skip to main content
research-article

Learning three-dimensional flow for interactive aerodynamic design

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a three-dimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body.

Skip Supplemental Material Section

Supplemental Material

089-285.mp4

mp4

171.7 MB

a89-umetani.mp4

mp4

216.4 MB

References

  1. Pierre Baqué, Edoardo Remelli, François Fleuret, and Pascal Fua. 2018. Geodesic Convolutional Shape Optimization. CoRR abs/1802.04016 (2018). arXiv:1802.04016 http://arxiv.org/abs/1802.04016Google ScholarGoogle Scholar
  2. B. Bonev, L. Prantl, and N. Thuerey. 2017. Pre-computed Liquid Spaces with Generative Neural Networks and Optical Flow. ArXiv e-prints (April 2017). arXiv:cs.GR/1704.07854Google ScholarGoogle Scholar
  3. R. Buchheim, R. Unger, P. Jousserandot, E. Mercker, F. K. Schenkel, Y. Nishimura, and D. J. Wilsden. 1983. Comparison Tests Between Major European and North American Automotive Wind Tunnels. In SAE Technical Paper. SAE International.Google ScholarGoogle Scholar
  4. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. ArXiv e-prints (Dec. 2015). arXiv:cs.GR/1512.03012Google ScholarGoogle Scholar
  5. Mengyu Chu and Nils Thuerey. 2017. Data-Driven Synthesis of Smoke Flows with CNN-based Feature Descriptors. Transaction on Graphics (SIGGRAPH) 36(4) (Apr 2017), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jonathan M Cohen, Sarah Tariq, and Simon Green. 2010. Interactive fluid-particle simulation using translating Eulerian grids. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games. ACM, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid Simulation Using Laplacian Eigenfunctions. ACM Trans. Graph. 31, 1, Article 10 (Feb. 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex Meshing Using Closed-form Induced Polycube. ACM Trans. Graph. 35, 4, Article 124 (July 2016), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Michael S. Floater. 2003. Mean Value Coordinates. Comput. Aided Geom. Des. 20, 1 (March 2003), 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder. 2000. Normal Meshes. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kurt Hornik. 1991. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 4, 2 (March 1991), 251--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun. 2014. ℓ1Basedd Construction of Polycube Maps from Complex Shapes. ACM Trans. Graph. 33, 3, Article 25 (June 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hucho. 1998. Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Society of Automotive Engineers, Warrendale, PA.Google ScholarGoogle Scholar
  14. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed Triangular Meshes. ACM Trans. Graph. 24, 3 (July 2005), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Trans. Graph. 32, 4, Article 62 (July 2013), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L'ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. 2015. Data-driven Fluid Simulations Using Regression Forests. ACM Trans. Graph. 34, 6, Article 199 (Oct. 2015), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Tobias Martin, Nobuyuki Umetani, and Bernd Bickel. 2015. OmniAD: Data-driven Omni-directional Aerodynamics. ACM Trans. Graph. 34, 4, Article 113 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mojang. 2009. Minecraft. (2009).Google ScholarGoogle Scholar
  19. Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CoRR abs/1612.00593 (2016). arXiv:1612.00593 http://arxiv.org/abs/1612.00593Google ScholarGoogle Scholar
  20. Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik. 2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM Trans. Graph. 36, 4, Article 157 (July 2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15 (2014), 1929--1958. http://jmlr.org/papers/v15/srivastava14a.html Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Matt Stanton, Ben Humberston, Brandon Kase, James F. O'Brien, Kayvon Fatahalian, and Adrien Treuille. 2014. Self-refining Games Using Player Analytics. ACM Trans. Graph. 33, 4, Article 73 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Matt Stanton, Yu Sheng, Martin Wicke, Federico Perazzi, Amos Yuen, Srinivasa Narasimhan, and Adrien Treuille. 2013. Non-polynomial Galerkin Projection on Deforming Meshes. ACM Trans. Graph. 32, 4, Article 86 (July 2013), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multiview Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). IEEE Computer Society, Washington, DC, USA, 945--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-Maps. ACM Trans. Graph. 23, 3 (Aug. 2004), 853--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2016. Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR abs/1607.03597 (2016). arXiv:1607.03597 http://arxiv.org/abs/1607.03597Google ScholarGoogle Scholar
  28. Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model Reduction for Real-time Fluids. ACM Trans. Graph. 25, 3 (July 2006), 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. K. Um, X. Hu, and N. Thuerey. 2017. Liquid Splash Modeling with Neural Networks. ArXiv e-prints (April 2017). arXiv:cs.GR/1704.04456Google ScholarGoogle Scholar
  30. Nobuyuki Umetani. 2017. Exploring Generative 3D Shapes Using Autoencoder Networks. In SIGGRAPH Asia 2017 Technical Briefs (SA '17). ACM, New York, NY, USA, Article 24, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes. ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM Trans. Graph. 36, 4, Article 72 (July 2017), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Martin Wicke, Matt Stanton, and Adrien Treuille. 2009. Modular Bases for Fluid Dynamics. ACM Trans. Graph. 28, 3, Article 39 (July 2009), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong Xiao. 2014. 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CoRR abs/1406.5670 (2014). http://arxiv.org/abs/1406.5670Google ScholarGoogle Scholar
  35. Kai Xu, Vladimir G Kim, Qixing Huang, Niloy Mitra, and Evangelos Kalogerakis. 2016. Data-driven shape analysis and processing. In SIGGRAPH ASIA 2016 Courses. ACM, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Olek C Zienkiewicz, Robert L Taylor, and P. Nithiarasu. 2013. The Finite Element Method for Fluid Dynamics, Seventh Edition (7 ed.). Butterworth-Heinemann. http://amazon.com/o/ASIN/1856176355/Google ScholarGoogle Scholar

Index Terms

  1. Learning three-dimensional flow for interactive aerodynamic design

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 37, Issue 4
            August 2018
            1670 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3197517
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 July 2018
            Published in tog Volume 37, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader