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Fast and Deep Deformation Approximations

STEPHEN W. BAILEY, University of California, Berkeley
DAVE OTTE, DreamWorks Animation
PAUL DILORENZO, DreamWorks Animation
JAMES F. O’BRIEN, University of California, Berkeley

Fig. 1. Comparison of a deformed mesh using a fully evaluated rig, our fast deformation approximation, and linear blend skinning. The meshes are colored to
indicate the distance error for each vertex compared with the ground truth mesh.

Character rigs are procedural systems that compute the shape of an animated
character for a given pose. They can be highly complex and must account
for bulges, wrinkles, and other aspects of a character’s appearance. When
comparing film-quality character rigs with those designed for real-time ap-
plications, there is typically a substantial and readily apparent difference in
the quality of the mesh deformations. Real-time rigs are limited by a compu-
tational budget and often trade realism for performance. Rigs for film do not
have this same limitation, and character riggers can make the rig as compli-
cated as necessary to achieve realistic deformations. However, increasing
the rig complexity slows rig evaluation, and the animators working with
it can become less efficient and may experience frustration. In this paper,
we present a method to reduce the time required to compute mesh defor-
mations for film-quality rigs, allowing better interactivity during animation
authoring and use in real-time games and applications. Our approach learns
the deformations from an existing rig by splitting the mesh deformation
into linear and nonlinear portions. The linear deformations are computed
directly from the transformations of the rig’s underlying skeleton. We use
deep learning methods to approximate the remaining nonlinear portion.
In the examples we show from production rigs used to animate lead char-
acters, our approach reduces the computational time spent on evaluating
deformations by a factor of 5×-10×. This significant savings allows us to
run the complex, film-quality rigs in real-time even when using a CPU-only
implementation on a mobile device.
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1 INTRODUCTION
The level of detail that can be included in character rigs for in-
teractive applications such as video games and virtual reality is
limited by computational costs. These types of rigs need to run at
interactive rates, and therefore need to be evaluated as quickly as
possible. Because of this limitation, real-time character rigs often
lack a high level of detail. In contrast, film-quality character rigs
are not limited by hard computational constraints and their mesh
deformations appear more detailed and complex. Unfortunately,
film-quality character rigs are not suitable for real-time applications.
A single film-quality rig might be able to run at interactive rates
on a high-end machine, but typically only after tremendous effort
has been spent to optimize the rig, parallelize its evaluation, and
shift parts of the computation to the high-end machine’s GPU. We
would like to use these high quality rigs to increase the detail of
characters in interactive applications, particularly those running
on modest computing platforms such as mobile devices or game
consoles. However, directly plugging these computationally inten-
sive rigs into an interactive application is generally infeasible. The
performance increases that come as hardware improves over time
is unlikely to bring film-quality rigs to real-time, because as perfor-
mance improves, the level of complexity and fidelity one expects
in a film rig also tends to increase. Furthermore, many of these
real-time applications need to run on modest computing hardware
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Fig. 2. Our approximation method learns the deformation system of a character rig by splitting the mesh deformation into a linear portion (Section 3.1.1) and
a nonlinear portion (Section 3.1.2). The linear approximation uses rigid skinning, and the nonlinear approximation is learned from a set of training examples
generated from the original rig evaluation function (Section 3.4).

such as phones or game consoles. Assuming the application is run
on a fully loaded high-end machine is reasonable for users who are
professional animators, but not for most other users.

To address this limitation, we present a data-driven approach to
learn a computationally less expensive approximation for character
rigs. Our approximation method reduces the computation enough
to evaluate film-quality rigs in real-time on mobile devices. An
overview of the method is outlined in Figure 2. Most character rigs
are designed with two main components: a skeletal motion system
and a deformation system [McLaughlin et al. 2011]. The skeletal
motion system is responsible for mapping the input rig parameters
that specify a pose to a configuration of the character’s skeleton
which is composed of bones and joints. The deformation system
then maps the skeleton configuration to the final mesh geometry.
The deformation system determines how the character’s skin moves
and includes effects such as muscle bulging and and skin wrinkles. In
most character rigs, the deformation computation typically requires
the most time and thus is a bottleneck.
We propose a method to approximate the deformation system

faster than the original. Given an input skeleton, our system can
significantly speed up the overall rig evaluation by dramatically
improving the speed of the deformation system. Furthermore, our
method achieves a high level of accuracy such that errors are not
visually apparent.

2 RELATED WORK
A common method for rigging a character involves first defining an
underlying skeleton and then deforming the character’s mesh based
on the positions and orientations of the skeleton’s bones. One of
the fastest methods to compute the deformation from the skeleton
is linear blend skinning or skeleton subspace deformation as de-
scribed in [Magnenat-Thalmann et al. 1988]. This method computes
the deformation of a mesh from a rest pose as a weighted sum of the
skeleton’s bone transformations applied to each vertex. Although
linear blend skinning can compute deformations quickly, these de-
formations can suffer from volume loss and the “candy wrapper”
problem. Prior research has explored methods to solve the short-
comings of linear blend skinning. Multi-weight enveloping [Wang
and Phillips 2002] addresses these problems by using using blending
weights for each entry in the bone transformation matrices, and the
weights are automatically learned from example poses of the rig.

Quaternion-based methods [Hejl 2004], such as spherical blend skin-
ning [Kavan and Žára 2005], are other approaches that address the
limitations of linear blend skinning without significantly increasing
the computational cost of the deformation.

Although linear blend skinning provides a fast method to compute
mesh deformations, there are some types of deformation that are
challenging to express with this approach. For example, skin slide,
muscle bulges, and cloth wrinkles are difficult to achieve using only
linear blend skinning. These effects, however, can be achieved using
additional skinning methods at the cost of additional computation.
Some of these methods include pose space deformations [Lewis et al.
2000; Sloan et al. 2001] and cage-based deformations [Joshi et al.
2007; Ju et al. 2008]. Realistic character deformations can also be
computed through physics-based approaches [Capell et al. 2002],
and highly realistic results can be achieved by accurately modeling
the underlying anatomy of a character [Lee et al. 2009].

Skinning decomposition is the process of identifying bone trans-
formations and bone-vertex weights to best approximate a given
animation with linear blend skinning. Proposed solutions to the
skinning decomposition problem provide a compressed represen-
tation of the animation as well as an efficient method to play back
the animation in real-time. Prior research has explored methods to
approximate arbitrary deformations [James and Twigg 2005; Kavan
et al. 2007, 2010; Le and Deng 2012]. These methods seek to fit a
bone structure to a series of mesh animations and optimize the bone
influences for each vertex to best reconstruct the original animation.
Alternatively, a volumetric approximation can be fitted to an ani-
mation using sphere-meshes [Thiery et al. 2016], and linear blend
weights can be quickly computed with respect to the underlying
spheres. With these methods, large animations can be efficiently
played back using hardware acceleration, and the deformed meshes
can be stored in a compressed format given the fitted bone structure
or sphere-meshes. One drawback of these approaches is that new
animations cannot be quickly fitted to the rigs because the bones
are optimized for a specific set of deformations. Furthermore, an an-
imator would need to learn to use the fitted bone structure in order
to author new animations. Example-based skinning methods have
been developed [Feng et al. 2008; Mohr and Gleicher 2003; Mukai
and Kuriyama 2016; Wang et al. 2007] that uses the original skeleton
from a character rig. These methods use training examples to learn a
deformation model that can approximate mesh deformations given
new skeleton poses not seen during model training.
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A linearizationmethod [Kavan et al. 2009] computes deformations
by adding virtual bones to approximate nonlinear deformations in
a character. This method utilizes the underlying skeleton of a rig,
which allows new skeletal motion to be easily applied to the rig.
However, that algorithm works only for deformations computed
through a differentiable skinning technique such as dual quaternion
blend skinning. Our method, on the other hand, allows for more
general deformations and only assumes that the deformations can
be computed as a function of the character’s skeleton.

Because these skinning decomposition methods compute a com-
pact representation of an animation with bones using linear blend
skinning, the deformation evaluation is fast and efficient. How-
ever, editing the compressed animations can be difficult because
the computed bones are not organized in any meaningful hierarchy.
Some work [De Aguiar et al. 2008; Hasler et al. 2010; Le and Deng
2014; Schaefer and Yuksel 2007] has addressed this limitation by
extracting a skeleton structure with joints while also computing
bone transformations and vertex-bone weights for an example ani-
mation. By providing a hierarchical skeletal system, an animator can
more easily edit an existing motion, but extra computation would
be required to fit the skeleton to a new animation of the same mesh.
These methods approximate mesh deformations when existing ani-
mations are provided with or without an underlying skeleton. Our
method, in contrast, approximates deformations for a mesh without
any example animations; however, it does require that the mesh
have an underlying skeleton. We use the underlying skeleton of a
character rig without modification, which lets an animator author
new poses using the familiar original rig while benefiting from our
fast approximate evaluation.
All of these previous skinning decomposition methods seek to

find compact representation of an animation using bones with lin-
ear blend skinning. Because linear blending is fast, the compressed
animations can be computed quickly, but the limitations of linear
blend skinning can cause inaccuracies and undesirable artifacts. To
improve the speed of linear blend skinning, a sparseness constraint
must be imposed on the vertex-bone weights. In some cases where
a vertex is influenced by a large number of bones, this sparseness
constraint can lead to large inaccuracies in the approximation. One
proposed solution [Le and Deng 2013] to this problem is to com-
press an animation with a two-layer linear blend skinning model,
which accurately reduces the computational cost of evaluating dense
skinning weights.
Our approach is also based on decomposing a deformation with

linear blend skinning. To reduce the computational cost, we assign
each vertex to a single bone, but to overcome the limitations of this
skinning method, we also propose an extra nonlinear step, which
is modeled as a function of all the bones that influence a vertex.
Although our approach does require more computation than a rig
using linear blend skinning, we show that the deformations can
still be computed efficiently for real-time applications and that our
approximation approach can reproduce deformations to a high level
of accuracy on film-quality rigs as seen in our results.

3 METHOD
The rig function r(p) maps a set of artist-level rig parameters, de-
noted with p, to a deformed polygonal mesh. We follow a similar
notation for the rig function as described in [Hahn et al. 2012], and
we assume that the rig function is a black-box. We further assume
that the topology of the mesh is constant for all possible parameters
p, which allows us to express the rig function as V = r(p) where V
is a list of the vertex positions in the mesh. An intermediate step of
the rig function computes the skeleton S of a character. The skele-
ton’s configuration is specified by a set of linear transformations
and translations for each bone in the skeleton. Specifically for a
skeleton with m bones, S = [X1, t1,X2, t2, . . . ,Xm , tm ] where Xj
is the 3 × 3 linear transformation matrix of bone j and tj is the
translation of bone j. The transformations and translations are ex-
pressed in a global coordinate frame. We further assume that the
rig function can be expressed as the composition of two functions:
a skeletal motion system mapping rig parameters to a skeleton and
a deformation system mapping a skeleton to vertex positions. The
skeletal motion system is denoted by S = m(p), and the deformation
system is denoted by V = d(S). Composing these two systems, the
rig function can be expressed as r(p) = (d ◦m)(p).
Our method provides an approach to approximate the deforma-

tion function d(S) by decomposing the function into two parts: a
linear computation and a nonlinear computation. The linear por-
tion uses rigid rotations and translations to deform the vertices in
the mesh according to the bone transformations in the skeleton.
This computation is fast, but the resulting mesh is visibly differ-
ent from the target mesh V = d(S). To correct this difference the
nonlinear component utilizes a universal function approximator to
estimate the remaining residual error between the mesh obtained
from rigid rotations and the target mesh. The nonlinear function
approximator learns from a set of randomly generated skeletons and
corresponding deformed meshes that are computed offline using
the rig function r(p).

3.1 Deformation Approximation
We view the rig function as a deformation applied to a mesh in
some rest pose. This deformation has linear and nonlinear compo-
nents, and when combined the two components fully describe the
deformation applied to the mesh.

3.1.1 Linear Skinning. The linear deformation can be applied
directly from the input skeleton by multiplying the vertices in
the mesh with the bone transformation matrices. In our skinning
method, we assign each vertex to a single bone where the vertex
k is assigned to bone bk . Starting with a mesh in a rest pose V0

and the corresponding skeleton S0, the linear deformation by a new
skeleton S for vertex k can be computed as

d̂k (S) = Xbk

(
X0
bk

)−1 (
v0k − t0bk

)
+ tbk (1)

where X0
bk

and t0bk are the transformation matrix and translation
vector for bone bk in the skeleton S0 of the rest pose, and v0k is the
position of vertex k in the mesh of the rest pose.
We assume that we only have black-box access to the deforma-

tion function, and we therefore cannot rely on information about
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the character rig to identify vertex-bone assignments. Instead, we
assign each vertex to a single bone that best explains the vertex’s
deformation across a set of example poses. The bone assignment
bk is determined by selecting the bone which minimizes the least
squares error of the rigid transformation of the vertex by the bone.
The linear deformation is visibly different from the target de-

formation where | |d(S) − d̂(S)| |2 ≫ 0. We view this residual error
as a nonlinear function, which allows for sophisticated stretching,
compression, and volume preservation. These features cannot be
handled by a linear transformation alone.

3.1.2 Nonlinear Deformation. The residual d(S) − d̂(S) expresses
the error in terms of the global coordinate system and thus depends
on global transformations of the skeleton. Ideally, we would like to
express the residual in such a way that the error for some vertex k
is only affected by a local neighborhood of bones in the skeleton. By
representing the residual locally for each vertex, the error function
becomes easier to learn because the residual for each vertex no
longer depends on the transformations of every ancestor bone in
the skeleton hierarchy.

To specify the residual locally, we define the nonlinear deforma-
tion function for some vertex k as follows

fk (S) =
(
Xbk

)−1 (
dk (S) − tbk

)
−

(
X0
bk

)−1 (
v0k − t0bk

)
(2)

where dk (S) is the position of vertexk as computed from the original
rig deformation function. This function removes the transformation
of the rest pose from the vertex v0k and the transformation of the
deformed pose from the deformed vertex dk (S). The difference of
these two positions gives us the nonlinear deformation of the vertex
in the coordinate space of the bone bk .

The deformation function can now be expressed as

dk (S) = Xbk

((
X0
bk

)−1 (
v0k − t0bk

)
+ fk (S)

)
+ tbk (3)

We denote our approximationwithmodel parameters θ as nk (S;θ ) ≈
fk (S), and the deformation approximation d̃k (S;θ ) can be expressed
as the sum of the linear and nonlinear functions

d̃k (S;θ ) = d̂k (S) + Xbk nk (S;θ ) (4)

The optimal model parameters θ̂ are estimated by minimizing the
squared error loss over a set of n training examples

θ̂ = argmin
θ

n∑
i=1

dk (Si ) − d̃k (S
i ;θ )

2 (5)

Instead of using one function approximator per vertex, we group
the vertices into subsets and train a function approximator that
outputs each vertex in the subset. In order to take advantage of the
local deformation defined in f(S), we separate the vertices of the
mesh into subsets Pi based on the bones that they are assigned to
such that Pi = {k | bk = i}. By dividing the vertices into sets this
way, the nonlinear deformations for vertices in set Pi are defined in
the same coordinate system, which makes the deformation function
easier to learn.

3.2 Implementation
Because the function fPi (S) can be highly nonlinear, we need a
model that is capable of learning arbitrary continuous functions.
Feed-forward neural networks are universal function approxima-
tors [Hornik 1991] that can learn such functions. Given any contin-
uous function, a neural network of sufficient size can approximate
the function arbitrarily closely. This property thus makes neural net-
works good candidates for approximating the nonlinear deformation
component of the rig function.
In our experiments, we trained each neural network with two

fully connected hidden layers and a dense output layer. In the fol-
lowing section, we describe how we determine the number of layers
and the number of hidden units per layer. The hidden layers used
the tanh nonlinearity, and the output layer was a dense linear layer.
Other activation functions such as the rectified linear unit [Glorot
et al. 2011] could have been used, but we only evaluated tanh in
this paper. We trained each network on inputs of the bone transfor-
mation matrices and the translation vectors given in the frame of
reference of the parent bone. The transformation matrix for bone j
with parent p is given as X−1

p Xj , and the translation vector is given
as X−1

p (tj − tp ). The root bone is not provided as an input. In total,
each bone contributed 12 inputs to the neural network. The models
were trained using the Adam optimization method [Kingma and
Ba 2014] with the following values for the parameters: α = 0.01,
β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

3.3 Model Sparsification
The method presented so far works well to approximate the nonlin-
ear deformation function, but similar results can be achieved with
less computation per neural network. We can increase the speed
of the approximation without significantly affecting the accuracy
by identifying and removing extra computations in the models. We
explored four approaches to reduce the size of the approximation
model: reduce the size and number of the hidden layers in each
neural network, reduce the dimension of the inputs, reduce the
dimensions of the outputs, and reduce the total number of neural
networks evaluated. Reducing the size and number of hidden layers
can be done empirically, and we found that two layers each of 128
nodes in each neural network worked well for our character rigs.

Feed-forward neural networks are composed of a series of dense
layers where the output xi+1 of layer i is used as the input of the
next layer. The output for some layer i is computed as follows

xi+1 = f (Wixi + bi ) (6)

whereWi and bi are unknown parameters that are learnedwhen the
model is trained. The function f (x) is a nonlinear function applied
element-wise to the components of the input vector. The most time-
consuming part of Equation 6 is the matrix-vector product Wixi . If
thematrixWi ism×n, then the complexity of calculating the product
is O(mn). Therefore, to reduce the computational complexity of
evaluating the neural network models, we need to reduce the sizes
of the weight matricesWi .

3.3.1 Input Reduction. Evaluating the first layer of the network
involves a large amount of computation because the dimension of
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the input is large. For some set of vertices Pi , the nonlinear defor-
mation fPi (S) is expressed locally with respect to bone i according
to Equation 2. Because the vertices Pi are primarily deformed by
bones near bone i , this deformation function depends only on the
local bones near the vertices in this set and does not require all of
the bones as input. This invariance to some of the input bones is a
direct consequence of the formulation of fPi (S) in a local coordinate
space of bone i .
Assuming that we have access to the original rig function r(p)

and the skeleton S = m(p), we can identify which bones most
affect the vertices in Pi . Starting in an arbitrarily selected example
pose p′, we perturb rig controls that affect the bones one at a time
and record which bones caused a change in the function fPi (S).
This process is repeated with multiple example poses and with
large perturbations to ensure that all bones affecting vertices in
Pi are identified. We define a subset of the skeleton SPi as the set
of all bones that influence any of the vertices in Pi . We then use
this subset of bones as the input to the model approximating the
nonlinear deformation function for these vertices. The rigs we tested
contained between 100 and 200 bones. After reducing the number
of input bones, each set of vertices tended to have around 20 bones
that contributed to their deformation. By using this reduced input
set, the computational cost of the first layer for each model can be
significantly reduced.

3.3.2 Output Reduction. Next, we consider the size of the output
layer. The output contains 3 values per vertex, and for the rigs that
we tested, there were on the order of hundreds of vertex positions
that each neural network approximated. Unlike the input layer,
each dimension of the output needs to be predicted. However, these
outputs are highly correlated with each other. With this in mind, we
propose using a linear dimensionality reduction method to reduce
the size of the output. Our approach is similar to the approach used
by Laine et al. [2017] in which they use PCA to initialize the final
layer in their network to output vertex positions.
With the data used to train each model, we run PCA on each

matrix V1...n
Pi

containing all of the vertex positions for set Pi across
all n poses in the training set. The matrix V1...n

Pi
is a 3|Pi | ×n matrix

where there are |Pi | vertices and n training examples. PCA gives us
a transformation T that maps the set of vertex positions to a lower
dimensional space. Next, we need to determine how many principal
components to use in the linear transformation T. Keeping more
components will increase the accuracy of the model at the cost of
more computation time. We decide the number of components to
keep by finding the minimum amount that keeps the reconstruction

error
V1...n

Pi
− TT TV1...n

Pi

2
F
below some user-specified threshold.

In our experiments, we found that keeping the average per-vertex
distance error below 0.03 cm was sufficient to maintain the visual
accuracy of the approximation without adding too many principal
components to the transformation. This threshold choice lead on
average to 20-30 principal components per model, which provided a
reasonable balance between speed and accuracy. Once we found the
transformation T, we appended it to the end of the neural network
model as a final dense layer with a linear activation.When the model

is trained, the weights of this last layer are not optimized so that
the transformation is maintained.

3.3.3 Model Count Reduction. One final approach to reduce the
computation of the approximation is to reduce the total number
of neural networks in the approximation model. In our method as
currently described so far, one model is trained per bone; however,
we found that some bones had few vertices assigned to them. As a
result, we were training some models to predict the deformation of
a small set of vertices. These neural networks can be removed, and
their vertices can be reassigned to other bones.

To remove networks approximating small subsets of vertices, we
greedily removed the bone with the fewest vertices assigned to it
and iteratively recomputed the vertex subsets Pi . We continued this
process until the average vertex assignment error

e =
n∑
i=1

Vi − d̂(Si)
2
F

(7)

grew larger than some pre-defined threshold. Before removing any
bone, we recorded the best average vertex assignment e0 error given
by Equation 7. Next, we removed bones one at a time. In each
iteration, the bone with the fewest number of vertices was removed,
and the vertices assigned to that bone were reassigned to the next
best bone that minimized the error.
At each iteration, we recomputed the assignment error ei , and

we stopped this procedure when ei > τe0 for some scaling factor
τ > 1. In our experimental rigs we found that values of τ ∈ [1.1, 1.5]
worked well. Higher values of τ will lead to fewer models that need
to be trained, but fewer models could lead to larger approxima-
tion errors. If a small value of τ is chosen, then more models will
be used, but the approximation errors will be smaller. Thus, the
choice of τ provides a trade-off between speed and accuracy in the
approximation.

3.4 Data Generation
The choice of training data is important for the rig approximator’s
accuracy when run on test inputs. Feed-forward neural networks do
not extrapolate well from training data, and therefore, the training
data needs to span the range of all possible poses that could be
expected as inputs when the approximator is used. However, if
the training set includes a large range of motion with improbable
poses such as arms rotated into the torso or body parts stretched
to twice their length, then these types of poses would represent
large deformations that the approximator would need to learn. As
a result, the neural network would learn these large deformations
while sacrificing accuracy for smaller deformations. However, we
desire a high accuracy for these smaller deformations because they
are more likely to be encountered when the model is evaluated.
Here, we describe a method to create a data set that contains all

of the probable poses while avoiding poses with large deformations
that are unlikely to occur in an animation. First, we consider each
joint in the skeleton independently. For each joint, we manually
identify a reasonable range of motion for the rotation and scaling.
For example, we might specify the range of the knee joint from 0 to
150 degrees. We define a range for each joint in the skeleton and
generate new poses by randomly sampling independently from each
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joint range. Each value is sampled from a Gaussian distribution with
1.5 standard deviation aligned with and scaled to the specified range.
Specifically for some rig parameter with a range [a,b], the parameter
values are drawn from the following Gaussian distribution:

N (0.5 · (a + b), 1.5 · (b − a)) (8)

We re-sample values that lie outside of the range [a,b]. This sam-
pling method ensures that the full range of motion for each joint is
contained in the training set. Samples near the ends of the range
of motion occur in the data set less frequently. If we assume that
poses near the ends of the joint range create poses that an animator
typically will not use, then because there are fewer of these exam-
ples in the training set, the approximator will focus on learning the
deformations near the middle of the range of motion.

Our sampling method creates poses that globally appear invalid.
Because our approximation method learns deformations locally, the
global appearance of the character is less important than the local
deformations around the joints of the character. Because each joint
is sampled within the user-defined range of motion, meaningful
local deformations of the mesh are contained in the samples, and
our approximator can accurately learn from these example poses.
Figure 3 shows several examples of poses generated by our method.
Other sampling methods could be used where appropriate. For

example, a character that has a walking mode and flying mode
that it switches between could use bimodal sampling. Additionally,
semantic knowledge about how a character moves could be used
for customized sampling. If example animations for the character
are available, then supersampling methods could be used [Holden
et al. 2017] to generate example poses similar to the animation.

4 RESULTS
We are interested in two key aspects of our deformation approxima-
tion: model accuracy and model speed. Model accuracy is important
because we want to minimize the visual differences between the
approximated mesh and the original deformed mesh. If the approxi-
mation is noticeably different than the original, then this method
might not be suitable for all applications. The speed of the approx-
imation is also important. On the rigs that we tested, our method
took significantly less time to evaluate the rig compared with the
original rig function. With a fast rig approximation, a highly com-
plicated character can be evaluated at interactive rates even on
low-end machines and mobile devices.

We approximated the deformation functions of four film-quality
character rigs: Po, Shifu, and Tigress from Kung Fu Panda 3, and
Astrid from How to Train Your Dragon 2. All of these character rigs
were originally optimized to run on high-end machines. Table 1
shows the size of the models trained for all four rigs including the
total memory required to evaluate the approximation models. In all
of the approximators, we used two nonlinear hidden layers with
the tanh activation function, and each hidden layer consisted of 128
nodes. We found that generating between 10,000 and 20,000 example
poses was sufficient to train accurate approximation models for each
rig.

Table 1. Statistics of the approximation models trained for the character
rigs.

Tigress Shifu Astrid Po
Vertices 16,206 14,706 168,635 13,800

Character Height 182 cm 86 cm 194 cm 191 cm
Models 67 73 45 40

Avg. PCs used 22.6 19.5 24.5 29.7
Avg. input bones 26.9 22.3 14.6 57.75

Model memory size 11.5 MB 10.7 MB 67.5 MB 27.5 MB

Table 2. Mean and max approximation errors for each model tested on a
walk cycle.

Tigress Shifu Astrid Po
Mean error 0.087 cm 0.016 cm 0.104 cm 0.143 cm
Max error 2.78 cm 1.10 cm 2.16 cm 4.80 cm

4.1 Model Accuracy
To evaluate the accuracy of our models, we measured the average
per-vertex distance error of the approximated mesh as well as the
largest single vertex error. We are interested in the largest error
because even if the average error is small, a single misplaced vertex
could create undesirable results. For each character, we evaluated
a walk-cycle animation and computed the errors across all frames
of the animation. The approximation errors are reported in Table 2.
Figure 6 shows the distribution of vertex errors for each walking
animation. From these plots, we observe the number of vertices falls
off roughly exponentially with the distance error.

Figure 4 shows a side-by-side comparison of the mesh generated
through the full rig evaluation and the approximated mesh for a
frame of Astrid walking. Our method does not handle facial anima-
tion, and for each tested animation, we turned off all face controls. A
region with large error in the approximation is found in the middle
of Astrid’s skirt. The deformation of this area is controlled by both
legs, which appears to cause some inaccuracy in the approximation.

We additionally evaluated our method on more dynamic motions
that contain poses near the edge or beyond the range of motion that
the approximation models were trained on. We tested animations of
martial arts moves for both Shifu and Tigress. The mean and max er-
rors are presented in Table 3, and the distribution of errors is shown
in Figure 7. We found that the largest errors tend to occur in the legs
during kicking motions. Specifically, the legs are stretched beyond
what the approximator was trained on. Because the model did not
learn from example poses with a large amount of stretch, it fails on
this particular pose from the animation. However, because the error
is still small relative to the scale of the character and because the leg
is stretched for a brief, dynamic moment, the approximation error
is barely noticeable when viewing the animation. Figure 5 shows
the results of our approximation on a frame of animation with the
stretched leg.

4.2 Comparison
We compare our approach with linear blend skinning (LBS) and
the rotational regression (RR) method of [Wang et al. 2007]. Like
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Fig. 3. Example poses of Po and Shifu created by our data generation method. The poses do not look like anything an artist would create, but the local
deformations of the mesh are still meaningful.

Fig. 4. Side-by-side comparison of the ground truth mesh (left) and the
approximation (center). The vertices of the approximated mesh are colored
to indicate the per-vertex distance error (right). Errors above and below the
range of the scale are clamped to the ends of the color range. All distances
are measured in centimeters.

Fig. 5. Side-by-side comparison of the ground truth mesh (left) and the
approximation (right) for a frame of the dynamic motion of Tigress. The
most noticeable difference is the shape of the stretched leg.

Table 3. Mean and max approximation errors dynamic animations tested
on the Tigress and Shifu rigs.

Tigress Shifu
Mean error 0.208 cm 0.041 cm
Max error 19.17 cm 8.14 cm

(a) Tigress (b) Shifu

(c) Astrid (d) Po

Fig. 6. Log histogram plot of the distribution of per-vertex approximation
errors for the walk cycle animations. All distances are measured in centime-
ters.

(a) Tigress (b) Shifu

Fig. 7. Log histogram plot of the distribution of per-vertex approximation
errors for the dynamic animations for Tigress and Shifu. All distances are
measured in centimeters.

our algorithm, these two other methods can approximate the de-
formation function given any possible input pose. Thus, we can
directly compare the accuracy of our approximation with these two
methods.
For LBS, we estimate the bone weights for each vertex using

example-based skinning decomposition [Mohr and Gleicher 2003].
We do not add any additional bones to the skeleton when we solve
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for the vertex weights. We experimented with many different values
of the sparseness constraint K , which determines the total number
of joints that can influence each vertex.

The rotational regression method described in [Wang et al. 2007]
approximates the deformation gradients of the triangles in a char-
acter’s mesh. Their model uses linear regression to approximate
deformation gradients from bone transformations. In their method,
they only used at most two bones to approximate the gradients.
However, we found that using only two bones was insufficient to
approximate the deformations of our character rigs. We thus show
results with the original method using K = 2 bones per triangle and
with the method using K = 15 bones to approximate the gradients.
To achieve the most accurate results, our implementation does not
include the reduced formulation presented in their paper.

In Figure 8, we show a comparison of deformations approximated
with linear blend skinning, rotational regression, and our method.
We show the deformations using LBS computedwith different values
of K ranging from K = 1 to K =m wherem is the total number of
bones in the skeleton as well as RR using the original K = 2 as well
as K = 15 bones as inputs. Visually, we can see that our method
outperforms LBS and RR for this example pose. For LBS with K > 1,
the deformations suffer from significant volume loss in the legs and
the arms. In our method, this volume loss problem is not apparent,
and the approximated deformation is closer to the original mesh
than any of the meshes generated with LBS. In the case of K = 1
(Figure 8a), volume loss is not seen in the deformation because no
transformations matrices are blended together. However, most of
the errors occur from the vertices moving tangentially to the surface
of the target deformation as shown in Figure 9. This type of error in
the deformation would cause undesirable stretching and distortion
of any texture applied to the mesh.
We further compared our method with LBS and RR for each

walking and kungfu animation. In Table 4, we present the average
approximation errors for all of the animations using our method
compared with the other methods. Our algorithm learns from a
separate training set described in Section 3.4 while LBS and RR are
trained on the same animation on which the errors are measured, a
situation which benefits LBS and RR in the comparison.
Following [Wang et al. 2007], we also compute the envoloping

error (EE)

EE = 100

√√√√√√√ ∑N
i=1

∑V
k=1

vik − v̂ik

2∑N
i=1

∑V
k=1

vik − c
(
v0k

)2 (9)

where v̂ik is the approximated vertex position and

c
(
v0k

)
= Xi

bk

(
X0
bk

)−1 (
v0k − t0bk

)
+ tibk (10)

is the function that rigidly transforms the rest pose vertex position
by the single best bone that explains its deformation. The envolop-
ing error measures only local errors as opposed to global errors.
We present the average error and the enveloping error for each
animation using each approximation method in Table 4.

(a) LBS K = 1 (b) LBS K = 5

(c) LBS K = 10 (d) LBS K = 15

(e) LBS K =m (f) RR K = 2

(g) RR K = 15 (h) Our Method

Fig. 8. Our method compared with linear blend skinning using at most k
bone weights per vertex and rotational regression using K = 2 and K = 15
input bones per deformation gradient. The deformation errors are denoted
by the vertex color. Gray indicates no error while red indicates large error.
The wire-frame of the ground truth mesh is rendered on top of each image
to help visualize the errors.

For each animation, our method is more accurate than LBS with
both K = 4 and K = m. Furthermore, our method is more accu-
rate than rotational regression in each tested animation with the
exception of the walk cycle for Tigress when K = 15. The mesh
deformations on the characters we tested have regions where the
vertex positions depend on more than two bones such as in the
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Table 4. Mean approximation errors and enveloping errors (EE) using our method compared with linear blend skinning (LBS) with K = 4 and K =m and
rotational regression (RR) using the original choice of K = 2 as well as K = 15 input bones. The comparison is shown for all of the test animations with all of
the rigs. EE is defined in Equation 9.

