skip to main content
research-article

A moving least squares material point method with displacement discontinuity and two-way rigid body coupling

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

In this paper, we introduce the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM naturally leads to the formulation of Affine Particle-In-Cell (APIC) [Jiang et al. 2015] and Polynomial Particle-In-Cell [Fu et al. 2017] in a way that is consistent with a Galerkin-style weak form discretization of the governing equations. Additionally, it enables a new stress divergence discretization that effortlessly allows all MPM simulations to run two times faster than before. We also develop a Compatible Particle-In-Cell (CPIC) algorithm on top of MLS-MPM. Utilizing a colored distance field representation and a novel compatibility condition for particles and grid nodes, our framework enables the simulation of various new phenomena that are not previously supported by MPM, including material cutting, dynamic open boundaries, and two-way coupling with rigid bodies. MLS-MPM with CPIC is easy to implement and friendly to performance optimization.

Skip Supplemental Material Section

Supplemental Material

150-182.mp4

mp4

324.5 MB

a150-hu.mp4

mp4

171.4 MB

References

  1. N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31, 4, Article 62 (July 2012), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. V. Azevedo, C. Batty, and M. Oliveira. 2016. Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM Trans Graph 35, 4 (2016), 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Band, C. Gissler, and M. Teschner. 2017. Moving least squares boundaries for SPH fluids. Virtual Reality Interactions and Physical Simulations (VRIPhys) (2017).Google ScholarGoogle Scholar
  4. B. Banerjee, J. Guilkey, T. Harman, J. Schmidt, and P. McMurtry. 2012. Simulation of impact and fragmentation with the material point method. arXiv preprint arXiv:1201.2452 (2012).Google ScholarGoogle Scholar
  5. Z. Bao, J. Hong, J. Teran, and R. Fedkiw. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Batty, F. Bertails, and R. Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans Graph 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Becker, H. Tessendorf, and M. Teschner. 2009. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3 (May 2009), 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. Belytschko, Y. Lu, and L. Gu. 1994. Element-free Galerkin methods. International journal for numerical methods in engineering 37, 2 (1994), 229--256.Google ScholarGoogle Scholar
  9. T. Belytschko and M. Tabbara. 1996. Dynamic fracture using element-free Galerkin methods. Internal J. Numer. Methods Engrg. 39, 6 (1996), 923--938.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Carlson, P. Mucha, and G. Turk. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23, 3 (2004), 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Chen, M. Yao, R. Feng, and H. Wang. 2014. Physics-inspired adaptive fracture refinement. ACM Trans Graph 33, 4 (2014), 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Chentanez, T. Goktekin, B. Feldman, and J. O'Brien. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun. 2015. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans Graph 34, 4 (2015), 50--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Feldman, J. O'Brien, and B. Klingner. 2005. Animating gases with hybrid meshes. In ACM Trans Graph, Vol. 24. ACM, 904--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Fleishman, D. Cohen-Or, and C. Silva. 2005. Robust moving least-squares fitting with sharp features. In ACM Trans Graph, Vol. 24. ACM, 544--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A polynomial Particle-In-Cell method. ACM Trans Graph 36, 6, Article 222 (2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Gao, A. Pradhana Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive Generalized Interpolation Material Point Method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. 2015. Optimization integrator for large time steps. IEEE Trans Vis Comp Graph 21, 10 (2015), 1103--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24, 3 (July 2005), 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Hahn and C. Wojtan. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans Graph 34, 4 (2015), 151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Hahn and C. Wojtan. 2016. Fast approximations for boundary element based brittle fracture simulation. ACM Trans Graph 35, 4 (2016), 104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Hegemann, C. Jiang, C. Schroeder, and J. Teran. 2013. A level set method for ductile fracture. In Proc ACM SIGGRAPH/Eurograp Symp Comp Anim. 193--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. Hu. 2018. Taichi: An Open-Source Computer Graphics Library. arXiv preprint arXiv:1804.09293 (2018).Google ScholarGoogle Scholar
  26. Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares Material Point Method with displacement discontinuity and two-way rigid body coupling: supplementary document. 37, 4 (2018), 150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Huerta, T. Belytschko, S. Fernández-Méndez, and T. Rabczuk. 2004. Meshfree methods. (2004).Google ScholarGoogle Scholar
  28. Thomas J.R. Hughes. 2012. The finite element method: Linear static and dynamic finite element analysis. Courier Corporation.Google ScholarGoogle Scholar
  29. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Jiang, T. Gast, and J. Teran. 2017a. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans Graph 34, 4 (2015), 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Jiang, C. Schroeder, and J. Teran. 2017b. An angular momentum conserving affine-particle-in-cell method. J. Comput. Phys. 338 (2017), 137--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The material point method for simulating continuum materials. In SIGGRAPH 2016 Course. 24:1--24:52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Kanamori, N. Cuong, and T. Nishita. 2011. Local optimization of distortions in wide-angle images using moving least-squares. In Proceedings of the 27th Spring Conference on Computer Graphics. ACM, 51--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2009. Flexible simulation of deformable models using discontinuous Galerkin FEM. Graphical Models 71, 4 (2009), 153--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Klár, T. Gast, A. Pradhana Tampubolon, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans Graph 35, 4 (2016), 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. B. Klingner, B. Feldman, N. Chentanez, and J. O'Brien. 2006. Fluid animation with dynamic meshes. In ACM Trans Graph, Vol. 25. ACM, 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. D. Koschier and J. Bender. 2017. Density maps for improved SPH boundary handling. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Koschier, J. Bender, and N. Thuerey. 2017. Robust extended finite elements for complex cutting of deformables. ACM Trans Graph 36, 4 (2017), 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. P. Lancaster and K. Salkauskas. 1981. Surfaces generated by moving least squares methods. Mathematics of computation 37, 155 (1981), 141--158.Google ScholarGoogle Scholar
  41. T. Langlois, S. An, K. Jin, and D. James. 2014. Eigenmode compression for modal sound models. ACM Trans Graph 33, 4 (2014), 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. D. Levin. 1998. The approximation power of moving least-squares. Mathematics of Computation of the American Mathematical Society 67, 224 (1998), 1517--1531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. Levin. 2004. Mesh-independent surface interpolation. In Geometric modeling for scientific visualization. Springer, 37--49.Google ScholarGoogle Scholar
  44. C. Li, T. Zhang, and D. Goldman. 2013. A terradynamics of legged locomotion on granular media. Science 339, 6126 (2013), 1408--1412.Google ScholarGoogle Scholar
  45. W. Liu, S. Jun, and Y. Zhang. 1995. Reproducing kernel particle methods. International journal for numerical methods in fluids 20, 8-9 (1995), 1081--1106.Google ScholarGoogle Scholar
  46. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. In ACM Trans Graph, Vol. 25. ACM, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Macklin and M. Müller. 2013. Position based fluids. ACM Trans Graph 32, 4 (2013), 104:1--104:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Macklin, M. Müller, N. Chentanez, and T. Kim. 2014. Unified particle physics for real-time applications. ACM Trans Graph 33, 4 (2014), 153:1--153:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. Martin, P. Kaufmann, M. Botsch, E. Grinspun, and M. Gross. 2010. Unified simulation of elastic rods, shells, and solids. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis. 2015. Non-manifold level sets: A multivalued implicit surface representation with applications to self-collision processing. ACM Trans Graph 34, 6 (2015), 247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. N. Molino, Z. Bao, and R. Fedkiw. 2005. A virtual node algorithm for changing mesh topology during simulation. In ACM SIGGRAPH 2005 Courses. ACM, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Moutsanidis, D. Kamensky, D.Z. Zhang, Y. Bazilevs, and C.C. Long. 2018. Modeling sub-grid scale discontinuities in the Material Point Method using a single velocity field. Submitted, received via private communication (2018).Google ScholarGoogle Scholar
  53. M. Müller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Symp Comp Anim (SCA '03). 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Müller and M. Gross. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004 (GI '04). Canadian Human-Computer Commu, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics. J Vis Comm Imag Repre 18, 2 (2007), 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. K. Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans Graph 32, 3 (2013), 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. J. Nairn. 2003. Material point method calculations with explicit cracks. Computer Modeling in Engineering and Sciences 4, 6 (2003), 649--664.Google ScholarGoogle Scholar
  59. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1--173:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. O'Brien, A. Bargteil, and J. Hodgins. 2002. Graphical modeling and animation of ductile fracture. In Proc ACM SIGGRAPH 2002. 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. O'Brien and J. Hodgins. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. J Guibas. 2005. Meshless animation of fracturing solids. ACM Trans Graph 24, 3 (2005), 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. T. Pfaff, R. Narain, J. de Joya, and J. O'Brien. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans Garph 33, 4 (2014), 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. A. Robinson-Mosher, R. English, and R. Fedkiw. 2009. Accurate tangential velocities for solid fluid coupling. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 227--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans Graph 27, 3 (2008), 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. S. Sato, Y. Dobashi, K. Iwasaki, T. Yamamoto, and T. Nishita. 2014. Deformation of 2D flow fields using stream functions. In SIGGRAPH Asia 2014 Technical Briefs. ACM, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. S. Schaefer, T. McPhail, and J. Warren. 2006. Image deformation using moving least squares. In ACM Trans Graph, Vol. 25. ACM, 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans Graph 33, 6 (2014), 205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. T. Shinar, C. Schroeder, and R. Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. E. Sifakis, K. Der, and R. Fedkiw. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Steffen, R. Kirby, and M. Berzins. 2008. Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Meth Eng 76, 6 (2008), 922--948.Google ScholarGoogle ScholarCross RefCross Ref
  73. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1--138:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236--252.Google ScholarGoogle ScholarCross RefCross Ref
  76. A. Pradhana Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. SIGGRAPH Comp Graph 22, 4 (1988), 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Y. Wang, C. Jiang, C. Schroeder, and J. Teran. 2014. An adaptive virtual node algorithm with robust mesh cutting. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 77--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. C. Wojtan, N. Thürey, M. Gross, and G. Turk. 2009. Deforming meshes that split and merge. In ACM Trans Graph, Vol. 28. ACM, 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of crack propagation by means of an extended multi-body solver for the material point method. Computers & Graphics (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. J. Wu, R. Westermann, and C. Dick. 2015. A survey of physically based simulation of cuts in deformable bodies. In Comp Graph Forum, Vol. 34. Wiley Online Library, 161--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. H. Xu and J. Barbič. 2014. Signed distance fields for polygon soup meshes. In Proceedings of Graphics Interface 2014. Canadian Information Processing Society, 35--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. O. Zarifi and C. Batty. 2017. A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Y. Zhu and S. Gortler. 2007. 3D deformation using moving least squares. (2007).Google ScholarGoogle Scholar

Index Terms

  1. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 July 2018
      Published in tog Volume 37, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader