
The Implementation of PC Scheme

David H, Bartley
John C. Jensen

Computer Science Center
Texas Instruments Incorporated

P.O. Box 226015, M/S 235
Dallas, Texas 75266

A b s t r a c t

PC Scheme is a compiler-based implementation of
Scheme for PC-class machines. The compiler generates
code for an idealized virtual machine which is emulated
with threaded code techniques. The design has traded off
the requirements of space sad speed effectively, resulting
in one of the fastest PC-class LISP systems known to the
authors.

1 I n t r o d u c t i o n

Scheme [RRRS 85] is a lexically ecoped dialect of LISP
which was originally developed at MIT [Steele 78a] and
has subsequently been used extensively for research, ed-
ucation, and application programming. Like COMMON
LISP, Scheme features lexical scoping and first-class func-
tions. Unlike COMMON LISP, Scheme supports continu-
ations as first-class objects and is properly tail-recursive.
Many Scheme dialects, including ours, have also incorpo-
rated environments and engines as first-class objects.

Texas Instruments has been interested in Scheme for
some time as a vehicle for experiments in compilation tech-
niques and the design of architectures for symbolic com-
puting. PC Scheme, a commercial by-product of this re-
search, was created to support the development of such AI
packages and products as TI's~Personal Consu~ant'" and
Arborist.'" Since TI and IBIvi ~ PCs with Inte~ ~-) 8088 and
80286 processors and typical memory capacities of 512K
bytes were to be used as both the development and target
machines for these efforts, PC Scheme was required to be
both fast and small.

Permission to cOW/without fee all or part of this material is granted
provided that the copies are not made or dis~ribuUxl for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires • fee and/or specfic
permission.

Following Powell [Powel184], the design philosophy of
our system is "best simple." Whenever possible, our de-
sign decisions favored the simplest and most cost-effective
alternatives available. Uncommon features were made to
"pay their own way," while common ones were streamlined
as much as possible. The result is a compilation strategy
and virtual machine architecture that are highly tuned to
our purpmes.

2 T h e V i r t u a l M a c h i n e (V M)

The key to a successful LISP implementation on a small
machine is careful design of the environment in which pro-
grams execute. The selection of data representations is
particularly critical because of the pervasive use of type
dispatching in program code and the garbage collector.
Although our requirement for speed dictated a compiler-
based approach, the expected bulkiness of true native code
on 8-bit processors was excessive for the small memories
available. We chose instead to emulate a virtual machine
representing an idealized Scheme architecture. Our VM
simplifies the compiler considerably yet is surprisingly fast.

2.1 V M I m p l e m e n t a t i o n

Threaded code [Bell 73] is a well-known implementa-
tion technique for the emulation of language-specific ar-
chitectures. It combines compact encoding of programs
with rapid execution. Our byto.level encoding is similar
to most Paacal P-code implementations: the byte pointed
to by the emulated "program counter" is used as an in-
de.x into a table of machine language subroutine addresses.
Each of these machine language routines performs an oper-
ation, optionally conditioned by the contents of subsequent
"operand" bytes in the emulated VM instruction stream,
and then executes the NEXT sequence shown below to
fetch and execute the next VM instruction.

xor AX.AX ; c l e a r AX
lods byte p t r ES:[SI] ; get next
mov BX,AX : opcod,
shl BX,I ; make word index
imp op_tabla*[BX] : and Jump

© 1986 ACM 0-89791-2004186t0600-0086 75¢ 86

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319838.319852&domain=pdf&date_stamp=1986-08-08

The emulation overhead for this NEXT sequence repre-
sents about 16% of the total execution time for an average
mix of VM instructions.

As shown in Figure 1, the ~ emulator and that part
of the runtime support which is written in assembly lan-
guage and C consume 137,500 bytes of memory. The rest
of the system is written in Scheme. The first 76,700 bytes
of Scheme code are loaded into the heap during system
initialization. The rest of the system code is autoloaded as
needed.

2.2 V M A r c h i t e c t u r e

Unlike P-code, which is a stack-based architecture ori-
ented towards strongly typed languages, our virtual ma-
chine architecture is register-based and emphasizes the re-
quirements of Lisp-like languages. The choice of a register-
based model was motivated by the desire to investigate
compilation techniques for such register-based machines
as the Motorola 68000, the National /TI 32000, and Berke-
ley's SOAR [Ungar 84], a tagged Reduced Instruction Set
Computer (RISC). The ~ architecture largely follows the
tenets of the RISC philosophy but integrates most low-
level run time features and many commonly used primitive
Scheme functions as VIVI instructions. This is a valuable
aid to increased performance for an emulated VM, though
less appropriate for an actual implementation in hardware.

The heart of the PC Scheme VM is a set of 64 general
purpose registers, R0-R63. Arguments to functions are
passed in registers where they remain available for use un-
til no longer needed or until another function call occurs.
Except as described in section 2.5, all user variables and
temporaries reside in the registers so they may be conve-
niently accessed by VM instructions. There are also spe-
cial purpose registers for the global and fluid environment
pointers, the current code block pointer, and the current
program counter.

The VM is a conventional load/store architecture with
most instructions operating directly on the registers. For
fast decoding, each VM instruction has its own specific
operand format and its handler is responsible for fetching
and operating upon the operand bytes. Register operands
are encoded as the register number scaled by 4, the width
in bytes of an entry in the underlying table of VM "reg-
i s ters / Other operand types include immediate values,
constant table indices, stack frame offsets, and branch dis-
placements. A typical VM instruction is illustrated below.

I n s t r u c t i o n : ADD RS,R7 ; it5 := R5 ÷ R7

Byte 1:
Byte 2:
Byte 3:

0pcode • ADD. encoded as 80
SD operand • It6. encoded as 5*4 = 20
S operand = R7. encoded as 7*4 = 28

Other virtual machine architectures for LISP include
variations on the MIT LISP Machine [Greenblatt 84] and
SPICE LISP /Wholey 84 I. RABBIT ISteele 78b], MAC-
SCHEME, and an unnamed "small Scheme implementa-
tion" at MIT [Schooler 84} propose VMs specific to the
needs of Scheme. Of these, only RABBIT is register-based.

. . D~o~.ptio.
"native code: program

static da ta
runtime stack
C's heap
(subtotal)

Scheme: s tandard system
Autoloaded " Edwin editor

Size (b¢es)
72,000
23,700
12,300
29,500

137,500
76,700

109,000
Scheme: SCOOPS 18,700

structure editor 8,200
miscellaneous 30,900
total 381,000

Figure 1: Memory space allocation

The others employ simple stack models, with instructions
typically operating on implicitly specified operands at the
top of the stack. Like PC Scheme, MACSCHEME and the
MIT "small Scheme" are bytecoded implementations (al-
though the MIT design was never completed). The RAB-
BIT VM is actually a subset of LiSP with global variables
serving as VM registers. SPICE and the LISP Machines
have microcoded implementations.

These LisP-oriented architectures have several features
in common. Generally, instructions operate only on tagged
data and validate the types of their operands. Frequently
used operations like MF, HBER, SYMBOLP, and CONS are im-
plemented as instructions. Except for RABBIT, they have
been designed with reduced compiler complexity as a spe-
cific goal and are oriented primarily to supplying the needs
of software developers rather than to achieving the highest
possible performance.

Conversely, PC Scheme is an experiment in the design
of fast delivery vehicles for AI programs. This has lead us
to consider optimizing compilers and RISC-like, register-
based VMs for the same reasons that they are of interest to
designers of conventional processors. Explicit operand ad-
dressing significantly reduces the number of pushes, pops,
and other data movement instructions generated, resulting
in shorter object programs compared to traditional stack
VMs. Performance is further enhanced by the high average
level of work performed by each V'M instruction compared
to the overhead of the NEXT operation. Much of this work
is dedicated to software tag checking, however--an oper-
ation that can be performed much more effectively with
suitable hardware. We believe that our VM is a suitable
architecture for a RISC implementation.

2.3 M e m o r y Mode l and D a t a Representat ions

PC Scheme memory consists of a linear address space
subdivided into logical pages to support a BIBOP (big bag
of pages) tagging mechanism. An object is represented by
a three byte pointer. The page number and page displace-
ment are stored in the top byte and bot tom two bytes,
respectively.