Our Method LBS (K = 4) LBS (K =m) RR (K = 2) RR (K = 15)
Mean EE Mean EE Mean EE Mean EE Mean EE

Tigress Walk 0.085 cm 18.47 0.365 cm 85.51 0.079 cm 20.29 0.188 cm 37.07 0.063 cm 11.78
Tigress Kungfu 0.207 cm 21.35 0.788 cm 65.12 0.640 cm 52.75 1.052 cm 86.95 1.033 cm 84.85

Shifu Walk 0.015 cm 6.88 0.171 cm 57.58 0.061 cm 19.83 0.145 cm 38.62 0.110 cm 26.85
Shifu Kungfu 0.043 cm 17.55 0.331 cm 66.71 0.283 cm 59.19 0.349 cm 56.93 0.336 cm 52.85

Po Walk 0.143 cm 19.03 0.307 cm 51.02 0.155 cm 23.01 0.321 cm 41.03 0.163 cm 23.46
Astrid Walk 0.104 cm 21.53 0.270 cm 62.35 0.116 cm 30.41 0.279 cm 66.74 0.257 cm 64.44

(a) LBS K = 1 (b) Ground Truth

Fig. 9. Side by side comparison of LSB with K = 1 (left) and the target
deformation (right). Although the shape of the meshes appear similar, the
vertices in the LBS deformation are moved tangentially along the surface,
which can cause undesirable effects when applying textures to the mes.

hands and in the torso, and our results show that rotational regres-
sion performs better when more bones are provided as input. In
Astrid’s mesh, there are many small, unconnected meshes such as
the spikes in her skirt. No vertex on these meshes can be accurately
placed using rigid skinning with a single bone, which the rotational
regression method relies on. Thus, the error from the rotational
regression approximation is clearly visible as seen in Figure 10.
We did not compare our deformation approximation with skin-

ning decomposition methods that add bones to a character rig. Skin-
ning decomposition methods solve the problem of optimally fitting
bones to a mesh when an existing animation is provided. The advan-
tages of these types of methods are that they can have arbitrarily
high accuracy when reproducing the example animations [Kavan
et al. 2009] and that they can play back the example animations at a
fast rate. Our method, in contrast, solves the problem of approxi-
mating mesh deformations given a character rig with an existing
skeleton but without any example animations. Because of the dif-
ference in the type of problem that our method solves and the type
that skinning decomposition methods solve, we do not compare our
approach with these algorithms.

4.3 Model Speed
As seen in Table 5, the run-time of our approximation compared
to the run-time of the original rig evaluation demonstrates the
computational savings that can be achieved with our method. To
train our models, we used Theano [Theano Development Team
2016] in a Python environment. Once the models were trained, we

Fig. 10. Close-up of Astrid’s skirt for the original mesh compared with
our method, LBS, and RR. Our method more accurately approximated the
vertices on the skirt. LBS produced visible errors in the middle of the skirt
because those vertices cannot be placed accuratly as a linear combination
of the bones. RR produced visible errors because the spikes on the skirt are
separate meshes and cannot be placed accurately because RR relies on rigid
skinning to fix the location of at least one vertex in each mesh.

evaluated them in our own multi-threaded C++ implementation.
During training and testing, we use only the CPU to evaluate the
networks. We found that running the models on the GPUwas slower
than the CPU. This slower performance is caused by the models
having large inputs and outputs compared to the size of the hidden
layers in the network. Thus, most of the time spent evaluating the
network on the GPU was spent transferring data.
The training time for each approximation model took approxi-

mately 2-3 hours with the majority of the time spent evaluating the
original character rig to generate the training data. Once trained,
we evaluated the speed of the model by measuring the evaluation
time through the model for a single input pose. Multiple input poses
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can be passed into the model for a single evaluation, which would
utilize matrix-matrix multiplications through the neural network
as opposed to matrix-vector. Evaluating the model with multiple
input poses would have a faster run-time per input compared with
evaluation on poses one at a time. This speed increase comes from
matrix-matrix multiplication running faster than separate matrix-
vector multiplications for each input when using highly optimized
linear algebra packages.
Despite the performance gains from evaluating multiple input

poses simultaneously, we timed the approximation models evalu-
ating inputs one at a time to demonstrate the applicability of our
method for interactive applications. In Table 5, we compare the run-
time of our method with Libee [Watt et al. 2012], a highly optimized,
multi-threaded rig evaluation engine, on four different character
rigs. All of the character rigs have been optimized to evaluate as
fast as possible in Libee. Because our method approximates only
the deformation system of the character, the times we report from
Libee are measured by the difference in time between when the
rig evaluation starts and finished all computations for the defor-
mation system. We present times for running the rig evaluation
in both parallel and single-threaded implementations. We ran our
experiments on a machine with an Intel Xeon Processor E5-2690 v2
running at 3.0GHz with 10 cores and 92GB of RAM. In both cases,
our approximation method outperforms Libee by up to a factor of
10. The largest performance gains are observed when comparing
the parallel implementations.

In addition to Libee, we compare our method with the weighted
variant [Kurihara andMiyata 2004] of pose space deformation [Lewis
et al. 2000]. Like our method, PSD can be used to add a corrective
offset to overcome the limitations of linear skinning. To compare the
timing of our method withWPSD, we replace the neural networks in
each nonlinear deformer and use WPSD to predict the same vertex
offsets given the same input bones from the skeleton. We test WPSD
using 10, 50, and 100 example poses from the test animations. The
timing results using WPSD as well as the timing results evaluating
the linear only skinning are shown in Table 5. Although the timing
of our method is comparable to WPSD using 100 example poses,
we would like to point out that the speed of WPSD depends on the
number of example poses.

