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Abstract

Digital sculpting is a popular means to create 3D models but re-
mains a challenging task for many users. This can be alleviated
by recent advances in data-driven and procedural modeling, albeit
bounded by the underlying data and procedures.

We propose a 3D sculpting system that assists users in freely cre-
ating models without predefined scope. With a brushing interface
similar to common sculpting tools, our system silently records and
analyzes users’ workflows, and predicts what they might or should
do in the future to reduce input labor or enhance output quality.
Users can accept, ignore, or modify the suggestions and thus main-
tain full control and individual style. They can also explicitly se-
lect and clone past workflows over output model regions. Our key
idea is to consider how a model is authored via dynamic workflows
in addition to what it is shaped in static geometry, for more accu-
rate analysis of user intentions and more general synthesis of shape
structures. The workflows contain potential repetitions for analysis
and synthesis, including user inputs (e.g. pen strokes on a pres-
sure sensing tablet), model outputs (e.g. extrusions on an object
surface), and camera viewpoints. We evaluate our method via user
feedbacks and authored models.

Keywords: workflow, autocomplete, clone, beautification, sculpt-
ing, modeling, user interface

Concepts: •Human-centered computing → User interface de-
sign; •Computing methodologies→ Shape modeling;

1 Introduction

3D modeling is ubiquitous in various applications, but demands sig-
nificant expertise and efforts to create outputs with sufficient qual-
ity and complexity. This is particularly so for models consisting
of repetitive structures and details, as common in many natural and
man-made objects.

To help author 3D models, significant research has been devoted to
methods based on data [Funkhouser et al. 2004; Mitra et al. 2013] or
procedures [Emilien et al. 2015; Nishida et al. 2016]. These meth-
ods mainly focus on what the model is shaped instead of how it is
authored, and the output scope is delineated by the underlying data
or procedures. The processes of how models are authored or cre-
ated by users, termed workflows, contain rich information that can
facilitate a variety of modeling tasks based on individual user styles
[Denning and Pellacini 2013; Chen et al. 2014; Denning et al. 2015;
Salvati et al. 2015]. However, it remains unclear whether and how
such workflows can help users create 3D models, especially under
interactive interfaces such as digital sculpting, a popular means to
author organic shapes with individual styles.

We propose a 3D sculpting system that assists users in freely cre-
ating models without pre-existing data or procedures. With a com-
mon brushing interface, our system analyzes what users have done
in the past and predicts what they might or should do in the future,
to reduce input workload and enhance output quality. The predic-
tions are visualized as suggestions over the output model without
disrupting user practices. Users can choose to accept, ignore, or
modify the suggestions and thus maintain full control. They can

Figure 1: User interface of our system. The interface consists of a
sculpting canvas (left) and a widget panel (right). The widget panel
provides the usual sculpting tools, brush parameters such as size, and
mode controls unique to our autocomplete system.

also select prior workflows from the model and clone over other re-
gions. The rich information contained in the workflows allows our
method to outperform prior methods based on geometry. Similar to
existing sculpting tools, our interface provides surface brushes for
local details such as displacements and freeform brushes for large
scale changes such as extrusions. Our system is intended for users
with varying levels of expertise and models of different types with-
out requiring pre-existing geometry data or procedural rules. In ad-
dition to sculpting strokes, our method also considers camera move-
ments, which are often repetitive, predictable, and correlate well
with the underlying shapes and brush strokes [Chen et al. 2014].

Inspired by recent works on predictive user interfaces that analyze
workflows to assist 2D drawings [Xing et al. 2014] and animations
[Xing et al. 2015], our premise is that 3D sculpting often consists of
repetitive user actions and shape structures, and thus both the input
process and output outcome can be predictable.

However, unlike 2D drawings and animations in which the base do-
main is a simple planar canvas, for 3D sculpting the base domain
is a 3D object. Thus, even though surface brushes place local dis-
placements analogous to paint brushes add local colors, they can re-
side over surface regions with different orientations and curvatures.
Furthermore, unlike the planar canvas which remains invariant dur-
ing 2D sketching, the 3D shape can undergo large scale changes by
freeform brushes. Such changes might not even be functions over
the domain surfaces and thus completely beyond the methodologies
in [Xing et al. 2014; Xing et al. 2015]. Our key idea is to factor out
the contextual parts of workflow positions via proper local param-
eterizations during analysis (e.g. repetition detection, clone select)
and factor back the contexts during synthesis (e.g. suggestion, clone
paste) while keeping track of geometry signatures such as surface
normal and curvature all the time. For more holistic analysis and
prediction, we combine different aspects of the workflows, includ-
ing 2D inputs (e.g. pen strokes on a pressure tablet), 3D outputs
(e.g. brushes on an object surface), and camera movements.

We conduct a pilot user study to show that our system can help
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users on both objective performance and subjective satisfaction for
a variety of output models. In sum, the main contributions of this
paper include:

• The idea that dynamic workflows can augment static geome-
try for better interactive 3D modeling;

• An autocomplete user interface for more friendly and effec-
tive 3D sculpting via hint/suggestion, workflow clone, camera
control, and other features;

• Methods that analyze what users have done in the past to pre-
dict what they may and/or should do in the future, based on a
similarity measure considering local frame and geometry, and
combinations of 2D inputs (e.g. on a tablet), 3D outputs (e.g.
extrusions on an object surface), and camera viewpoints.

2 Previous Work

Data-driven and procedural modeling Creating models from
scratch is challenging, but similar objects or parts often already
exist. Analyzing existing model geometry for novel synthesis has
been a very active area of research [Funkhouser et al. 2004; Mi-
tra et al. 2013] encompassing a variety of topics, such as sugges-
tion [Chaudhuri and Koltun 2010], repetition [Bokeloh et al. 2011],
symmetry [Mitra et al. 2006], style [Lun et al. 2016], fabrication
[Schulz et al. 2014], and functional interaction [Hu et al. 2016].
Common model structures can also be abstracted into procedural
rules for offline or interactive modeling [Ebert et al. 2002; Emilien
et al. 2015; Nishida et al. 2016].

The outputs of these methods are naturally limited by the scopes of
the underlying data and procedures. Our method, in contrast, aims
to assist users to explore and create models [Cohen-Or and Zhang
2016] in their individual styles and preferences.

Modeling interface Popular modeling interfaces have been de-
signed for mechanic models (e.g. AutoCAD) and organic shapes
(e.g. ZBrush). A variety of enhancements have also been proposed
for stability [Umetani et al. 2012], printability [Zehnder et al. 2016],
reconfigurability [Garg et al. 2016], tiling [Guérin et al. 2016], and
collaboration [Talton et al. 2009].

Following the line of suggestive interfaces for 3D drawing and
sketching [Igarashi and Hughes 2001; Tsang et al. 2004], our sys-
tem aims for a traditional sculpting interface with enhancement in
analyzing, predicting, and suggesting workflows.

Workflow-assisted authoring Workflows [Nancel and Cock-
burn 2014] have been investigated for various authoring tasks in
2D image editing [Chen et al. 2011; Chen et al. 2016], sketching
[Xing et al. 2014], and animation [Xing et al. 2015], as well as in
3D modeling such as visualization [Denning et al. 2011; Denning
et al. 2015], revision control [Denning and Pellacini 2013], view
selection [Chen et al. 2014], and collaboration [Salvati et al. 2015].
These workflows can be recorded during authoring, or inferred a
posteriori [Fu et al. 2011; Hu et al. 2013; Tan et al. 2015].

As reported in [Santoni et al. 2016], even for complex objects, the
workflows often consist of predictable brush choices and opera-
tions. Our method analyzes 3D sculpting workflows to autocom-
plete potential repetitions.

3 User Interface

The user interface (Figure 1) of our prototype sculpting system
follows the brush model as in popular digital sculpting tools such

(a) user sculpting (b) hints

(c) accept all (d) brush select

Figure 2: Hint example. During user sculpting (a), our system sug-
gests potential future repetitions as displayed in transparent yellow
(b). Users can ignore the hint and continue sculpting, accept all hints
via a hot key (c), or partially select a subset of the hints (d) as shown
in transparent blue.

as Blender [Blender Foundation 2016], Sculptris [Pixologic 2011],
Zbrush [Pixologic 2015], MeshMixer [Schmidt and Singh 2010],
etc. Our system supports surface brushes for local details via dis-
placement, and freeform brushes for large scale change such as ex-
trusion. Users can sculpt as usual while our system silently records
and analyzes the sculpting workflows. All brush operations can be
combined with the main functions: hint, workflow clone, camera
control, as well as other features such as workflow lock.

3.1 Hint

Our system automatically analyzes users’ sculpting workflows on
the fly and predicts what they might or should sculpt in the near
future. These predictions are suggested as hints on our user inter-
face. Figure 2 shows an example where the user is sculpting de-
tailed features on an object. As more brushes are added, our system
automatically analyzes the past strokes and predicts what brushes
the user might want to perform next, as shown in Figure 2b. The
suggestions are shown transparently over the object surface. Users
can ignore the suggestions and continue sculpting as usual, accept
all the suggestions via a hot key (Figure 2c), or partially accept the
suggestions with a selection brush (Figure 2d). The suggestions are
continuously updated in real-time according to user inputs.

3.2 Workflow Clone

The clone tool is common among interactive content authoring
systems. Prior methods mostly clone static content such as im-
ages [Pérez et al. 2003], textures [Sun et al. 2013], or geometry
[Takayama et al. 2011]. The methods in [Xing et al. 2014] can clone
sketching workflows. Our system allows users to clone sculpting



(a) first copy source (b) first paste target

(c) second copy and paste (d) merged clone effect

(e) freeform copy source (f) freeform paste target

Figure 3: Workflow clone example. The red/green brush marks the
clone source/target. The clone results are previewed as yellow in (b)
and (c) for the users to partially or fully accept. (c) shows clone
applied over prior cloned region in (b), (d) shows the merged effect.
The clone can be applied to both surface and freeform brushes.

workflows with more information and options than cloning static
geometry. Via our brushing interface, users can select source and
target regions, and parameters such as positions, sizes, and direc-
tions. Similar to prior clone tools [Kloskowski 2010], our system
previews the clone outcomes for which users can accept or ignore.
Furthermore, our workflow clone can be applied to already cloned
regions, which is difficult to achieve via geometry clone. An exam-
ple is shown in Figure 3.

3.3 Camera Control

3D digital sculpting involves not only brush strokes but also camera
manipulations, which can also be quite tedious and repetitive. For-
tunately, similar to sculpting operations, camera controls also tend
to be predictable [Chen et al. 2014].

We provide a basic camera control mode that automatically moves
the viewpoints along with the suggested hints (Section 3.1). This
choice is inspired by the observation in [Chen et al. 2014] that
users often view the target sculpting regions frontal-parallel, and
thus more natural and less disorienting for users than other forms
of camera control. Users can quickly press a hotkey to return to

(a) before (b) after

Figure 4: Camera control example. The camera automatically ad-
justs the viewpoint from (a) according to the suggested brushes in (b).

the original viewpoint. They can also turn this mode on or off de-
pending on their preferences. One automatic viewpoint example is
shown in Figure 4.

3.4 Additional Features

(a) sculpting viewpoint (b) shifted viewpoint

Figure 5: Occlusion example. The blue and red strokes are predic-
tions from the three previous sculpting strokes, with and without con-
sidering occlusion. (a) is the original sculpting view, and (b) shifts
the view to show the predicted strokes underneath the occlusion.

Occlusion Our system considers geometry occlusion for predic-
tions and suggestions. As exemplified in Figure 5, suggestions pre-
dicted on the view-plane (like the canvas for 2D prediction in [Xing
et al. 2014; Xing et al. 2015]) may reside on the wrong part of the
occluding geometry due to viewpoint, as shown in the red strokes.
Our system considers the underlying shape and propagates the pre-
dictions more accurately, as shown in the blue strokes.

Symmetry Similar to [Calabrese et al. 2016] and existing main-
stream sculpting tools, we provide symmetry mode to mirror all
brush strokes on the other side of the same model. Users can turn
the symmetry mode on and off, and when enabled, the predictions
and suggestions will automatically consider symmetry.

Lock Locking is an option under some digital sculpting tools (e.g.
[Blender Foundation 2016]) to keep some parts of the model fixed
while users manipulating other parts. This feature, while useful, can
be tedious and difficult for users, especially novices. In addition to
future operations, our system can also predict what might need to
be locked based on workflows, as exemplified in Figure 6b; such
scenarios can be challenging to analyze via geometry only. This
locking mechanism can be applied to not only existing geometry as
described above but also future geometry predicted by our system
which cannot be manually locked, as shown in Figure 6c. Users can
easily enable or disable the locking effects via a hot key and thus
maintain full control.



(a) initial manual stroke (b) more manual strokes and hints (c) after accepting hints

Figure 6: Workflow lock. After a manual stroke in (a) under the symmetry mode, the user went on to place two more strokes in (b). The yellow
parts indicate suggested hints. For comparison, the left side has no workflow lock; notice how earlier strokes can be unintentionally deformed by
the later strokes. Our workflow lock can prevent this from happening for both existing geometry and accepted hints, as shown on the right side of
(c). Note that the predicted strokes (yellow) are always correct, with or without workflow lock. However, when the user accepted the hints, they
will play out in the workflow order as in manual strokes. Thus, without workflow lock, later hint strokes can still deform earlier hint strokes.

(a) brushing (b) stippling

Figure 7: Autocomplete surface painting examples. Hints are shown
in yellow for the users to partially or fully accept.

Painting After sculpting, users can paint colors over the mod-
els, similar to painting in [Pixologic 2011]. Our system can also
auto-completes surface painting by extending the 2D autocomplete
method in [Xing et al. 2014] over 3D surfaces. An example is
shown in Figure 7.

4 Method

We describe algorithms behind our autocomplete sculpting user in-
terface in Section 3.

4.1 Representation

Brush Our system supports two main types of brushes as in com-
mon digital sculpting: surface brushes for small scale displace-
ments (e.g. clay, crease, smooth), and freeform brushes for larger
scale shape deformation (e.g. extrusion [Santoni et al. 2016; Den-
ning et al. 2015], drag, grab). They are represented as follows.

Sample We represent each brush stroke b as a collection of point
samples {s}. Each sample s is associated with a set of attributes u:

u(s) = (p(s),a(s), t(s)) (1)

, where p(s) is the 3D position of s, a(s) is a set of appearance pa-
rameters (such as size, type, and pressure) and geometry signatures
(such as normal and curvature), t(s) indicates temporal parameters

a
b
c
d
e

(a) surface brush

a
b
c
d
e

(b) freeform brush

Figure 8: Brush types. A surface brush (a) has all samples on the
object surface, such as the 5 surface samples sa, sb, sc, sd, and se.
A freeform brush (b) has the first sample sa on the object but the rest
for 3D movements such as extrusion sa → sb → sc → sd → se.

that include the global time stamp and a sample-id for the relative
position within the stroke.

As shown in Figure 8, for a surface brush b, its samples posi-
tions p(b) = {p(s)}s∈b all lay on the object surface; while for
a freeform brush, p(b) consists of two parts: the first sample is on
the surface, and the rest (‖p(b)‖−1) samples are in 3D free space
with movement directions controlled by the users.

Mesh We adopt a mesh-based representation with two operators,
sculpt c and mesh m, to support geometry and topology changes.
A meshM is represented by a set of elements including vertices,
edges, and faces. Each sculpt operator c applies specific geometry
transformation to mesh elements, such as vertex positions, within a
finite support defined by the brush radius. A mesh operator m can
change the underlying mesh resolution and topology by adding or
removing mesh elements. The result of each brush stroke overM
is the joint effect of c with m:

M← (c⊗m)(M) (2)

, where ⊗ combines c and m to achieve Blender-Dyntopo-like or
Sculptris-like adaptive tessellation effect, as shown in Figure 9.

4.2 Measurement

Analogous to prior methods in predicting 2D sketch [Xing et al.
2014] and animation [Xing et al. 2015], a core component for our



b1
b2 b3 b4

Figure 9: Mesh sculpting effects. A sculpt operator c such as drag
can influence mesh geometry but not topology as shown in b1 and
b3 with different brush radii. A mesh operator m can change mesh
resolution and connectivity as shown in b2 and b4.

method is to measure similarity between 3D brush strokes based
on their spatial-temporal neighborhoods. This similarity in turn en-
ables our method to detect repetitions, suggest future edits, clone
workflows, and auto-lock brushes. However, unlike [Xing et al.
2014; Xing et al. 2015] where the underlying domain is a fixed
2D plane (drawing canvas), our base domain is a 3D object under
dynamic modification. Thus, all definitions of neighborhood and
similarity must be conditioned on 3D object surfaces.

Neighborhood We define the neighborhood n (s) of a sample s
as the set of all samples within its spatial-temporal vicinity anal-
ogous to the spatial-temporal neighborhoods in [Ma et al. 2013].
Each spatial neighborhood is oriented with respect to a local frame
o associated with s. For surface-brush samples, all spatial distances
are computed geodesically (Figure 8a), while for freeform-brush
samples via their free space sample distances (Figure 8b). The tem-
poral neighborhood is causal and contains only samples drawn be-
fore s.

Brush strokes are composed of samples and could capture the high-
level relationships between one another. Thus analogous to [Xing
et al. 2014; Xing et al. 2015], we use brush strokes as the funda-
mental units for sculpting workflow analysis and synthesis. The
neighborhood of a stroke b is defined as the union of its sample
neighborhoods:

n(b) =
⋃

s∈b

n(s) (3)

Similarity For each neighborhood sample s′ ∈ n(s), we define
its differential with respect to s as:

û(s′, s) =



wpp̂(s′, s)
waâ(s′, s)
wtt̂(s

′, s)


 (4)

, where p̂, â, and t̂ represent the sample pair differentials in position
p, appearance a, and temporal parameters t defined in Equation (1),
and wp, wa, wt are the corresponding scalar weightings.

We compute the sample position differentials p̂(s′, s) via:

p̂(s′, s) = p̈(s′)− p̈(s) (5)

, where p̈(s) is the local position of s with frame o(s) as described
in Section 4.3 and relates to the global p(s) via a coordinate trans-
formation.

From Equation (4), we define the differential between two strokes
b′ and b via their constituent samples:

û(b′,b) =
{
û(s′, s)|s′ = m(s) ∈ b′, s ∈ b

}
(6)

, where m is the matching sample computed via the Hungarian al-
gorithm as in [Ma et al. 2013; Xing et al. 2015].

From Equation (6), we can compute the distance between two
stroke neighborhoods n(bo) and n(bi) as follows:

‖n(bo)− n(bi)‖2 = ‖û(bo, co)− û(bi, ci)‖2+
∑

b′
o∈n(bo),b

′
i∈n(bi)

‖û(b′
o,bo)− û(b′

i,bi)‖2 (7)

, where the first term measures the distance between the two strokes
bo and bi with respect to their central samples co and ci:

û(b, c) = {û(s, c), s ∈ b} (8)

, and the second term computes the distances between their neigh-
borhood strokes with respect to bo and bi. The stroke pairs b′

o and
b′
i are matched via the Hungarian algorithm as well.

4.3 Parameterization

Surface stroke parameterization We extend the stroke parame-
terization method in [Schmidt 2013] for our surface brushes. Each
surface brush is parameterized by the surface normal as the z-
direction and the stroke path as the y-direction measured by the arc-
length t. The x-direction is measured by the geodesic distance d.
We then apply the single-pass forward propagation [Schmidt 2013]
to estimate the parametrization for any sample s within distance r
of the stroke, as illustrated in Figure 10.

p̈(s) = Ps(s) = (ts, ds) (9)

z

y

x

x

yz r

(ts, ds)

Figure 10: Stroke parameterization. The surface and freeform stroke
parameterizations are shown in red and blue with their regions in
green and yellow.

Freeform stroke parameterization Unlike the surface brushes,
freeform brushes do not adhere to the object surfaces. Thus the
method in [Schmidt 2013] cannot directly apply. However, we can
extend it into the freeform space as follows. We use the brush path
as the z-direction similar to the y-direction for the surface brushes,
parameterized by arc-length. The cross-product of the z-direction
and the camera look-at direction (non-parallel for sculpting) for
each brush sample point forms the y-direction. This is illustrated
in Figure 10. Unlike surface stroke parameterization which is 2D,
the freeform stroke parameterization is 3D:

p̈(s) = Pf (s) = (xs, ys, zs) (10)



4.4 Synthesis

In order to synthesize the predictions interactively, we extend the
texture optimization methodology [Kwatra et al. 2005; Ma et al.
2013; Xing et al. 2014]. With I as the current sequences of strokes
ordered by their time-stamps, we synthesize the next stroke bo via
the following energy formulation:

E(bo; I ) = min
bi∈I
|n(bo)− n(bi)|2 + Θ(bo) (11)

, where bi represents the corresponding input stroke with similar
neighborhood to bo. The first term evaluates the neighborhood sim-
ilarity between bi and bo as explained in Equation (7). The second
term denotes optional, applicant-dependent specifications that can
be supplied by the users.

Similar to [Xing et al. 2014], for each output, we start with multi-
ple initializations, and select the most suitable one via search and
assignment steps. However, instead of a planar canvas that remains
invariant for painting, for sculpting the underlying domain is a 3D
object under dynamic modification with different brush types as
introduced in Section 4.1. Furthermore, all computations need to
support interactive responses.

Initialization We initialize future strokes based on local similarity
with the existing strokes. For the last sculpted stroke b′

o, we iden-
tify a candidate set of matching strokes {b′

i}. Each b′
i provides an

initialization bo,i via its next stroke bi:

û(bo,i,b
′
o) = û(bi,b

′
i) (12)

Each bo,i is computed depending on the brush stroke type − sur-
face or freeform, due to their different parameterizations as de-
scribed in Section 4.3. For surface strokes, Equation (12) is com-
puted on the local surface parameterization. For freeform strokes,
Equation (12) is computed by a two-step process: deciding the start-
ing point on the surface, followed by the freeform space movement
from the starting point. This is visualized in Figure 11.

b'1 b'2
b'3
b'o bo,1

(a) surface stroke initialization

b'1b'2 b'3 b'o bo,1

(b) freeform stroke initialization

Figure 11: Synthesis initialization. For both (a) and (b), the three
blue strokes b′

1,2,3 are placed in order, before the current stroke b′
o

shown in red. Each of b′
1,2,3 can provide a prediction based on its

next stroke b1 = b′
2, b2 = b′

3, b3 = b′
o, and b′

o via Equa-
tion (12). For example, the green stroke bo,1 is predicted from b′

1

via û(bo,1,b
′
o) = û(b1 = b′

2,b
′
1).

For clarify, we use bo as the variable to optimize the choice of bo,i

for different matching {b′
i} of b′

o, by minimizing the energy:

E(bo) =
∑

so∈bo

∑

s′o∈b′
o

κ(si, s
′
i)
∣∣u(so)− u(s′o)− û(si, s

′
i)
∣∣2

si = m(so) ∈ bi, s
′
i = m(s′o) ∈ b′

i

(13)

, where κ(si, s
′
i) is a weighting parameter inspired by [Ma et al.

2013] for Gaussian falloff with σp set to 10:

κ(si, s
′
i) = exp

(
− |p(si)− p(s′i)|2

σp

)
(14)

For each initialization bo, we optimize it by going through the
search and assignment steps below, and the one which has the least
energy in Equation (11) would be considered as most suitable and
selected to be the predicted stroke.

Search During this step, for the initialization bo obtained above,
within its local spatial-temporal window, we search for the match-
ing stroke bi whose neighborhood is similar to n(bo) by mea-
suring the neighborhood similarity in Equation (7). Instead of se-
lecting only one matching stroke, for more robust optimization we
search for multiple candidates {bi} whose neighborhood dissimi-
larity |n(bo)− n(bi)|2 is lower than 2 |n(bo)− n(b′′)|2, where
b′′ has the lowest dissimilarity value.

For acceleration, similar to [Xing et al. 2014], we perform temporal
matching followed by spatial matching instead of matching with the
whole temporal-spatial neighborhood. In the first step, we conduct
temporal matching to search the candidate matching strokes, from
which we use spatial neighborhood for further filtering.

Assignment The first term in Equation (11) can be expanded via
Equation (7).

The second term, Θ, allows users to configure various parame-
ter settings for various effects such as dot, bumpy, or varying-size
strokes as in [Pixologic 2015]. This can be achieve by adding con-
straints c for various sample attributes:

Θ(bo) =
∑

so∈bo

|u(so)− c(so)|2 (15)

We decide the next stroke via minimizing Equation (11) with ex-
pansions in Equations (7) and (15).

4.5 Deployment

Based on the common framework in Section 4.4, we now describe
how to support various modes and options in our system.

Frame choice For freeform stroke synthesis, by default, we use
local frame for better geometry adaptation. But for certain sculpting
tasks, user might prefer global frame to achieve specific effects.
Our system thus allows users to switch the frame option. Figure 12
provides an example effect.

(a) local frame (b) global frame

Figure 12: Frame choice example. By default our system synthesizes
in local frames as in (a) but users can also opt for the global frames
as in (b). The yellow parts are hinted geometry.



Hint The predicted (Section 4.4) and accepted strokes are ren-
dered in light transparent yellow and blue colors to distinguish them
from the existing geometry.

Workflow clone For workflow clone, we normalize the stroke pa-
rameterization to support source and target regions specified with
different brush lengths. Specifically, a sample s in a surface stroke
would be normalized to be within ts ∈ [0, 1], ds ∈ [−1, 1] via:

ts ← ts + r

T + 2r

ds ← ds
r

(16)

, where T is the stroke arc length and r is the parameterization
width range, as illustrated in Figure 10.

We also normalize the sample-id to fall within [0, 1], where 0 and 1
represent the starting and ending positions of brush b.

A1
B1

A2
B2

Figure 13: Workflow lock based on spatial-temporal neighborhood.
The strokes are placed in the order bA → bB , and in a symme-
try mode for illustration. The left side shows general sculpting effect
without workflow lock, the right side is aided with workflow lock. Any
samples of bA1 within the spatial-temporal neighborhood of bB1 will
be automatically locked, as exemplified in the yellow region of the
green sample in bB1.

Workflow lock Automatically deducing which parts of the model
to lock based on geometry alone can be challenging, as spatial infor-
mation may not convey user intention. With workflows, our method
can directly associate all brush strokes with the model geometry,
and decide what to lock based on workflow similarity as described
in Section 4.2. For example, we can lock past workflow samples
within a spatial-temporal neighborhood of the current brush stroke,
as shown in Figure 13. Based on our experiments, we adopt a
simple strategy to lock all past workflows with a spatial-temporal
neighborhood of the current brush stroke. This strategy works well
when users sculpt in a spatially-temporally coherent fashion, as
they often do.

This is also one key difference from [Xing et al. 2014; Xing et al.
2015] where the synthesized sketching strokes are the final outputs.
In contrast, sculpting strokes can affect existing geometry.

Camera control As described in [Chen et al. 2014; Santoni et al.
2016], user brush strokes tend to correlate with camera movements
and thus can facilitate viewpoint selection. Our system stores all
camera states, including positions and orientations, as part of the
sculpting workflows. Thus, our method is able to predict camera
movements in addition to sculpting brushes as described in Sec-
tion 4.4. In our experiments we have found that excessive camera
automation can be disorienting to users. We thus expose only the
basic mode of piloting the camera viewpoint along with the pre-
dicted next brush strokes.

Neighborhood and search window We set r dynamically to be
4× the stroke radius. The spatial-temporal neighborhood of a brush
stroke includes its two previous temporal strokes and nearby spatial
strokes overlapping its parameterization region (Figure 10). For
the search step in Section 4.4, we search within a local temporal-
spatial window of 20 previous temporal strokes, and the same spa-
tial neighborhood window as above.

Neighborhood acceleration To improve quality and speed, we
accelerate the neighborhood matching in Equation (7) by a two-
tiered sampling process for the brush strokes. Specifically, we first
place three samples uniformly over each stroke to select the most
similar candidate strokes, and continue with all samples to select
the best matches from the candidates.

Weights For Equation (4), we set the position weighting wp to
be 1. We set wa to be 1 if there is no Θ term in Equation (11), oth-
erwise we set it to be 0.1 and 0.9 for the neighborhood and Θ terms
The wt includes global time stamp wt1 and sample-id wt2 . We set
wt2 to be 1, andwt1 to be 100 for temporal neighborhood matching
to enforce the same sculpting order, and 0 for spatial neighborhood
matching.

5 User Study

We have conducted a preliminary user study to evaluate the us-
ability and efficacy of our assisted sculpting system. The study
considers the following modes: fully manual authoring as in tra-
ditional sculpting tools, and our autocomplete functions including
hint, workflow clone, camera control, and other features.

Setup All tasks were conducted on a 13-in laptop with a Wacom
tablet. The study contains three sessions: warm-up, target sculpt-
ing, and open creation. The entire study takes about 1.5 hours per
participant.

Participants Our participants include 1 experienced sculpting
modeler and 8 novice users with different levels of sculpting and
modeling experiences.

Warmup session The warm-up session is designed to help par-
ticipants get familiar with the sculpting interface and various func-
tions of our system. The tasks consist of adding details via surface
brushes, performing extrusions and contour shapes via freeform
brushes, and moving the user viewpoints via camera control. One
of the authors guided the participants throughout the entire process.

Target session The goal is to measure the usability and quality
of our assisted system compared to traditional sculpting tools. We
asked our collaborating artists to create initial input and reference
output (Figure 14). We then asked the participants to start from
the initial input and reach the reference output. Each participant
performed this task both with and without assisted functions.

Open creation The goal of this session is to observe participant
behaviors and identity merits and issues of our systems. Partici-
pants were free to perform open-ended sculpting using our system
with the only requirement of creating structures, either surface or
freeform, with at least a certain amount of repetition. One of the
authors accompanied the participants through the session and en-
couraged them to explore different features provided in our system.



(a) front of input (b) back of input

(c) front of output (d) back of output

Figure 14: Target sculpting task. We provide the base mesh shape
shown in (a) and (b), and ask the participants to perform strokes to
achieve the desired appearances in (c) and (d).

6 Results

Objective performance For the full manual mode, on average
the participants took 23 minutes to complete 504 brush strokes.
With our autocomplete functions, the participants took 16 minutes
to complete 522 brush strokes, including 230 manual and 292 ac-
cepted from our hint or clone modes. Thus, our system can help
novice users reduce the time and efforts by about 30% and 56% for
the particular target study in Figure 14. More detailed statistics are
recorded in Appendix A.
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hint clone
symmetryhint/clone

camera lock painting

Figure 15: User feedback. Subjective feedback from 8 novice partic-
ipants in a 7-Likert scale for various modes of our system, expressed
as mean ± standard error.

Subjective satisfaction Figure 15 summarizes feedback from
the 8 novice participants. Even though some participants had expe-
riences in 2D sketching/painting via digital tablets, we have found
it crucial to coach them on practicing how to control the tablet
pen more correctly and effectively for 3D sculpting, especially the
strength/pressure and camera viewpoint manipulation, as these two
factors heavily influence the output visual effects.

Overall, the participants were positive about our system, and
gave high ratings to the hint, clone, and lock modes as they are
new/interesting (P4,6), useful (P2,6,7,8), without interrupting usual
sculpting process (P1). They preferred the hint mode with brush
select for more control. The automatic camera control receives
lower rating because it may take time for adjustment and some
participants would like better control (P1) and being less conser-
vative (P4). They also provided suggestions for future improve-
ments, such as an eraser function for automatic smoothing (P2),
more flexible control for hints (e.g. enlarge the number of sugges-
tions P3), automatic stabilizing brush stroke strength (P5), beautify
the UI design (P1,6), more powerful prediction for more random
strokes (P7). More detailed feedbacks from individual participants
are recorded in Appendix A.

Sample outputs Figure 16 shows sample outputs from our user
study participants. Please refer to our supplementary videos for
recorded live actions.

7 Limitations and Future Work

We present an autocomplete 3D sculpting system that can reduce in-
put labor and enhance output quality, and demonstrate that the addi-
tion of dynamic workflows can effectively augment static geometry
for interactive model creation. The autocomplete prototype targets
repetitive operations, and falls back to traditional sculpting for non-
repetitive operations such as initial shape formation. Assisting the
latter via other data-driven or procedural methods in combination
with our autocomplete function can be a potential future work.

We propose an automatic camera control mode following workflow
suggestions. This is a very basic mode and yet conservative enough
to avoid user disorientation. Additional automatic camera controls
are possible from the data and method perspectives, but warrant
further user studies.

Our current prototype provides basic functionality as a proof of con-
cept. More features in commercial sculpting tools can be added. We
also plan to explore other geometry and topology features for more
accurate correlation between workflow and shape [Berkiten et al.
2017].

To help prediction, instead of manually crafted algorithms, we are
investigating a machine learning approach that analyzes user feed-
backs (whether they accept, ignore, or modify the suggestions) for
continuous training our prediction model.

Within the scope of this project we have focused on a single user
within a single modeling session. The general ideas and specific
methods can be extended to multiple users for crowdsourcing and
tutorials as well as multiple sessions for individual stylization.

We focus on 3D sculpting as it is a very popular and flexible form of
model creation. A potential future work is to consider other forms
of 3D modeling, such as VR brushing that operates more directly
in 3D free space instead of mostly over the current model surface
for sculpting.

References

BERKITEN, S., HALBER, M., SOLOMON, J., MA, C., LI, H.,
AND RUSINKIEWICZ, S. 2017. Learning detail transfer based
on geometric features. Computer Graphics Forum.

BLENDER FOUNDATION, 2016. Blender.

BOKELOH, M., WAND, M., KOLTUN, V., AND SEIDEL, H.-P.
2011. Pattern-aware shape deformation using sliding dockers.
ACM Trans. Graph. 30, 6 (Dec.), 123:1–123:10.



(a) 362/332 op, 29 min (b) 431/322 op, 34 min (c) 278/302 op, 27 min (d) 261/396 op, 24 min (e) 169/230 op, 20 min

Figure 16: Sample outputs from our participants, all starting from a sphere. Denoted with each output are the following statistics: number
of manual sculpting strokes, number of autocomplete strokes, and total authoring time in minutes. Please refer to the supplementary videos for
recorded modeling sessions.

CALABRESE, C., SALVATI, G., TARINI, M., AND PELLACINI, F.
2016. csculpt: A system for collaborative sculpting. ACM Trans.
Graph. 35, 4 (July), 91:1–91:8.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven suggestions
for creativity support in 3d modeling. ACM Trans. Graph. 29, 6
(Dec.), 183:1–183:10.

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Trans. Graph. 30, 4 (July),
105:1–105:10.

CHEN, H.-T., GROSSMAN, T., WEI, L.-Y., SCHMIDT, R. M.,
HARTMANN, B., FITZMAURICE, G., AND AGRAWALA, M.
2014. History assisted view authoring for 3d models. In CHI
’14, 2027–2036.

CHEN, H.-T., WEI, L.-Y., HARTMANN, B., AND AGRAWALA,
M. 2016. Data-driven adaptive history for image editing. In I3D
’16, 103–111.

COHEN-OR, D., AND ZHANG, H. 2016. From inspired modeling
to creative modeling. Vis. Comput. 32, 1 (Jan.), 7–14.

DENNING, J. D., AND PELLACINI, F. 2013. Meshgit: Diffing and
merging meshes for polygonal modeling. ACM Trans. Graph.
32, 4 (July), 35:1–35:10.

DENNING, J. D., KERR, W. B., AND PELLACINI, F. 2011. Mesh-
flow: Interactive visualization of mesh construction sequences.
ACM Trans. Graph. 30, 4 (July), 66:1–66:8.

DENNING, J. D., TIBALDO, V., AND PELLACINI, F. 2015.
3dflow: Continuous summarization of mesh editing workflows.
ACM Trans. Graph. 34, 4 (July), 140:1–140:9.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling: A Procedural
Approach, 3rd ed. Morgan Kaufmann Publishers Inc.

EMILIEN, A., VIMONT, U., CANI, M.-P., POULIN, P., AND
BENES, B. 2015. Worldbrush: Interactive example-based syn-
thesis of procedural virtual worlds. ACM Trans. Graph. 34, 4
(July), 106:1–106:11.

FU, H., ZHOU, S., LIU, L., AND MITRA, N. J. 2011. Animated
construction of line drawings. ACM Trans. Graph. 30, 6 (Dec.),
133:1–133:10.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Trans. Graph. 23, 3 (Aug.),
652–663.

GARG, A., JACOBSON, A., AND GRINSPUN, E. 2016. Com-
putational design of reconfigurables. ACM Trans. Graph. 35, 4
(July), 90:1–90:14.
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A User study

user
manual autocomplete

min op min op
P1 22 484 13 212/279
P2 24 507 16 229/282
P3 26 529 18 240/292
P4 29 542 21 262/312
P5 25 533 19 225/298
P6 18 480 14 217/272
P7 18 472 15 220/297
P8 20 485 14 235/301

mean 23 504 16 230/292

Table 1: Objective performance from 8 novice participants. Statis-
tics include total completion time in minutes and number of strokes
under fully manual mode; total completion time and number of
manual/accepted-hint strokes with our autocomplete functions.

The participant performance has been recorded under Table 1. Be-
low are more detailed participant feedbacks for our user study con-

ducted on January 13, 2017.

Q: What is your score for the following functions, the higher the
better?

See Table 2.

user
hint

clone
symmetry

lock camera paint
- select + select hint/clone

P1 6 7 6 6 6 6 5
P2 6 6 7 6 6 5 5
P3 6 6 5 7 5 6 5
P4 6 6 7 7 7 5 5
P5 6 6 7 6 6 5 5
P6 5 6 6 6 6 5 4
P7 6 6 7 6 6 6 5
P8 5 6 7 6 6 5 5

mean 5.75 6.125 6.5 6.25 6 5.375 4.875

Table 2: Subjective feedback from 8 novice participants in a 7-Likert
scale for various modes of our system.

Q: What are your opinions and suggestions for our prototype, in-
cluding the main UI and various functions?

P1: It is good that the hints do not interrupt the usual process so I
could decide to accept or not, I suggest improving the UI, and some
icons to better control the camera position.

P2: Overall, I think it is pretty good and useful software for mod-
elling, but maybe can add an “eraser function”:

After sculpting, I might want to smooth a certain region,
but I do not want to use the smooth function again and
again. Maybe if you provide a function to let me select
the region I want to smooth, and then the whole region
could automatically become smooth at one go.

P3: It would be better if the hints for the strokes are more flexible
(e.g., the number of suggestions of the potential strokes can be large
enough).

P4: The camera movement could be more improved, as current one
is a bit conservative. Overall the experience is interesting compared
to my usual modeling without hints.

P5: Make users’ strength more “stable”:

As sculpting effect has large relationship with the tablet
strength, I used tablet before for painting, but for that
case, the strength is not that sensitive and important.
I wonder whether you could automatically make some
“refinements” for those badly controlled strokes, so
novices like me could more easily control the stroke.

P6: It is a special experience for me to try this tool, I do a lot
modeling via Maya, even though it is very different from yours, the
hints and clone are provided as suggestions, and we could preview
them. If more functions in other modeling tools could be provided
would be better, the UI could be designed to be more beautiful.

P7: If the hints could work for more random strokes, it would be
better; the auto and clone functions are useful.

P8: The symmetry mode with hints on both sides helps me reduce
manual strokes. I wonder whether painting for such kind of model-
ing would be useful enough compared to other functions.