87

The default page size is computed automatically as
a function of available physical memory each time PC
Scheme is loaded and varies between 3072 and 5136 bytes.
A pointer is mapped into its associated physical memory
address by looking up the base (segment) address for the
page in a table and adding its displacement component.
This mapping permits pages to be placed arbitrarily in
physical memory. A given page may be made larger than
the default value as needed to accommodate extremely
large objects such as code blocks and arrays.

(Although the release~ product is restricted to 640KB
physical memory (768KB for TI PCs), experimental ver-
sions exploiting extended and expanded memories execute
somewhat more slowly due to address mapping complica-
tions.)

The type of a referenced object is determined by in-
specting a table of type attr ibutes indexed by the number
of the page in which it resides. A simple bit test or byte
comparison suffices for all of the da ta type predicates and
to distinguish the various representation formats. An in-
dex byte is also associated with each page entry to allow
fast dispatching on type. Although each page holds objects
of only one type, all objects except list cells, fixnums, and
characters have redundant type headers to aid the sweep
phase of garbage collection.

The PC Scheme da ta types implemented as heap-
allocated objects are list cells, arbitrary-precision integers,
64 bit IEEE floating point numbers, symbols, strings, vec-
tors, continuations, functions, code blocks, I /O ports, and
environments.

Integers in the range -16,384 to +16,383 are repre-
sented as immediate values; a page number is reserved
as a 'fixnum' tag and the numeric value is stored in the
displacement field of the reference. Character objects are
represented similarly.

2.4 G a r b a g e C o l l e c t o r

Long pauses for garbage collection are confusing and of-
ten distressing to end-users of applications written in many
PC LISPs. Although "mark and sweep ~ is acceptably fast
on a nominal 512KB memory, much slower compaction
algorithms are often employed to avoid the effective loss
of space to fragmentation. PC Scheme uses a mixed strat-
egy. When a memory allocation request cannot be satisfied
from a free memory pool, a m~rk and sweep garbage collec-
tion is performed. If this doesn't recover enough memory,
a memory compaction phase is run to coalesce small frag-
ments of free memory into larger blocks.

The memory compaction operation copies referenced
objects from pages which are the least full to those which
are the most full. Thus, it moves the fewest objects possi-
ble to accomplish dense packing of data. Fewer than half
of tl~e objects in the heap are moved, even in the worst case
(typically much fewer since system code is packed densely
by the initial load and is never moved). After the objects
have been moved, a sequential pass is made through mem-
ory to relocate all pointers to moved objects.

The mark and sweep phase causes a pause in execu-
tion of 0.5 to 2.5 seconds for a 512KB 80286 system. The
longest pause when compaction is needed is about six sec.
onds. We consider this delay more acceptable than the
VM overhead that a real-time collector would incur.

2.$ C o n t r o l M o d e l

Unlike most LISps, Scheme provides ~escape functions"
called continuations which may be called any number of
times; the invocation need not be within the dynamic scope
of the binding of the continuation. This behavior rules
out the use of a simple contiguous control stack for the
general case, so a judicious use of heap-allocated structures
is needed. Likewise, the existence of first-class function
objects, called ¢loeures, dictates heap allocation of some
lexical environment bindings.

The control stack holds the state needed to execute a
continuation. Since the compiler is generally unable to de-
termine which control frames will be retained indefinitely,
it optimistically allocates them in a contiguous stack area.
When CALL-¥ITH-CURREIIT-COIITINUATION is invoked, the
stack is copied into the heap to make a continuation object.
To reduce the worst-case cost of this copying and to per-
mit arbi trary growth of the stack, a small buffer is used to
hold the topmost stack frames. When this buffer overflows,
all frames but the currently active one are copied into a
continuation object in the heap. Thus, a continuation is
represented by a chain of such control stack segments.

The compiler identifies those variables which have in-
definite extent because they are freely referenced from clo-
sures and arranges for them to be heap-allocated at run
time. Thus, the da ta structure stored in a closure object
does not reference the stack. Temporaries and variables
which are not accessed freely from any closure are allo-
cated to registers or to locations in the stack.

