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Fig. 1. Unlike current face reenactment approaches that only modify the expression of a target actor in a video, our novel deep video portrait approach enables
full control over the target by transferring the rigid head pose, facial expression and eye motion with a high level of photorealism.

We present a novel approach that enables photo-realistic re-animation of

portrait videos using only an input video. In contrast to existing approaches

that are restricted to manipulations of facial expressions only, we are the irst

to transfer the full 3D head position, head rotation, face expression, eye gaze,

and eye blinking from a source actor to a portrait video of a target actor. The

core of our approach is a generative neural network with a novel space-time

architecture. The network takes as input synthetic renderings of a parametric

face model, based on which it predicts photo-realistic video frames for a

given target actor. The realism in this rendering-to-video transfer is achieved

by careful adversarial training, and as a result, we can create modiied target

videos that mimic the behavior of the synthetically-created input. In order

to enable source-to-target video re-animation, we render a synthetic target

video with the reconstructed head animation parameters from a source

video, and feed it into the trained network ś thus taking full control of the
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target. With the ability to freely recombine source and target parameters,

we are able to demonstrate a large variety of video rewrite applications

without explicitly modeling hair, body or background. For instance, we can

reenact the full head using interactive user-controlled editing, and realize

high-idelity visual dubbing. To demonstrate the high quality of our output,

we conduct an extensive series of experiments and evaluations, where for

instance a user study shows that our video edits are hard to detect.

CCS Concepts: · Computing methodologies → Computer graphics;

Neural networks; Appearance and texture representations; Animation; Ren-

dering;

Additional Key Words and Phrases: Facial Reenactment, Video Portraits,

Dubbing, Deep Learning, Conditional GAN, Rendering-to-Video Translation

ACM Reference Format:

Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies,

Matthias Nießner, Patrick Pérez, Christian Richardt, Michael Zollhöfer,

and Christian Theobalt. 2018. Deep Video Portraits. ACM Trans. Graph. 37, 4,

Article 163 (August 2018), 14 pages. https://doi.org/10.1145/3197517.3201283

1 INTRODUCTION

Synthesizing and editing video portraits, i.e., videos framed to show

a person’s head and upper body, is an important problem in com-

puter graphics, with applications in video editing and movie post-

production, visual efects, visual dubbing, virtual reality, and telep-

resence, among others. In this paper, we address the problem of

synthesizing a photo-realistic video portrait of a target actor that

mimics the actions of a source actor, where source and target can be

diferent subjects. More speciically, our approach enables a source

actor to take full control of the rigid head pose, face expressions and
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eye motion of the target actor; even face identity can be modiied to

some extent. All of these dimensions can be manipulated together or

independently. Full target frames, including the entire head and hair,

but also a realistic upper body and scene background complying

with the modiied head, are automatically synthesized.

Recently, many methods have been proposed for face-interior

reenactment [Liu et al. 2001; Olszewski et al. 2017; Suwajanakorn

et al. 2017; Thies et al. 2015, 2016; Vlasic et al. 2005]. Here, only

the face expression can be modiied realistically, but not the full

3D head pose, including a consistent upper body and a consistently

changing background. Many of these methods it a parametric 3D

face model to RGB(-D) video [Thies et al. 2015, 2016; Vlasic et al.

2005], and re-render the modiied model as a blended overlay over

the target video for reenactment, even in real time [Thies et al.

2015, 2016]. Synthesizing a complete portrait video under full 3D

head control is much more challenging. Averbuch-Elor et al. [2017]

enable mild head pose changes driven by a source actor based on

image warping. They generate reactive dynamic proile pictures

from a static target portrait photo, but not fully reenacted videos.

Also, large changes in head pose cause artifacts (see Section 7.3),

the target gaze cannot be controlled, and the identity of the target

person is not fully preserved (mouth appearance is copied from the

source actor).

Performance-driven 3D head animation methods [Cao et al. 2015,

2014a, 2016; Hu et al. 2017; Ichim et al. 2015; Li et al. 2015; Olszewski

et al. 2016; Weise et al. 2011] are related to our work, but have

orthogonal methodology and application goals. They typically drive

the full head pose of stylized 3D CG avatars based on visual source

actor input, e.g., for games or stylized VR environments. Recently,

Cao et al. [2016] proposed image-based 3D avatars with dynamic

textures based on a real-time face tracker. However, their goal is

full 3D animated head control and rendering, often intentionally in

a stylized rather than a photo-realistic fashion.

We take a diferent approach that directly generates entire photo-

realistic video portraits in front of general static backgrounds under

full control of a target’s head pose, facial expression, and eye mo-

tion. We formulate video portrait synthesis and reenactment as

a rendering-to-video translation task. Input to our algorithm are

synthetic renderings of only the coarse and fully-controllable 3D

face interior model of a target actor and separately rendered eye

gaze images, which can be robustly and eiciently obtained via

a state-of-the-art model-based reconstruction technique. The in-

put is automatically translated into full-frame photo-realistic video

output showing the entire upper body and background. Since we

only track the face, we cannot actively control the motion of the

torso or hair, or control the background, but our rendering-to-video

translation network is able to implicitly synthesize a plausible body

and background (including some shadows and relections) for a

given head pose. This translation problem is tackled using a novel

space-time encoderśdecoder deep neural network, which is trained

in an adversarial manner.

At the core of our approach is a conditional generative adversarial

network (cGAN) [Isola et al. 2017], which is speciically tailored

to video portrait synthesis. For temporal stability, we use a novel

space-time network architecture that takes as input short sequences

of conditioning input frames of head and eye gaze in a sliding

window manner to synthesize each target video frame. Our target

and scene-speciic networks only require a few minutes of portrait

video footage of a person for training. To the best of our knowledge,

our approach is the irst to synthesize full photo-realistic video

portraits of a target person’s upper body, including realistic clothing

and hair, and consistent scene background, under full 3D control of

the target’s head. To summarize, we make the following technical

contributions:

• A rendering-to-video translation network that transforms

coarse face model renderings into full photo-realistic portrait

video output.

• A novel space-time encoding as conditional input for tempo-

rally coherent video synthesis that represents face geometry,

relectance, and motion as well as eye gaze and eye blinks.

• A comprehensive evaluation on several applications to demon-

strate the lexibility and efectiveness of our approach.

We demonstrate the potential and high quality of our method in

many intriguing applications, ranging from face reenactment and

visual dubbing for foreign language movies to user-guided interac-

tive editing of portrait videos for movie postproduction. A compre-

hensive comparison to state-of-the-art methods and a user study

conirm the high idelity of our results.

2 RELATED WORK

We discuss related optimization and learning-based methods that

aim at reconstructing, animating and re-writing faces in images

and videos, and review relevant image-to-image translation work.

For a comprehensive overview of current methods we refer to a

recent state-of-the-art report on monocular 3D face reconstruction,

tracking and applications [Zollhöfer et al. 2018].

Monocular Face Reconstruction. Face reconstruction methods aim

to reconstruct 3D face models of shape and appearance from visual

data. Optimization-based methods it a 3D template model, mainly

the inner face region, to single images [Blanz et al. 2004; Blanz

and Vetter 1999], unstructured image collections [Kemelmacher-

Shlizerman 2013; Kemelmacher-Shlizerman et al. 2011; Roth et al.

2017] or video [Cao et al. 2014b; Fyfe et al. 2014; Garrido et al. 2016;

Ichim et al. 2015; Shi et al. 2014; Suwajanakorn et al. 2014; Thies et al.

2016; Wu et al. 2016]. Recently, Booth et al. [2018] proposed a large-

scale parametric face model constructed from almost ten thousand

3D scans. Learning-based approaches leverage a large corpus of

images or image patches to learn a regressor for predicting either

3D face shape and appearance [Richardson et al. 2016; Tewari et al.

2017; Tran et al. 2017], ine-scale skin details [Cao et al. 2015], or

both [Richardson et al. 2017; Sela et al. 2017]. Deep neural networks

have been shown to be quite robust for inferring the coarse 3D

facial shape and appearance of the inner face region, even when

trained on synthetic data [Richardson et al. 2016]. Tewari et al.

[2017] showed that encoderśdecoder architectures can be trained

fully unsupervised on in-the-wild images by integrating physical

image formation into the network. Richardson et al. [2017] trained

an end-to-end regressor to recover facial geometry at a coarse and

ine-scale level. Sela et al. [2017] use an encoderśdecoder network

to infer a detailed depth image and a dense correspondence map,

which serve as a basis for non-rigidly deforming a template mesh.
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Fig. 2. Deep video portraits enable a source actor to fully control a target video portrait. First, a low-dimensional parametric representation (let) of both
videos is obtained using monocular face reconstruction. The head pose, expression and eye gaze can now be transferred in parameter space (middle). We do not
focus on the modification of the identity and scene illumination (hatched background), since we are interested in reenactment. Finally, we render conditioning
input images that are converted to a photo-realistic video portrait of the target actor (right). Obama video courtesy of the White House (public domain).

Still, none of these methods creates a fully generative model for the

entire head, hair, mouth interior, and eye gaze, like we do.

Video-based Facial Reenactment. Facial reenactment methods re-

write the face content of a target actor in a video or image by trans-

ferring facial expressions from a source actor. Facial expressions

are commonly transferred via dense motion ields [Averbuch-Elor

et al. 2017; Liu et al. 2001; Suwajanakorn et al. 2015], parameters

[Thies et al. 2016, 2018; Vlasic et al. 2005], or by warping candidate

frames that are selected based on the facial motion [Dale et al. 2011],

appearance metrics [Kemelmacher-Shlizerman et al. 2010] or both

[Garrido et al. 2014; Li et al. 2014]. The methods described above

irst reconstruct and track the source and target faces, which are

represented as a set of sparse 2D landmarks or dense 3D models.

Most approaches only modify the inner region of the face and thus

are mainly intended for altering facial expressions, but they do not

take full control of a video portrait in terms of rigid head pose, facial

expression, and eye gaze. Recently, Wood et al. [2018] proposed an

approach for eye gaze redirection based on a itted parametric eye

model. Their approach only provides control over the eye region.

One notable exception to pure facial reenactment is Averbuch-

Elor et al.’s approach [2017], which enables the reenactment of a

portrait image and allows for slight changes in head pose via image

warping [Fried et al. 2016]. Since this approach is based on a single

target image, it copies the mouth interior from the source to the

target, thus preserving the target’s identity only partially. We take

advantage of learning from a target video to allow for larger changes

in head pose, facial reenactment, and joint control of the eye gaze.

Visual Dubbing. Visual dubbing is a particular instance of face

reenactment that aims to alter the mouth motion of the target actor

to match a new audio track, commonly spoken in a foreign language

by a dubbing actor. Here, we can ind speech-driven [Bregler et al.

1997; Chang and Ezzat 2005; Ezzat et al. 2002; Liu and Ostermann

2011; Suwajanakorn et al. 2017] or performance-driven [Garrido

et al. 2015; Thies et al. 2016] techniques. Speech-driven dubbing tech-

niques learn a person-speciic phoneme-to-viseme mapping from a

training sequence of the actor. These methods produce accurate lip

sync with visually imperceptible artifacts, as recently demonstrated

by Suwajanakorn et al. [2017]. However, they cannot directly con-

trol the target’s facial expressions. Performance-driven techniques

overcome this limitation by transferring semantically-meaningful

motion parameters and re-rendering the target model with photo-

realistic relectance [Thies et al. 2016], and ine-scale details [Garrido

et al. 2015, 2016]. These approaches generalize better, but do not

edit the head pose and still struggle to synthesize photo-realistic

mouth deformations. In contrast, our approach learns to synthesize

photo-realistic facial motion and actions from coarse renderings,

thus enabling the synthesis of expressions and joint modiication of

the head pose, with consistent body and background.

Image-to-image Translation. Approaches using conditional GANs

[Mirza and Osindero 2014], such as Isola et al.’s łpix2pixž [2017],

have shown impressive results on image-to-image translation tasks

which convert between images of two diferent domains, such as

maps and satellite photos. These combine encoderśdecoder architec-

tures [Hinton and Salakhutdinov 2006], often with skip-connections

[Ronneberger et al. 2015], with adversarial loss functions [Goodfel-

low et al. 2014; Radford et al. 2016]. Chen and Koltun [2017] were

the irst to demonstrate high-resolution results with 2megapixel

resolution, using cascaded reinement networks without adversarial

training. The latest trends show that it is even possible to train high-

resolution GANs [Karras et al. 2018] and conditional GANs [Wang

et al. 2018] at similar resolutions. However, the main challenge is

the requirement for paired training data, as corresponding image

pairs are often not available. This problem is tackled by CycleGAN

[Zhu et al. 2017], DualGAN [Yi et al. 2017], and UNIT [Liu et al.

2017] ś multiple concurrent unsupervised image-to-image trans-

lation techniques that only require two sets of unpaired training

samples. These techniques have captured the imagination of many

people by translating between photographs and paintings, horses

and zebras, face photos and depth as well as correspondence maps

[Sela et al. 2017], and translation from face photos to cartoon draw-

ings [Taigman et al. 2017]. Ganin et al. [2016] learn photo-realistic

gaze manipulation in images. Olszewski et al. [2017] synthesize a

realistic inner face texture, but cannot generate a fully controllable

ACM Trans. Graph., Vol. 37, No. 4, Article 163. Publication date: August 2018.
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output video, including person-speciic hair. Lassner et al. [2017]

propose a generative model to synthesize people in clothing, and

Ma et al. [2017] generate new images of persons in arbitrary poses

using image-to-image translation. In contrast, our approach enables

the synthesis of temporally-coherent video portraits that follow the

animation of a source actor in terms of head pose, facial expression

and eye gaze.

3 OVERVIEW

Our deep video portraits approach provides full control of the head

of a target actor by transferring the rigid head pose, facial expres-

sion, and eye motion of a source actor, while preserving the target’s

identity and appearance. Full target video frames are synthesized,

including consistent upper body posture, hair and background. First,

we track the source and target actor using a state-of-the-art monoc-

ular face reconstruction approach that uses a parametric face and

illumination model (see Section 4). The resulting sequence of low-

dimensional parameter vectors represents the actor’s identity, head

pose, expression, eye gaze, and the scene lighting for every video

frame (Figure 2, left). This allows us to transfer the head pose, ex-

pression, and/or eye gaze parameters from the source to the target,

as desired. In the next step (Figure 2, middle), we generate new

synthetic renderings of the target actor based on the modiied pa-

rameters (see Section 5). In addition to a normal color rendering, we

also render correspondence maps and eye gaze images. These ren-

derings serve as conditioning input to our novel rendering-to-video

translation network (see Section 6), which is trained to convert the

synthetic input into photo-realistic output (see Figure 2, right). For

temporally coherent results, our network works on space-time vol-

umes of conditioning inputs. To process a complete video, we input

the conditioning space-time volumes in a sliding window fashion,

and assemble the inal video from the output frames. We evaluate

our approach (see Section 7) and show its potential on several video

rewrite applications, such as full-head reenactment, gaze redirection,

video dubbing, and interactive parameter-based video control.

4 MONOCULAR FACE RECONSTRUCTION

We employ a state-of-the-art dense face reconstruction approach

that its a parametric model of face and illumination to each video

frame. It obtains a meaningful parametric face representation for

the source Vs
= {Is

f
| f = 1, . . . ,Ns } and target Vt

= {It
f
| f =

1, . . . ,Nt } video sequence, where Ns and Nt denote the total num-

ber of source and target frames, respectively. Let P•
= {P•

f
| f =

1, . . . ,N•} be the corresponding parameter sequence that fully de-

scribes the source or target facial performance. The set of recon-

structed parameters encode the rigid head pose (rotation R• ∈SO(3)

and translation t• ∈R3), facial identity coeicients α • ∈RNα (ge-

ometry, Nα = 80) and β• ∈RNβ (relectance, Nβ = 80), expression

coeicients δ• ∈RNδ (Nδ =64), gaze direction for both eyes e• ∈R4,

and spherical harmonics illumination coeicientsγ• ∈ R27. Overall,

our monocular face tracker reconstructs Np =261 parameters per

video frame. In the following, we provide more details on the face

tracking algorithm as well as the parametric face representation.

Parametric Face Representation. We represent the space of facial

identity based on a parametric head model [Blanz and Vetter 1999],

and the space of facial expressions via an aine model. Mathemati-

cally, we model geometry variation through an aine model v∈R3N

that stacks per-vertex deformations of the underlying template mesh

with N vertices, as follows:

v(α ,δ) = ageo +

Nα
∑

k=1

αkb
geo

k
+

Nδ
∑

k=1

δkb
exp
k

. (1)

Difuse skin relectance is modeled similarly by a second aine

model r∈R3N that stacks the difuse per-vertex albedo:

r(β) = aref +

Nβ
∑

k=1

βkb
ref
k

. (2)

The vectors ageo ∈ R3N and aref ∈ R
3N store the average facial

geometry and corresponding skin relectance, respectively. The

geometry basis {b
geo

k
}
Nα

k=1
has been computed by applying principal

component analysis (PCA) to 200 high-quality face scans [Blanz

and Vetter 1999]. The relectance basis {bref
k

}
Nβ

k=1
has been obtained

in the same manner. For dimensionality reduction, the expression

basis {b
exp
k

}
Nδ

k=1
has been computed using PCA, starting from the

blendshapes of Alexander et al. [2010] and Cao et al. [2014b]. Their

blendshapes have been transferred to the topology of Blanz and

Vetter [1999] using deformation transfer [Sumner and Popović 2004].

Image Formation Model. To render synthetic head images, we

assume a full perspective camera that maps model-space 3D points

v via camera space v̂∈R3 to 2D points p=Π(v̂) ∈R2 on the image

plane. The perspective mapping Π contains the multiplication with

the camera intrinsics and the perspective division. We assume a

ixed and identical camera for all scenes, i.e., world and camera space

are the same, and the face model accounts for all the scene motion.

Based on a distant illumination assumption, we use the spherical

harmonics (SH) basis functions Yb : R3 → R to approximate the

incoming radiance B from the environment:

B(ri ,ni ,γ ) = ri ·

B2
∑

b=1

γbYb (ni ). (3)

Here, B is the number of spherical harmonics bands,γb ∈R
3 are the

SH coeicients, and ri and ni are the relectance and unit normal

vector of the i-th vertex, respectively. For difuse materials, an av-

erage approximation error below 1 percent is achieved with only

B = 3 bands, independent of the illumination [Ramamoorthi and

Hanrahan 2001], since the incident radiance is in general a smooth

function. This results in B2=9 parameters per color channel.

Dense Face Reconstruction. We employ a dense data-parallel face

reconstruction approach to eiciently compute the parameters P•

for both source and target videos. Face reconstruction is based on an

analysis-by-synthesis approach that maximizes photo-consistency

between a synthetic rendering of the model and the input. The

reconstruction energy combines terms for dense photo-consistency,

landmark alignment and statistical regularization:

E(X) = wphotoEphoto(X) +wlandEland(X) +wregEreg(X), (4)
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withX= {R•, t•,α •, β•,δ•,γ•}. This enables the robust reconstruc-

tion of identity (geometry and skin relectance), facial expression,

and scene illumination. We use 66 automatically detected facial

landmarks of the True Vision Solution tracker1, which is a commer-

cial implementation of Saragih et al. [2011], to deine the sparse

alignment term Eland. Similar to Thies et al. [2016], we use a robust

ℓ1-norm for dense photometric alignment Ephoto. The regularizer

Ereg enforces statistically plausible parameter values based on the

assumption of normally distributed data. The eye gaze estimate e•

is directly obtained from the landmark tracker. The identity is only

estimated in the irst frame and is kept constant afterwards. All

other parameters are estimated every frame. For more details on

the energy formulation, we refer to Garrido et al. [2016] and Thies

et al. [2016]. We use a data-parallel implementation of iteratively

re-weighted least squares (IRLS), similar to Thies et al. [2016], to

ind the optimal set of parameters. One diference to their work is

that we compute and explicitly store the Jacobian J and the residual

vector F to global memory based on a data-parallel strategy that

launches one thread per matrix/vector element. Afterwards, a data-

parallel matrixśmatrix/matrixśvector multiplication computes the

right- and left-hand side of the normal equations that have to be

solved in each IRLS step. The resulting small linear system (97×97

in tracking mode, 6 DoF rigid pose, 64 expression parameters and 27

SH coeicients) is solved on the CPU using Cholesky factorization

in each IRLS step. The reconstruction of a single frame takes 670ms

(all parameters) and 250ms (without identity, tracking mode). This

allows the eicient generation of the training corpus that is required

by our space-time rendering-to-video translation network (see Sec-

tion 6). Contrary to Garrido et al. [2016] and Thies et al. [2016], our

model features dimensions to model eyelid closure, so eyelid motion

is captured well.

5 SYNTHETIC CONDITIONING INPUT

Using the method from Section 4, we reconstruct the face in each

frame of the source and unmodiied target video. Next, we obtain the

modiied parameter vector for every frame of the target sequence,

e.g., for full-head reenactment, we modify the rigid head pose, ex-

pression and eye gaze of the target actor. All parameters are copied

in a relative manner from the source to the target, i.e., with respect

to a neutral reference frame. Then we render synthetic conditioning

images of the target actor’s face model under the modiied parame-

ters using hardware rasterization. For higher temporal coherence,

our rendering-to-video translation network takes a space-time vol-

ume of conditioning images {Cf −o |o=0, . . . , 10} as input, with f

being the index of the current frame. We use a temporal window of

size Nw =11, with the current frame being at its end. This provides

the network a history of the earlier motions.

For each frame Cf −o of the window, we generate three diferent

conditioning inputs: a color rendering, a correspondence image, and

an eye gaze image (see Figure 3). The color rendering shows the

modiied target actor model under the estimated target illumination,

while keeping the target identity (geometry and skin relectance)

ixed. This image provides a good starting point for the following

rendering-to-video translation, since in the face region only the

1http://truevisionsolutions.net

Diffuse Rendering Correspondence Eye and Gaze Map

Fig. 3. The synthetic input used for conditioning our rendering-to-video
translation network: (1) colored face rendering under target illumination,
(2) correspondence image, and (3) the eye gaze image.

delta to a real image has to be learned. In addition to this color input,

we also provide a correspondence image encoding the index of the

parametric face model’s vertex that projects into each pixel. To this

end, we texture the head model with a constant unique gradient

texturemap, and render it. Finally, we also provide an eye gaze image

that solely contains the white region of both eyes and the locations

of the pupils as blue circles. This image provides information about

the eye gaze direction and blinking to the network.

We stack all Nw conditioning inputs of a time window in a 3D

tensor X of sizeW ×H × 9Nw (3 images, with 3 channels each), to

obtain the input to our rendering-to-video translation network. To

process the complete video, we feed the conditioning space-time

volumes in a sliding window fashion. The inal generated photo-

realistic video output is assembled directly from the output frames.

6 RENDERING-TO-VIDEO TRANSLATION

The generated conditioning space-time video tensors are the input to

our rendering-to-video translation network. The network learns to

convert the synthetic input into full frames of a photo-realistic target

video, in which the target actor now mimics the head motion, facial

expression and eye gaze of the synthetic input. The network learns to

synthesize the entire actor in the foreground, i.e., the face for which

conditioning input exists, but also all other parts of the actor, such as

hair and body, so that they comply with the target head pose. It also

synthesizes the appropriately modiied and illed-in background,

including even some consistent lighting efects between foreground

and background. The network is trained for a speciic target actor

and a speciic static, but otherwise general scene background. Our

rendering-to-video translation network follows an encoderśdecoder

architecture and is trained in an adversarial manner based on a

discriminator that is jointly trained. In the following, we explain

the network architectures, the used loss functions and the training

procedure in detail.

Network Architecture. We show the architecture of our rendering-

to-video translation network in Figure 4. Our conditional generative

adversarial network consists of a space-time transformation network

T and a discriminator D. The transformation network T takes the

W × H × 9Nw space-time tensor X as input and outputs a photo-

real image T(X) of the target actor. The temporal input enables the

network to take the history of motions into account by inspecting

previous conditioning images. The temporal axis of the input tensor

is aligned along the network channels, i.e., the convolutions in the

irst layer have 9Nw channels. Note, we store all image data in

normalized [−1,+1]-space, i.e, black is mapped to [−1,−1,−1]⊤ and

white is mapped to [+1,+1,+1]⊤.
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Fig. 4. Architecture of our rendering-to-video translation network for an
input resolution of 256×256: The encoder has 8 downsampling modules
with (64, 128, 256, 512, 512, 512, 512, 512) output channels. The decoder
has 8 upsampling modules with (512, 512, 512, 512, 256, 128, 64, 3) output
channels. The upsampling modules use the following dropout probabilities
(0.5, 0.5, 0.5, 0, 0, 0, 0, 0). The first downsampling and the last upsampling
module do not employ batch normalization (BN). The final non-linearity
(TanH) brings the output to the employed normalized [−1, +1]-space.

Our network consists of two main parts, an encoder for com-

puting a low-dimensional latent representation, and a decoder for

synthesizing the output image. We employ skip connections [Ron-

neberger et al. 2015] to enable the network to transfer ine-scale

structure. To generate video frames with suicient resolution, our

network also employs a cascaded reinement strategy [Chen and

Koltun 2017]. In each downsampling step, we use a convolution

(4 × 4, stride 2) followed by batch normalization and a leaky ReLU

non-linearity. The upsampling module is speciically designed to

produce high-quality output, and has the following structure: irst,

the resolution is increased by a factor of two based on deconvolu-

tion (4 × 4, upsampling factor of 2), batch normalization, dropout

and ReLU. Afterwards, two reinement steps based on convolution

(3 × 3, stride 1, stays on the same resolution) and ReLU are applied.

The inal hyperbolic tangent non-linearity (TanH) brings the output

tensor to the normalized [−1,+1]-space used for storing the image

data. For more details, please refer to Figure 4.

The input to our discriminator D is the conditioning input tensor

X (sizeW ×H × 9Nw ), and either the predicted output image T(X)

or the ground-truth image, both of sizeW × H × 3. The employed

discriminator is inspired by the PatchGAN classiier, proposed by

Isola et al. [2017]. We extended it to take volumes of conditioning

images as input.

Objective Function. We train in an adversarial manner to ind the

best rendering-to-video translation network:

T∗ = argmin
T

max
D

EcGAN(T,D) + λEℓ1 (T). (5)

This objective function comprises an adversarial loss EcGAN(T,D)

and an ℓ1-norm reproduction loss Eℓ1 (T). The constant weight of

λ=100 balances the contribution of these two terms. The adversarial

loss has the following form:

EGAN(T,D) = EX,Y
[

logD(X,Y)
]

+ EX

[

log
(

1 − D(X,T(X))
) ]

. (6)

We do not inject a noise vector while training our network to pro-

duce deterministic outputs. During adversarial training, the discrim-

inator D tries to get better at classifying given images as real or

synthetic, while the transformation network T tries to improve in

fooling the discriminator. The ℓ1-norm loss penalizes the distance

between the synthesized image T(X) and the ground-truth image Y,

which encourages the sharpness of the synthesized output:

Eℓ1 (T) = EX,Y
[

∥Y − T(X)∥1
]

. (7)

Training. We construct the training corpus T= {(Xi ,Yi )}i based

on the tracked video frames of the target video sequence. Typically,

two thousand video frames, i.e., about one minute of video footage,

are suicient to train our network (see Section 7). Our training

corpus consists of Nt −(Nw −1) rendered conditioning space-time

volumes Xi and the corresponding ground-truth image Yi (using a

window size of Nw =11). We train our networks using the Tensor-

Flow [Abadi et al. 2015] deep learning framework. The gradients

for back-propagation are obtained using Adam [Kingma and Ba

2015]. We train for 31,000 iterations with a batch size of 16 (approx.

250 epochs for a training corpus of 2000 frames) using a base learn-

ing rate of 0.0002 and irst momentum of 0.5; all other parameters

have their default value. We train our networks from scratch, and

initialize the weights based on a Normal distribution N(0, 0.2).

7 RESULTS

Our approach enables full-frame target video portrait synthesis un-

der full 3D head pose control. We measured the runtime for training

and testing on an Intel Xeon E5-2637 with 3.5 GHz (16GB RAM) and

an NVIDIA GeForce GTX Titan Xp (12GB RAM). Training our net-

work takes 10 hours for a target video resolution of 256×256 pixels,

and 42 hours for 512×512 pixels. Tracking the source actor takes

250ms per frame (without identity), and the rendering-to-video

conversion (inference) takes 65ms per frame for 256×256 pixels, or

196ms for 512×512 pixels.

In the following, we evaluate the design choices of our deep video

portrait algorithm, compare to current state-of-the-art reenactment

approaches, and show the results of a large-scale web-based user

study. We further demonstrate the potential of our approach on sev-

eral video rewrite applications, such as reenactment under full head

and facial expression control, facial expression reenactment only,

video dubbing, and live video portrait editing under user control.

In total, we applied our approach to 14 diferent target sequences

of 13 diferent subjects and used 5 diferent source sequences; see

Appendix A for details. A comparison to a simple nearest-neighbor

retrieval approach can be found in Figure 6 and in the supplemental

video. Our approach requires only a few minutes of target video

footage for training.

7.1 Applications

Our approach enables us to take full control of the rigid head pose,

facial expression, and eye motion of a target actor in a video por-

trait, thus opening up a wide range of video rewrite applications.

All parameter dimensions can be estimated and transfered from a

source video sequence or edited manually through an interactive

user interface.
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Fig. 5. ualitative results of full-head reenactment: our approach enables full-frame target video portrait synthesis under full 3D head pose control. The
output video portraits are photo-realistic and hard to distinguish from real videos. Note that even the shadow in the background of the second row moves
consistently with the modified foreground head motion. In the sequence at the top, we only transfer the translation in the camera plane, while we transfer the
full 3D translation for the sequence at the botom. For full sequences, please refer to our video. Obama video courtesy of the White House (public domain).

Input OursNearest Neighbor

Fig. 6. Comparison to a nearest-neighbor approach in parameter space (pose
and expression). Our results have higher quality and are temporally more
coherent (see supplemental video). For the nearest-neighbor approach, it is
dificult to find the right trade-of between pose and expression. This leads
to many results with one of the two dimensions not being well-matched.
The results are also temporally unstable, since the nearest neighbor abruptly
changes, especially for small training sets.

Reenactment under full head control. Our approach is the irst that

can photo-realistically transfer the full 3D head pose (spatial position

and rotation), facial expression, as well as eye gaze and eye blinking

of a captured source actor to a target actor video. Figure 5 shows

some examples of full-head reenactment between diferent source

and target actors. Here, we use the full target video for training

and the source video as the driving sequence. As can be seen, the

output of our approach achieves a high level of realism and faithfully

mimics the driving sequence, while still retaining the mannerisms

of the original target actor. Note that the shadow in the background

moves consistently with the position of the actor in the scene, as

shown in Figure 5 (second row). We also demonstrate the high

quality of our results and evaluate our approach quantitatively in a

self-reenactment scenario, see Figure 7. For the quantitative analysis,

we use two thirds of the target video for training and one third for

testing. We capture the face in the training and driving video with

our model-based tracker, and then render the conditioning images,

which serve as input to our network for synthesizing the output. For

further details, please refer to Section 7.2. Note that the synthesized

results are nearly indistinguishable from the ground truth.

Facial Reenactment and Video Dubbing. Besides full-head reen-

actment, our approach also enables facial reenactment. In this ex-

periment, we replace the expression coeicients of the target actor

with those of the source actor before synthesizing the conditioning

input to our rendering-to-video translation network. Here, the head

pose and position, and eye gaze remain unchanged. Figure 8 shows

facial reenactment results. Observe that the face expression in the

synthesized target video nicely matches the expression of the source

actor in the driving sequence. Please refer to the supplemental video

for the complete video sequences.

Our approach can also be applied to visual dubbing. In many

countries, foreign-language movies are dubbed, i.e., the original

voice of an actor is replaced with that of a dubbing actor speaking

in another language. Dubbing often causes visual discomfort due

to the discrepancy between the actor’s mouth motion and the new

audio track. Even professional dubbing studios achieve only approx-

imate audio alignment at best. Visual dubbing aims at altering the

mouth motion of the target actor to match the new foreign-language

audio track spoken by the dubber. Figure 9 shows results where

we modify the facial motion of actors speaking originally in Ger-

man to adhere to an English translation spoken by a professional

dubbing actor, who was ilmed in a dubbing studio [Garrido et al.

2015]. More precisely, we transfer the captured facial expressions

ACM Trans. Graph., Vol. 37, No. 4, Article 163. Publication date: August 2018.
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Fig. 7. uantitative evaluation of the photometric re-rendering error. We evaluate our approach quantitatively in a self-reenactment seting, where the
ground-truth video portrait is known. We train our rendering-to-video translation network on two thirds of the video sequence, and test on the remaining third.
The error maps show per-pixel Euclidean distance in RGB (color channels in [0, 255]); the mean photometric error of the test set is shown in the top-right. The
error is consistently low in regions with conditioning input, with higher errors in regions without conditioning, such as the upper body. Obama video courtesy
of the White House (public domain). Putin video courtesy of the Kremlin (CC BY). May video courtesy of the UK government (Open Government Licence).

Fig. 8. Facial reenactment results of our approach. We transfer the expressions from the source to the target actor, while retaining the head pose (rotation and
translation) as well as the eye gaze of the target actor. For the full sequences, please refer to the supplemental video. Obama video courtesy of the White House
(public domain). Putin video courtesy of the Kremlin (CC BY). Reagan video courtesy of the National Archives and Records Administration (public domain).

Fig. 9. Dubbing comparison on two sequences of Garrido et al. [2015]. For
visual dubbing, we transfer the facial expressions of the dubbing actor
(‘input’) to the target actor. We compare our results to Garrido et al.’s. Our
approach obtains higher quality results in terms of the synthesized mouth
shape and mouth interior. Note that our approach also enables full-head
reenactment in addition to expression transfer. For the full comparison, we
refer to the supplemental video.

of the dubbing actor to the target actor, while leaving the original

target gaze and eye blinks intact, i.e., we use the original eye gaze

images of the tracked target sequence as conditioning. As can be

seen, our approach achieves dubbing results of high quality. In fact,

we produce images with more realistic mouth interior and more

emotional content in the mouth region. Please see the supplemental

video for full video results.

Interactive Editing of Video Portraits. We built an interactive editor

that enables users to reanimate video portraits with live feedback by

modifying the parameters of the coarse face model rendered into the

conditioning images (see our live demo in the supplemental video).

Figure 10 shows a few static snapshots that were taken while the

users were playing with our editor. Our approach enables changes

of all parameter dimensions, either independently or all together,

as shown in Figure 10. More speciically, we show independent

changes of the expression, head rotation, head translation, and eye

gaze (including eye blinks). Please note the realistic and consistent

generation of the torso, head and background. Even shadows or

relections appear very consistently in the background. In addition,

we show user edits that modify all parameters simultaneously. Our

interactive editor runs at approximately 9 fps. While not the focus of

this paper, our approach also enables modiications of the geometric

facial identity, see Figure 11. These combined modiications show as

a proof of concept that our network generalizes beyond the training

corpus.

7.2 uantitative Evaluation

We performed a quantitative evaluation of the re-rendering quality.

First, we evaluate our approach in a self-reenactment setting, where

the ground-truth video portrait is known. We train our rendering-to-

video translation network on the irst two thirds of a video sequence

and test it on the remaining last third of the video, see Figure 7. The

photometric error maps show the per-pixel Euclidean distance in

RGB color space, with each channel being in [0, 255]. We performed

this test for three diferent videos and the mean photometric er-

rors are 2.88 (Vladimir Putin), 4.76 (Theresa May), and 4.46 (Barack

Obama). Our approach obtains consistently low error in regions
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Rotation Translation Combined

Reference Expression Gaze

Rotation Translation Combined
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Fig. 10. Interactive editing. Our approach provides full parametric control over video portraits (by controlling head model parameters in conditioning images).
This enables modifications of the rigid head pose (rotation and translation), facial expression and eye motion. All of these dimensions can be manipulated
together or independently. We also show these modifications live in the supplemental video. Obama video courtesy of the White House (public domain).

Reference Identity Change

Fig. 11. Identity modification. While not the main focus of our approach,
it also enables modification of the facial shape via the geometry shape
parameters. This shows that our network picks up the correspondence
between the model and the video portrait. Note that the produced outputs
are also consistent in regions that are not constrained by the conditioning
input, such as the hair and background.
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Fig. 12. Comparison to the image reenactment approach of Averbuch-Elor
et al. [2017] in the full-head reenactment scenario. Since their method is
based on a single target image, they copy the mouth interior from the
source to the target, thus not preserving the target’s identity. Our learning-
based approach enables larger modifications of the rigid head pose without
apparent artifacts, while their warping-based approach distorts the head
and background. In addition, ours enables joint control of the eye gaze
and eye blinks. The diferences are most evident in the supplemental video.
Obama video courtesy of the White House (public domain).

Fig. 13. Comparison to Suwajanakorn et al. [2017]. Their approach produces
accurate lip sync with visually imperceptible artifacts, but provides no direct
control over facial expressions. Thus, the expressions in the output do not
always perfectly match the input (box, mouth), especially for expression
changes without audio cue. Our visual dubbing approach accurately trans-
fers the expressions from the source to the target. In addition, our approach
provides more control over the target video by also transferring the eye gaze
and eye blinks (box, eyes), and the rigid head pose (arrows). Since the source
sequence shows more head-pose variation than the target sequence, we
scaled the transferred rotation and translation by 0.5 in this experiment. For
the full video sequence, we refer to the supplemental video. Obama video
courtesy of the White House (public domain).

with conditioning input (face) and higher errors are found in regions

that are unexplained by the conditioning input. Please note that

while the synthesized video portraits slightly difer from the ground

truth outside the face region, the synthesized hair and upper body

are still plausible, consistent with the face region, and free of visual

artifacts. For a complete analysis of these sequences, we refer to the

supplemental video.

We evaluate our space-time conditioning strategy in Figure 16.

Without space-time conditioning, the photometric error is signii-

cantly higher. The average errors over the complete sequence are

4.9 without vs. 4.5 with temporal conditioning (Barack Obama) and

5.3 without vs. 4.8 with temporal conditioning (Theresa May). In
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Fig. 14. Comparison to the state-of-the-art facial reenactment approach
of Thies et al. [2016]. Our approach achieves expression transfer of similar
quality, while also enabling full-head reenactment, i.e., it also transfers the
rigid head pose, gaze direction, and eye blinks. For the video result, we
refer to the supplemental video. Obama video courtesy of the White House
(public domain).

addition to a lower photometric error, space-time conditioning also

leads to temporally signiicantly more stable video outputs. This

can be seen best in the supplemental video.

We also evaluate the importance of the training set size. In this

experiment, we train our rendering-to-video translation network

with 500, 1000, 2000 and 4000 frames of the target sequence, see

Figure 15. As can be expected, larger training sets produce better

results, and the best results are obtained with the full training set.

We also evaluate diferent image resolutions by training our

rendering-to-video translation network for resolutions of 256×256,

512×512 and 1024×1024 pixels. We evaluate the quality in the self-

reenactment setting, as shown in Figure 17. Generative networks

of higher resolution are harder to train and require signiicantly

longer training times: 10 hours for 256×256, 42 hours for 512×512,

and 110 hours for 1024×1024 (on a Titan Xp). Therefore, we use a

resolution of 256×256 pixels for most results.

7.3 Comparisons to the State of the Art

We compare our deep video portrait approach to current state-of-

the-art video and image reenactment techniques.

Comparison to Thies et al. [2016]. We compare our approach to

the state-of-the-art Face2Face facial reenactment method of Thies

et al. [2016]. In comparison to Face2Face, our approach achieves

expression transfer of similar quality. What distinguishes our ap-

proach is the capability for full-head reenactment, i.e., the ability to

also transfer the rigid head pose, gaze direction, and eye blinks in

addition to the facial expressions, as shown in Figure 14. As can be

seen, in our result, the head pose and eye motion nicely matches the

source sequence, while the output generated by Face2Face follows

the head and eye motion of the original target sequence. Please see

the supplemental video for the video result.

Comparison to Suwajanakorn et al. [2017]. We also compare to

the audio-based dubbing approach of Suwajanakorn et al. [2017],

see Figure 13. Their AudioToObama approach produces accurate lip

sync with visually imperceptible artifacts, but provides no direct

control over facial expressions. Thus, the expressions in the output

do not always perfectly match the input (box, mouth), especially

for expression changes without an audio cue. Our visual dubbing

approach accurately transfers the expressions from the source to

the target. In addition, our approach provides more control over

the target video by also transferring the eye gaze and eye blinks

(box, eyes) and the general rigid head pose (arrows). While their

approach is trained on a huge amount of training data (17 hours),

our approach only uses a small training dataset (1.3minutes). The

diferences are best visible in the supplemental video.

Comparison to Averbuch-Elor et al. [2017]. We compare our ap-

proach in the full-head reenactment scenario to the image reenact-

ment approach of Averbuch-Elor et al. [2017], see Figure 12. Their

approach does not preserve the identity of the target actor, since

they copy the teeth and mouth interior from the source to the target

sequence. Our learning-based approach enables larger modiications

of the head pose without apparent artifacts, while their warping-

based approach signiicantly distorts the head and background. In

addition, we enable the joint modiication of the gaze direction and

eye blinks; see supplemental video.

7.4 User Study

We conducted two extensive web-based user studies to quantita-

tively evaluate the realism of our results. We prepared short 5-

second video clips that we extracted from both real and synthesized

videos (see Figure 18), to evaluate three applications of our approach:

self-reenactment, same-person-reenactment and visual dubbing. We

opted for self-reenactment, same-person-reenactment (two speeches

of Barack Obama) and visual dubbing to guarantee that the motion

types in the evaluated real and synthesized video pairs are match-

ing. This eliminates the motion type as a confounding factor from

the statistical analysis, e.g., having unrealistic motions for a public

speech in the synthesized videos would negatively bias the out-

come of the study. Our evaluation is focused on the visual quality

of the synthesized results. Most video clips have a resolution of

256×256 pixels, but some are 512×512 pixels. In our user study, we

presented one video clip at a time, and asked participants to re-

spond to the statement łThis video clip looks real to mež on a 5-point

Likert scale (1śstrongly disagree, 2śdisagree, 3śdon’t know, 4śagree,

5śstrongly agree). Video clips are shown in a random order, and

each video clip is shown exactly once to assess participants’ irst

impression. We recruited 135 and 69 anonymous participants for

our two studies, largely from North America and Europe.
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Fig. 15. uantitative evaluation of the training set size. We train our rendering-to-video translation network with training corpora of diferent sizes. The error
maps show the per-pixel distance in RGB color space with each channel being in [0, 255]; the mean photometric error is shown in the top-right. Smaller
training sets have larger photometric errors, especially for regions outside of the face. For the full comparison, we refer to the supplemental video. Obama

video courtesy of the White House (public domain). May video courtesy of the UK government (Open Government Licence).

Fig. 16. uantitative evaluation of the influence of the proposed space-time
conditioning input. The error maps show the per-pixel distance in RGB color
space with each channel being in [0, 255]; the mean photometric error is
shown in the top-right. Without space-time conditioning, the photometric
error is higher. Temporal conditioning adds significant temporal stability.
This is best seen in the supplemental video. Obama video courtesy of the
White House (public domain).May video courtesy of the UK government
(Open Government Licence).

Fig. 17. uantitative comparison of diferent resolutions. We train three
rendering-to-video translation networks for resolutions of 256×256, 512×512
and 1024×1024 pixels. The error maps show the per-pixel distance in RGB
color space with each channel being in [0, 255]; the mean photometric error
is shown in the top-right. For the full comparison, see our video. May video
courtesy of the UK government (Open Government Licence).

Fig. 18. We performed a user study to evaluate the quality of our results and
see if users can distinguish between real (top) and synthesized video clips
(botom). The video clips include self-reenactment, same-person-reenact-
ment, and video dubbing. Putin video courtesy of the Kremlin (CC BY).
Obama video courtesy of the White House (public domain). Elizabeth II

video courtesy of the Governor General of Canada (public domain).

The results in Table 1 show that only 80% of participants rated real

256×256 videos as real, i.e. (strongly) agreeing to the video looking

real; it seems that in anticipation of synthetic video clips, partici-

pants became overly critical. At the same time, 50% of participants

consider our 256×256 results to be real, which increases slightly to

52% for 512×512. Our best result is the self-reenactment of Vladimir

Putin at 256×256 resolution, which 65% of participants consider

to be real, compared to 78% for the real video. We also evaluated

partial and full reenactment by transferring a speech by Barack

Obama to another video clip of himself. Table 2 indicates that we

achieve better realism ratings with full reenactment comprising fa-

cial expressions and pose (50%) compared to transferring only facial

expressions (38%). This might be because full-head reenactment

keeps expressions and head motion synchronized. Suwajanakorn

et al.’s speech-driven reenactment approach [2017] achieves a re-

alism rating of 64% compared to the real source and target video

clips, which achieve 70ś86%. Our full-head reenactment results are

considered to be at least as real as Suwajanakorn et al.’s by 60%

of participants. We inally compared our dubbing results to VDub

[Garrido et al. 2015] in Table 3. Overall, 57% of participants gave

our results a higher realism rating (and 32% gave the same rating).

