3197091.3197134
https://doi.org/10.1145/3197091.3197134
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3197091.3197134&domain=pdf&date_stamp=2018-07-02

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Veronica Cateté, Nicholas Lytle, and Tiffany Barnes

Yuan et al. had a professor create an ‘expert’ rubric that would be
used by a crowd-sourced program of novice graders. Their evalua-
tions showed that without a rubric, students perceived the feedback
from expert graders to be significantly more useful than that of
novices. However, there was no significant difference in perceived
helpfulness between expert feedback and novice rubric-generated
feedback [15]. These results only measured perceived helpfulness
by students and did not focus on rubric validity or reliability.

Each of the above methods relies on the presence and assistance
of one or more experts in the field and a large amount of time is
needed to generate each rubric. These methods limit the required
scalability of rubric creation needed tomeet increased demand for K-
12 computing courses. We believe we can improve on these methods
by using the more time efficient, Nominal Group Technique.

2.2 Nominal Group Technique
The Nominal Group Technique (NGT), another form of consensus
gathering, is a product of 1960s social psychology and is used as a
bridge between researchers and practitioners [6]. It relies on the
belief that consensus by experts can generate a strong, effective,
empirical generalization. NGT utilizes a co-located group of indi-
viduals moderated by an authoritative facilitator in order to seek
group consensus on applications such as problem identification,
question generation, and development of solutions [8]. As rubrics
are being developed post curriculum creation, group consensus is
important in determining learning objectives. In this version of
NGT we added intermediate steps to share and discuss ideas with a
partner before sharing with the full group. After this intermediate
discussion, partners would rank and vote on their objectives before
bringing the problem to the entire group for consensus approval.

3 METHODS
In the following subsections we detail the course chosen for rubric
creation (AP Computer Science Principles), our rubric creation
process, and the methods for evaluating the resulting rubrics.

3.1 Corpus: AP Computer Science Principles
High school enrollments in computer science courses parallel the
explosive demand for college-level computing courses. In 2017 for
example, 44,330 students took the newAdvanced Placement (AP) CS
Principles (CSP) exam, and 60,519 students took the AP Computer
Science A exam, tripled from just 20,120 in 2010. Together, students
taking AP computer science exams expanded over fivefold in seven
years. Such demand requires substantial teacher recruitment and
professional development for both courses. In this case study we
focus on the newly offered AP CSP course. To meet demand, both
course materials and teacher development had to occur rapidly,
and teaching requirement conflicts meant many teachers for AP
CSP werenâĂŹt those already teaching AP CSA. This resulted in
teachers recruited to teach AP CSP coming from a diverse set of
backgrounds with few having prior experience in computing.

As universities run professional development with rapidly up-
dating AP CSP materials, we found a need to quickly create reliable,
low-stakes formative assessments (rubrics). After talking with rele-
vant stakeholders (curricula developers and professional develop-
ment teachers), we decided rubrics should be formated consistently

across lab assignments and link to learning objectives as outlined in
the course framework. We determined that analytical rubrics, giv-
ing finer grained plain-text feedback, would be more formative to
the students than a holistic rubric with a single assessment metric.

3.2 Rubric Creation
In order to maintain a rigorous rubric while improving upon imple-
mentation costs in prior research [2], we implemented a modified
NGT process. One advantage is that localized procedures worked
much more efficiently with all participants meeting in person. Un-
fortunately, gathering a group of K-12 computing teachers during
the school year is difficult, given how few computing teachers there
are per single district. In this section, we detail a new rubric creation
process to fit a more practical development cycle. The steps of the
modified NGT process are as follows:

1. Background Training
2. Introduce and Explain Topic
3. Generate Ideas Individually
4. Share Ideas in Pairs

5. Discuss with Partner
6. Vote and Rank
7. Share with Group
8. Discuss as Group

3.2.1 Training ‘Almost Experts’. Although expert teachers are
ideal candidates for creating rubrics, it is not feasible to get them
together for a long enough period to create each assignment specific
rubric needed for AP CSP. Even with significant compensation,
few active teachers had the time available to participate in our
past studies. Therefore, we chose to follow Yuan’s example and
create ‘almost experts’. Yuan defines experts as those having an
undergraduate degree and work experience in the field (design) and
almost experts as novices using expert materials [15]. Using this
definition, the novice graders in our previous work were almost
experts as the rubrics being tested were created by experts.