4.4 Applications
Our method provides a fast approximation to the deformation sys-
tem, which allows a high-quality character rig to be evaluated in
real-time on a low-end system or even a mobile device. To demon-
strate our approach, we implemented the approximation on an iPad
and evaluated both Astrid’s and Po’s character rigs on the device.
Table 5 shows the timed results on the iPad. For both rigs, our ap-
proximation runs faster on the mobile device compared with the
full evaluation of the deformation system running in parallel on a
high-end machine using Libee.
We implemented a posing application for the iPad in which the

user can pose the arms and legs of the character using IK controls.
Figure 11 shows a screenshot of a user interacting with the ap-
plication to pose Po. Because our method only approximates the
deformation system, we still need to compute the input skeleton

Table 5. Timing comparison in milliseconds for the deformation systems
of the characters evaluated with Libee and our approximation using both
a parallel implementation and a single-threaded implementation as well
as the timing for the approximation run on a mobile device for the Astrid
and Po character rigs. We also provide timing for WPSD using 100, 50,
and 10 example poses and timing for the linear only skinning. The timings
for the iPad, WPSD, and linear skinning are all evaluated on a parallel
implementation on the CPU.

Tigress Shifu Astrid Po
Libee serial 65.2 ms 43.1 ms 142.5 ms 89.6 ms

Our approx. serial 10.6 ms 10.2 ms 62.0 ms 9.8 ms
Libee parallel 20.6 ms 8.7 ms 32.8 ms 28.2 ms

Our approx. parallel 2.7 ms 1.5 ms 7.7 ms 2.2 ms
iPad N/A N/A 28.6 ms 7.7 ms

WPSD 100 1.5 ms 1.5 ms 9.0 ms 1.4 ms
WPSD 50 1.0 ms 1.0 ms 7.6 ms 0.9 ms
WPSD 10 0.7 ms 0.6 ms 6.7 ms 0.6 ms

Linear only 0.5 ms 0.4 ms 3.2 ms 0.4 ms

Fig. 11. Posing example on iPad.

separately. The skeleton computation in Libee for both character
rigs takes approximately the same amount time as the deformation.
Thus, using Libee to compute the skeleton is impractical for our
application. Instead, our iPad application uses a simplified skeleton
system to compute only the joint angles from the IK controls, which
allows our demo to run in real-time. See the supplemental video for
a recording of a user interacting with our application.

5 DISCUSSION
We have presented a method that can accurately approximate mesh
deformations for film-quality character rigs in real-time. Ourmethod
relies on defining the deformations in a local coordinate system
to reduce the complexity of the nonlinear deformation function
that we approximate. We use deep learning methods to learn these
deformations and are able run the approximation in real-time.

5.1 Limitations
Our method assumes that mesh deformations are a function only
of the skeleton. However, character rigs for feature films may have
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additional deformations that rely on rig parameters that are not
associated with bones. Currently, our approach is unable to learn
these types of deformations, but the algorithm we have described
can be modified if the additional rig parameters influencing these
deformations are given as inputs to the approximation. Additionally,
because our method only computes the approximation per pose, it
cannot handle dynamics or non-deterministic behavior. Approximat-
ing these types of behaviors could make for an interesting extension
to our method.

Deformations of a character’s face is an example of deformations
that rely both on bone transformations and additional rig parameters.
In film-quality rigs, the face is animated with high-level artistic
controls. Unlike the deformations on a character’s body, the face
deformations rely mostly on the high-level controls rather than
the underlying skeleton. This difference would create a significant
problem when directly applying our method to approximate the
face. If our method were used to approximate the face deformation,
the vertices on the face would be assigned to a small set of head
bones that do not explain most of the deformation of the mesh.
Furthermore each vertex might be affected by large number of rig
parameters, which leads to a high-dimensional input for each vertex.
Because the input dimension would be large and most of the facial
deformation would need to be learned, training an approximator
with our deep learning method would be challenging.

5.2 Linear Component Alternatives
From Figure 8, we can see that the approximation grows closer to
the original mesh as K increases. Because LBS can be computed
quickly, our method could compute the linear deformation compo-
nent from Equation 1 using some K > 1, and this would reduce the
residual error that the nonlinear function approximators need to
learn. However, we found that in practice using a larger K does not
have a significant visual impact on the results.
Delta Mush [Mancewicz et al. 2014] is a type of deformation

that aims to preserve the volume of a deformed mesh. Additionally,
Delta Mush can easily be applied to a character rig without requiring
any fine-tuning. Although this method is not a linear deformation,
by preserving volume, Delta Mush could bring the deformed mesh
closer to the target deformation. As a result, the remaining nonlinear
deformation could be easier to learn and could be approximated
with smaller and faster neural networks. Using Delta Mush as an
alternative for the linear component of our method could be an
interesting area of exploration.

5.3 Nonlinear Component Alternatives
Although pose space deformation can approximate mesh deforma-
tions faster than our method if sufficiently few example poses are
provided, the quality of the approximation depends heavily on the
selected poses. We found that using poses generated from our train-
ing set described in Section 3.4 as example poses for PSD does not
result in an accurate deformation approximator. Better results could
be achieved by manually selecting example poses to ensure a more
accurate approximation. Our method, in contrast, is able to learn
an accurate approximation from this randomly generated dataset.

5.4 Potential Applications
Our method can be combined with other approaches that can pro-
vide a character skeleton in real-time to create interesting real-time
experiences. For example, motion capture recordings can be used to
drive a character’s skeleton, and our method can use the skeleton
to compute the final deformed mesh of a character. Furthermore,
prior research has explored animation synthesis techniques. Motion
graphs [Kovar et al. 2002] can be used to synthesize controllable
animation at interactive rates. The animation generated by this ap-
proach is a sequence of skeletons, which our method can use to
compute a character’s mesh deformation. Other synthesis meth-
ods use generative models such as Gaussian processes [Grochow
et al. 2004; Levine et al. 2012; Wang et al. 2008] or deep learning
models [Holden et al. 2017, 2016]. All of these motion synthesis
methods output bone positions and rotations for a character, which
form the inputs to our method. Because character skeletons can be
generated using many different techniques, our method can readily
be applied to the outputs of these synthesis algorithms to animate a
film-quality rig in real-time.
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