Our results are again considered to be real by 51% of participants,

compared to only 21% for VDub.
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Table 1. User study results for self-reenacted videos (n=135). Columns 1ś5
show the percentage of ratings given about the statement łThis video clip
looks real to mež, from 1 (strongly disagree) to 5 (strongly agree). 4+5=‘real’.

Real videos Our results

res 1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

Obama 256 2 8 10 62 19 81% 13 33 11 37 6 43%

Putin 256 2 11 10 58 20 78% 3 17 15 54 11 65%

Eliabeth II 256 2 6 12 59 21 80% 6 32 20 33 9 42%

Obama 512 0 7 3 49 42 91% 9 35 13 36 8 44%

Putin 512 4 13 10 47 25 72% 2 20 15 44 19 63%

Eliabeth II 512 1 7 4 55 34 89% 7 33 10 38 13 51%

Mean 256 2 8 10 60 20 80% 7 27 15 41 9 50%

Mean 512 2 9 6 50 34 84% 6 29 12 39 13 52%

Table 2. User study results for expression and full head transfer between two
videos of Barack Obama compared to the input videos and Suwajanakorn
et al.’s approach (n=69, mean of 4 clips).

Ratings

1 2 3 4 5 ‘real’

Source video (real) 0 8 6 43 42 86%

Target video (real) 1 14 14 47 23 70%

Suwajanakorn et al. [2017] 2 20 14 47 17 64%

Expression transfer (ours) 9 37 17 29 9 38%

Full head transfer (ours) 3 31 16 37 13 50%

Table 3. User study results for dubbing comparison to VDub (n=135).

Garrido et al. [2015] Our results

1 2 3 4 5 ‘real’ 1 2 3 4 5 ‘real’

Ingmar (3 clips) 21 36 21 20 2 22% 4 21 25 42 8 50%

Thomas (3 clips) 33 36 11 16 4 20% 7 25 17 42 9 51%

Mean (6 clips) 27 36 16 18 3 21% 6 23 21 42 9 51%

On average, across all scenarios and both studies, our results are

considered to be real by 47% of the participants (1,767 ratings), com-

pared to only 80% for real video clips (1,362 ratings). This suggests

that our results already fool about 60% of the participants ś a good

result given the critical participant pool. However, there is some

variation across our results: lower realism ratings were given for

well-known personalities like Barack Obama, while higher ratings

were given for instance to the unknown dubbing actors.

8 DISCUSSION

While we have demonstrated highly realistic reenactment results

in a large variety of applications and scenarios, our approach is

also subject to a few limitations. Similar to all other learning-based

approaches, ours works very well inside the span of the training

corpus. Extreme target head poses, such as large rotations, or ex-

pressions far outside this span can lead to a degradation of the

visual quality of the generated video portrait, see Figure 19 and the

supplemental video. Since we only track the face with a parametric

model, we cannot actively control the motion of the torso or hair, or

control the background. The network learns to extrapolate and inds

a plausible and consistent upper body and background (including

some shadows and relections) for a given head pose. This limitation

Fig. 19. Our approach works well within the span of the training corpus.
Extreme changes in head pose far outside the training set or strong changes
to the facial expression might lead to artifacts in the synthesized video. This
is a common limitation of all learning-based approaches. In these cases,
artifacts are most prominent outside the face region, as these regions have
no conditioning input. May video courtesy of the UK government (Open
Government Licence). Malou video courtesy of Louisa Malou (CC BY).

could be overcome by also tracking the body and using the underly-

ing body model to generate an extended set of conditioning images.

Currently, we are only able to produce medium-resolution output

due to memory and training time limitations. The limited output

resolution makes it especially diicult to reproduce ine-scale de-

tail, such as individual teeth, in a temporally coherent manner. Yet,

recent progress on high-resolution discriminative adversarial net-

works [Karras et al. 2018; Wang et al. 2017] is promising and could

be leveraged to further increase the resolution of the generated out-

put. On a broader scale, and not being a limitation, democratization

of advanced high-quality video editing possibilities, ofered by our

and other methods, calls for additional care in ensuring veriiable

video authenticity, e.g., through invisible watermarking.

9 CONCLUSION

We presented a new approach to synthesize entire photo-real video

portraits of a target actors in front of general static backgrounds.

It is the irst to transfer head pose and orientation, face expression,

and eye gaze from a source actor to a target actor. The proposed

method is based on a novel rendering-to-video translation network

that converts a sequence of simple computer graphics renderings

into photo-realistic and temporally-coherent video. This mapping is

learned based on a novel space-time conditioning volume formula-

tion. We have shown through experiments and a user study that our

method outperforms prior work in quality and expands over their

possibilities. It thus opens up a new level of capabilities in many

applications, like video reenactment for virtual reality and telep-

resence, interactive video editing, and visual dubbing. We see our

approach as a step towards highly realistic synthesis of full-frame

video content under control of meaningful parameters. We hope

that it will inspire future research in this very challenging ield.
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A APPENDIX

This appendix describes all the used datasets, see Table 4 (target

actors) and Table 5 (source actors).

Table 4. Target videos: Name and length of sequences (in frames).Malou

video courtesy of Louisa Malou (CC BY). May video courtesy of the UK
government (Open Government Licence). Obama video courtesy of the
White House (public domain). Putin video courtesy of the Kremlin (CC BY).
Reagan video courtesy of the National Archives and Records Administration
(public domain). Elizabeth II video courtesy of the Governor General of
Canada (public domain). Reagan video courtesy of the National Archives
and Records Administration (public domain).Wolf video courtesy of Tom
Wolf (CC BY).

Ingmar Malou May Obama1 Obama2

3,000 15,000 5,000 2,000 3,613

Putin Elizabeth II Reagan Thomas Wolf

4,000 1,500 6,984 2,239 15,000

DB1 DB2 DB3 DB4

8,000 18,138 6,500 30,024

Table 5. Source videos: Name and length of sequences (in frames). Obama

video courtesy of the White House (public domain).

Obama3 David1 David2 DB5 DB6

1,945 4,611 3,323 3,824 2,380
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