We push the concept of using almost experts further by having
them create the initial rubrics. To do this we formed a 4-person
group of senior CS undergraduates enrolled in an independent re-
search course. We argue since these students have well surpassed
the course content of AP CSP they had relative expert content
knowledge, but lacked training in the official course guidelines.
Further, this strategy was economically advantageous as under-
graduate researchers receive course credit rather than financial
compensation for their participation.

To prepare the team, we introduced AP CSP and rubric develop-
ment during two 90 minute training sessions. Once the undergrad-
uate research team demonstrated understanding of the computing
concepts and rubric techniques through verbal questioning and
examples, we instructed them in their task of creating new AP
CSP rubrics for the curriculum’s active lab assignments. The team
was instructed to make both task and learning-oriented rubrics,
however, this paper only focuses on the latter.

3.2.2 Streamlining the Process. In order to systematically create
the new set of learning-oriented rubrics, we implemented amodified
NGT. In addition to training qualified participants instead of using
preexisting experts, we divided the work load among the team, such
that each of the seven course units were examined by at least two
people before being sent to the group discussion.

After pairing undergraduates, we distributed the course units
and major lab assignments (ones that used more than four blocks
of code in the final solution). For each major lab assignment, the

64

Creation and Validation of Low-Stakes Rubrics for K-12 Computer Science ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

pairs were to individually select each of the learning objectives and
EK components they felt best matched the assignment. They were
told to focus particularly on objectives dealing with programming,
algorithms, and abstraction (the most relevant big ideas for labs).

Once each person had a list of learning objectives, they shared
and discussed it with their partner. Any objectives that overlapped
were automatically included, and those that did not overlap were
discussed until the pair could come to an agreement. After each
pair of researchers compiled a list of learning objectives for their
particular lab assignment, the team of four met back up to discuss
any outstanding learning objectives with input from the other pair.

After each lab had learning objectives, the team was taught to
cluster related objectives and set anchor points (benchmarks). For
each category of the rubric, the team was instructed to come up
with a simple description of one or two words and a set of 2-3
objectives. Afterwards, the team created anchor points that would
indicate a completed version of the assignment (4) followed by
textual descriptions for the rubric levels of above expectations (3),
below expectations (2), and needs improvement (1). A score of zero
was reserved for no attempt made. Each pair created corresponding
rubrics for the lab assignments they investigated earlier in the cycle.

3.2.3 Quality Assurance. Once teams completed their lab rubrics,
an undergraduate researcher unified them, resolving differences
in wordings for categories (e.g. ‘clean-code’ vs. ‘cleanliness’) and
anchor values (e.g. ‘some abstract functions’ vs. ‘a few abstract func-
tions’) as well as aligning goals. In order to create rubrics quicker
while maintaining a theory-inspired systematized procedure, we
augmented NGT as described by Delbecq and McMillan [6, 10]
to accommodate a more efficient work flow given the number of
rubrics needed. After applying our process, 32 learning-oriented
rubrics and 34 task-oriented rubrics were created that corresponded
to each of the lab assignments in the seven AP CSP units. All 66
rubrics were created over a span of ten 60-90 minute sessions.

3.3 Rubric Evaluation
To evaluate the rubrics, we wanted to compare educators’ ability
to identify relevant learning objectives directly in student code as
well as evaluate whether or not graders are able to use the rubrics
consistently.

3.3.1 Participants. Our priority was to recruit newly active high
school computing teachers and soon to be AP CSP teachers. We
limited participation in the study to those who had taught less than
2 years of AP CSP and who had not taught other programming
courses (e.g. AP CSA). We recruited from the CSTA mailing-list,
and allowed computing teachers to share this opportunity with
their STEM educator peers. We also invited student participants
majoring in Science, Technology or Math Education. Due to the
length of the study, teacher participants were compensated with
an entry into a raffle for a $500 gift card and student participants
were given a $10 to $15 dollar gift card depending on the number
of other students they referred in the post survey.

3.3.2 Study Procedures. Participants completed a pre-post sur-
vey followed by an intermediate reflection activity on rubric use and
an optional introduction to the Snap! programming environment.

Participants completed a brief online pre-survey collecting demo-
graphic information, teaching background, and education level. The
pre-survey also included a high-level program comparison activity
between three rubric-less sample coding assignments.

Part two had participants reflect on their evaluation strategies
for the previous samples through targeted questions (e.g. “What
metrics did you use to grade the assignments?, "Did you refer to
the learning objectives for the course?" etc.) After this, participants
were provided with the list of Essential Knowledge (EK) items rele-
vant to the prior labs. Participants were given the descriptions for
three lab programming assignments and tasked to pair the appro-
priate EK with each lab. Participants were then shown one of our
sample rubrics and were tasked with re-evaluating the student code,
this time with both categorical rubric grades and by highlighting
the code that directly correlates with each given grade. There was
a link provided to an optional Snap! tutorial, which shows them
how to run and examine student projects and described how loops
and other functions are implemented in Snap!.

After participants gained experience in grading Snap! student
projects, they completed a final post-survey where they graded
three samples for each of three different programming labs. They
highlighted in each program the code that directly related to the
described learning objective for that category of the respective
rubric. Participants were given the original lab description handed
out to students, a link to the live sample running in Snap!, and code
snapshots of the relevant student-created functions. For each lab
description in the post-survey, we provided one sample each of
high, medium, and lower quality student code for participants to
review. Descriptions of the lab assignments are listed in the subsec-
tion below. These labs were chosen due to their level of moderate
difficulty, although Binary includes recursion, the main task for stu-
dents is to abstract a new base variable. The C-Curve task is more
complex and tests the upper bounds of the CS Principles teachers’
understanding of different computational thinking concepts.

3.3.3 Lab Assignment Descriptions. The Beyond Binary lab
extends the original decimal to binary assignment, tasking students
to generalize the pattern for conversion using a ‘convert to base’
block that takes the base as a second input. Figure 1 below is given
to students and demonstrates converting decimal to binary. To use
any base, a student need only add another input parameter and
replace all the 2’s in this code with the new variable.

Figure 1: Snap! code for Decimal to Binary conversion.

From the C-Curve lab description: “We can make very very
complex images by just repeating the same shape multiple times.
You’ll be writing the recursive function to draw the C-Curve.

65

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Veronica Cateté, Nicholas Lytle, and Tiffany Barnes

(a) (b)

Figure 2: Level 1 and 2 of the C-Curve algorithm

In Figure 2, the base case is a single line. The sprite starts facing
right and faces right at the end.”

(a) (b) (c)

Figure 3: Extended recursion levels of the C-Curve

4 RESULTS & ANALYSIS
A total of 19 participants (9 teachers, 10 students) were recruited. 15
participants (8 teachers, 7 students) completed the Binary Conver-
sion activity, and 14 participants (6 teachers, 8 students) completed
the C-Curve lab. Participants were able to stop and continue work-
ing at later times . Participants identified as rushing through the
material (completion time of less than 2 minutes) were removed.
These time filters and some participants failing to complete cause
the differing number of participants for each lab. A breakdown of
participation demographics is available in Table 1.

Table 1: Participant breakdown for the evaluation study. Par-
ticipants in the middle row are part of both data sets.

Under Review Pop Gender Occupation
Binary Converter Only N=5 3 F, 2 M 3 CSP Teachers

2 Math Ed Majors
Binary & C-Curve N=10 5 F, 5 M 4 CSP Teachers

1 Chem Teacher
3 Tech Ed Majors
2 Math Ed Majors

C-Curve Only N=4 3 F, 1 M 1 Business Teacher
3 Math Ed Majors

4.1 Intra-class Correlations
We investigated reliability statistics between raters. Reliability value
ranges between 0 and 1, with values closer to 1 representing stronger
reliability. To determine the variance between 2 or more raters who
measure the same group of subjects, we use inter-rater reliability.
We chose Intra-class correlation coefficient (ICC) to reflect both a
degree of correlation and an agreement between measures. Of the
10 forms of ICC, we chose the consistency definition of ICC(2, k)
meaning a two-way random model with k raters.

We calculated an overall level of reliability using the 10 core
participants across both data samples: binary and C-Curve. ICC
estimates and their 95% confidence intervals were calculated based
on a mean-rating (k = 10), consistency-agreement, 2-way random-
effects model. We calculate our results to be ICC = 0.75 with 95%
confidence interval = 0.61-0.86. Based on the ICC results, we con-
cluded that the inter-rater reliability is “good” to “excellent” using
Cicchetti’s guidelines for reliability interpretations [4].

We next computed reliability for each lab separately. For each
of the lab assignments, we calculated the combined reliability of
teachers, students, and both participant groups together. Highlights
of these results are shown in Table 2 below.

Table 2: Intra-class correlation coefficients (ICC(2,k)) and
confidence intervals for Binary andCCurve lab assignments

Binary
Conversion

C-Curve
Generation

Teachers + Students ICC(2, 15) = .90
CI[.80, .96]

ICC(2, 14) = .76
CI[.57, .90]

Teachers Only ICC(2, 8) = .87
CI[.73, .95]

ICC(2, 6) = .74
CI[.50, .89]

Students Only ICC(2, 7) = .74
CI[.73, .95]

ICC(2, 8) = .39
CI[-.16, .74]

4.2 Heatmap Triangulation
As part of the study, participants were asked to identify sections
of code that influenced their decision for giving each rating (e.g.
highlighting

√
2/2 for evaluating the ‘Math’ rating). In total, par-

ticipants made 1000+ indications (540 made by 15 participants for
Binary Conversion, 468 made by 13 participants for C-Curve). One
participant only completed the grading portion of C-Curve and not
the code identification task.

Figure 4: Heatmaps for Name Category in Binary Sample 3
and C-Curve Sample 1

In Figures 4 and 5, we present representative samples of code
indication by active teachers. The intensity of the color correlates

66

Creation and Validation of Low-Stakes Rubrics for K-12 Computer Science ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

to the frequency of its selection. The first code sample shown rep-
resents the Snap! code for the third Binary Conversion solution
participants were given and the second sample represents the first
C-Curve Generation solution participants were given.

Figure 5: ‘Math’ Heatmaps for Binary Sample 3 and C-Curve
Sample 1

4.3 Process Validation
The most prevalent uses of validity involve complex psychomet-
ric measurements aimed at standardizing high-stakes testing [11].
In order to evaluate the quality of our low-stake rubric system,
we use Baartman’s validated framework, the Wheel of Compe-
tency Assessment (Figure 6) [1], which focuses on criteria relevant
to open-ended project assessment that are meaningful to project
stakeholders. Using the criteria outlined in Baartman 2006, we have
tested all of the evaluation criteria not directly linked to student
assessment.

Center to the framework are the core 5 concepts which must be
completed before other criteria can be accounted for. The format of
our rubrics complete requirements for comparability, transparency,
and fairness. Their basis in the AP CSP curriculum framework give
fitness for purpose. We found reproducibility of decisions through
our intra-class correlation testing as it pertains to AP CSP teachers.
We also found our teacher base as well as our AP CSP professional
development partners accepting of the rubrics for assessment needs.
Furthermore, our participants expressed increased confidence in
being able to provide meaningful feedback to students.

The categories of authenticity and cognitive complexity relate
to the assignment rather than the evaluation metric, so they are
excluded from this study. The final two metrics, educational conse-
quences and costs are external factors to the assessment. However,
using the modified NGT method with almost experts to create
the rubrics significantly reduced production cost and increased
efficiency when compared to previous development methods for
similar rubrics [2, 14].

5 DISCUSSION
This study aimed to test whether we could improve upon methods
for developing and validating introductory computing rubrics. To

Figure 6: Wheel of Competency Assessment

accomplish this, we trained a new team in the AP CSP curriculum
and rubric development, complementing their pre-existing com-
puter science skills. By creating a localized team of almost experts,
we were able to adapt the NGT process to be used for rapid rubric
creation. We evaluated these new rubrics by testing them with new
AP CSP teachers. We discuss the creation and evaluation below.

5.1 Rubric Creation
Ourmain changes to typical rubric creation protocol were the use of
almost experts and modifying NGT to include think-pair-share [9].
NGT relies on qualified participants to make expert judgments and
opinions on a given topic. Unfortunately, not all AP CSP teachers
have a deep background in computing or the time available to meet
for a prolonged period. Most teachers who have participated in AP
CSP professional development took only a few computing courses
in their undergraduate degrees. We argue that 3rd and 4th year
computer science undergraduate students have sufficient computer
science expertise to understand simple AP CSP student programs,
and that a focused workshop that introduces them to the AP CSP
framework is sufficient preparation for rubric development.

We modified the NGT by inserting a shorter refinement step
between a pair of participants before introducing ideas to the full
group. By submitting full drafts of rubrics rather than individual
learning objectives to the group, participants were able to discuss
assessment criteria as a whole. This made it so that each lab assign-
ment had a cohesive and comprehensive list of learning objectives
that were agreed upon by the team. Additionally, the discussion
time spent on an individual rubric was more focused, streamlin-
ing the total time spent on development. Overall both of these
modifications led to an increase in scalability of rubric creation.

5.2 Rubric Evaluation
5.2.1 ICC. We first investigated inter-rater reliability. Across

both projects we achieved an acceptable ICC value of .74. This is

67

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Veronica Cateté, Nicholas Lytle, and Tiffany Barnes

promising as we have mixed levels of coding samples and AP CSP
teaching experience (0-2 years). The mixed experience becomes no-
ticeable when broken down by project. For the Binary Conversion
lab, each group scored an ICC >0.7, demonstrating that graders are
able to score consistently using the rubrics on simple assignments.
The C-Curve lab is noticeably harder and experience plays a role
in evaluation ability. The ICC for the combined group and teachers
is >.70. However, STEM Education students scored an ICC of .38.

Contrary to the high score density in the teacher only data, the
student score distribution is polarized. This polarization can be
defined by student major; Technology education students gave
consistently lower scores compared to Math education students.
We believe that as Math education majors tend to take more math
classes and have seen recursive functions or fractals before, they
were more comfortable grading C-Curve samples. This trend was
later identified in the C-Curve teacher data, where the sole Chem-
istry teacher performed lower than the math oriented teachers.

5.2.2 Heatmap Triangulation. Through the heatmaps, we see
how teacher’s understanding of rubric categories changed. Teachers
tended to include more code elements as being relevant to the rubric
category in the C-Curve assignments than Binary (e.g. comparing
the selections for “Name" in Figure 4 Binary’s heatmap focuses on
the procedure definition while in C-Curve, more teachers selected
elements of the code that involve the naming of custom functions).

Similarly, in comparing “Math", both heatmaps have high values
in traditionally mathematic concepts (e.g. variables manipulation
or numerical functions). However, teachers also identified logical
control structures (if-else) as “Math" for C-Curve. Furthermore,
the presence of proportionally higher selected regions in C-Curve
assignments also suggests that teachers agreed more frequently
on relevant elements during this later assignment. Although some
teachers identified the logical constructs as being part of the math
category, which includes mathematical and logical reasoning, the
tendency was to select the more explicit math functions.

The overall trend in the heatmap data is that teachers were able
to correctly identify the minimum qualifications for each rubric
category on correctly functioning student code. Not pictured, are
sample heatmaps for low-performing student code. On these sam-
ples, teachers selection criteria were more diverse as they were
trying to find alternative elements to give partial credit.

5.2.3 Process Validation. Although Messick’s psychometric ori-
ented Construct Validity is more widespread, it is primarily used
for high-stakes testing and not appropriate for simple and rapidly
changing lab assignments needing formative feedback. Instead us-
ing WoCA we were able to evaluate criteria important for the use
and adoption of our rubrics into new AP CSP classrooms. We found
that feedback from teacher use of the rubrics satisfied two rele-
vant subjective aspects of the framework. We also found that our
systematic creation of the rubrics and the subsequent reliability
testing produced results to satisfy six other framework criteria.
The remaining four criteria were not applicable to our scenario,
although we believe the nature of the programming assignments
lend themselves to being authentic assignments utilizing higher
cognitive skills.

6 CONCLUSIONS
This research suggests that a co-located team of trained CS under-
graduates can create learning-oriented rubrics for use by new AP
CSP teachers. Our evaluation study shows teachers were able to
achieve moderate levels of rater consistency and are on track for
identifying computational thinking concepts in code. We found
that more support will be needed for those without a strong math
background as advanced algorithms use higher levels of reasoning
and understanding. We also found that as computing researchers,
we have a misunderstanding of what is included in technology
education training, and that we need to work more closely with
our college of education to specifically prepare new computing
teachers.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under grant numbers 1252376 and 1542922.

REFERENCES
[1] Liesbeth KJ Baartman, Theo J Bastiaens, Paul A Kirschner, and Cees PM Van der

Vleuten. 2006. The wheel of competency assessment: Presenting quality criteria
for competency assessment programs. Studies in Ed. Eval. 32, 2 (2006), 153–170.

[2] Veronica Cateté and Tiffany Barnes. 2017. Application of the Delphi Method
in Computer Science Principles Rubric Creation. In Proc. of the 2017 ACM Conf.
on Innov. and Tech. in Comp. Sci. Ed. (ITiCSE ’17). ACM, New York, NY, USA,
164–169.

[3] Veronica Cateté, Erin Snider, and Tiffany Barnes. 2016. Developing a Rubric for
a Creative CS Principles Lab. In Proc. of the 2016 ACM Conf. on Innov. and Tech.
in Comp. Sci. Ed. (ITiCSE ’16). ACM, New York, NY, USA, 290–295.

[4] Domenic V Cicchetti. 1994. Guidelines, criteria, and rules of thumb for evaluating
normed and standardized assessment instruments in psychology. Psychological
assessment 6, 4 (1994), 284.

[5] Steve Cooper, Susan H. Rodger, and et al. 2017. K-12 Teachers Experiences with
Computing: A Case Study. In Proc. of the 2017 ACM Conf. on Innov. and Tech. in
Comp. Sci. Ed. (ITiCSE ’17). ACM, New York, NY, USA, 360–360.

[6] A.L. Delbecq, A.H. Van de Ven, and D.H. Gustafson. 1986. Group techniques for
program planning: a guide to nominal group and Delphi processes. Green Briar
Press, Middleton, WI.

[7] Barbara J. Ericson, Mark Guzdial, and Tom McKlin. 2014. Preparing Secondary
Computer Science Teachers Through an Iterative Development Process. In Proc.
of the 9th Workshop in Primary and Secondary Comp. Ed. (WiPSCE ’14). ACM,
New York, NY, USA, 116–119.

[8] David H Gustafson, Ramesh K Shukla, Andre Delbecq, and G William Walster.
1973. A comparative study of differences in subjective likelihood estimates
made by individuals, interacting groups, Delphi groups, and nominal groups.
Organizational Behavior and Human Performance 9, 2 (1973), 280–291.

[9] Aditi Kothiyal, Rwitajit Majumdar, Sahana Murthy, and Sridhar Iyer. 2013. Effect
of Think-pair-share in a Large CS1 Class: 83% Sustained Engagement. In Proc. of
the 9th Annual Internat. ACM Conf. on Internat. Comp. Ed. Res. (ICER ’13). ACM,
New York, NY, USA, 137–144.

[10] Sara S. McMillan, Michelle King, and Mary P. Tully. 2016. How to use the nominal
group and Delphi techniques. IJ of Clinical Pharmacy 38, 3 (01 Jun 2016), 655–662.

[11] Sammuel Messick. 1996. Techinical Issues in Large-Scale Performance Assessment.
ERIC, Reports-descriptive Validity of Performance Assessments.

[12] Lijun Ni and Mark Guzdial. 2001. Prepare and Support Computer Science (CS)
Teachers: Understanding CS Teachers’ Professional Identity. In American Educa-
tional Research Association (AERA) Annual Meeting.

[13] Martijn Stegeman, Erik Barendsen, and S. Smetsers. 2014. Towards an Empirically
Validated Model for Assessment of Code Quality. In Proc. of the 14th Koli Calling
Int. Conf. on Comp. Ed. Res. (Koli Calling ’14). ACM, New York, NY, USA, 99–108.

[14] Martijn Stegeman, Erik Barendsen, and S. Smetsers. 2016. Designing a Rubric
for Feedback on Code Quality in Programming Courses. In Proc. of the 16th Koli
Calling Int. Conf. on Comp. Ed. Res. (Koli Calling ’16). ACM, New York, NY, USA,
160–164.

[15] Alvin Yuan and et al. 2016. Almost an Expert: The Effects of Rubrics and Expertise
on Perceived Value of Crowdsourced Design Critiques. In Proc. of the 19th ACM
Conf. on Comp.-Supported Coop. Work & Soc. Comp. (CSCW ’16). ACM, New York,
NY, USA, 1005–1017.

68

	Abstract
	1 Introduction
	2 Background
	2.1 Rubrics in CS
	2.2 Nominal Group Technique

	3 Methods
	3.1 Corpus: AP Computer Science Principles
	3.2 Rubric Creation
	3.3 Rubric Evaluation

	4 Results & Analysis
	4.1 Intra-class Correlations
	4.2 Heatmap Triangulation
	4.3 Process Validation

	5 Discussion
	5.1 Rubric Creation
	5.2 Rubric Evaluation

	6 Conclusions
	Acknowledgments
	References