Smalitalk-80"" procedure activation environments (con-
texts) correspond closely to Scheme closures and continu-
ations. [Deutech 84] and [Suzuki 84] report that 85% or
more of Smalltalk-80 contexts may be allocated in a stack-
like manner since operations that require indefinite reten-
tion of contexts occur infrequently. Deutsch allocates con-
texts created by normal sends on the stack. When a refer-
ence to a context is created (making it an object), space is
allocated in the heap but the context remains cached in the
stack as long as possible. Heap-allocated contexts must be
returned to the stack before they may be executed.

Suzuki also has multiple representations for Smailtalk-
80 contexts but permits a context to be executed in the
heap. As with PC Scheme, a small stack buffer behaves
like a cache for heap-allocated environments and limits the
time taken to save it to the heap.

Both Smalltalk-80 implementations rely on "lazy" allo-
cation methods at run time rather than static analysis at
compile time. We adopt the same approach for continua-
tions because CALL-MITH-CORRENT-CONTINUATION has dy-
namic effects on the retention of environments. We pre-
fer static analysis of free variable references from closures,

88

however, since it allows individual variables to be selec-
tively heap-allocated. Although we make no at tempt to
delay transferring such variables from the stack (or regis-
ters) to the heap, it would be possible to do so.

3 T h e C o m p i l e r

PC Scheme relies solely on its compiler for the evalua-
tion of Scheme programs. An interpreter was considered
but was not implemented for the following reasons:

• Providing both a compiler and an interpreter takes
more space than having either alone, especially when
integrated with a comprehensive system maintenance
facility.

• It can be difficult to guarantee absolute consistency
between two different evaluators. Many users pre-
fer to avoid certain subtle errors by debugging their
programs in their final compiled form rather than in
interpreted form, despite the richer development en-
vironment that interpreters make possible.

• The debugging aids provided with our compiler suffice
for most programmers' needs.

• Our compiler's speed is adequate for interactive de-
velopment, particularly when program modules are
separately compiled and placed in "fast-load ~ format
after they are tested.

The phases of the compiler are: macro expansion and alpha
conversion, local optimization, closure and environment
analysis, code generation, peephole optimization, and as-
sembly. The relative amount of time spent in each phase
is shown in Figure 2. A separate utility is available for
converting files in compiled form into "fast-load" form.

3.1 Local Opt imizat ion

As with most sytems with architectures tuned towards
the needs of LISP, the performance of PC Scheme depends
more on the "fit" of the VM to the needs of the language
than it does on extensive compiler optimization. The lo-
cal optimization phase, called the 8amplifier, is designed
primarily to cope with anticipated inefficiencies in macro-
expanded expressions and to shape the code to fit the pref-
erences of the code generator. The peephole optimizer is
quite effective in overcoming the lack of more intelhgent
optimizations elsewhere; it typically reduces the program
size by a quarter.

A Beta-conversion optimizer similar to the one in RAB-
BIT [Steele 78b I was tried and found to be successful but
proved too slow for our purposes. However, the compiler
produces surprisingly good code in most instances due to
careful tuning of macro definitions, the simplifier, the code
generator, and the peephole optimizer. This can be seen
in the sample code for the Fibonacci function in Figure 3.

Compiler Phase Tsrn¢
macro expansion 18 %
10cal optimization 5 %
closure and any. analysis 6 %-"
code generation 23 %'"
apeephole" optimization] 29 %
assembly [19 %

Figure 2: Relative time spent in each compder phase

3.2 Closure and Environment Analys is

We have found that two related optimizations, avoid-
ing function closures and allocating variables to VM regis-
ters instead of the heap, have considerable impact on the
size and speed of compiled Scheme programs. Following
ISteele 78bl, we analyze each program to determine which
LANBDA expressions require that closure objects be created
at run time because they are treated as data ("funargs') .
All lexical variables whkh must be retained because they
are accessible from such funargs are the1~ marked for heap
allocation in environment objects. The heuristic algo-
rithms used to identify these funargs and variables are fast
but somewhat pessimistic.

Conventional programming languages seldom create a
closure for a procedure at run time because all calls to the
procedure can generally be found through static analysis
by the compiler. This is often the case in Scheme programs
as well and such procedures are well worth identifying. A
related optimization is to determine when a given call to a
closed function can jump directly to the appropriate code
location rather than indirectly through the closure object.
Thus, we distinguish whether a LARBDA expression is closed
from whether a given call to it uses the closure object.

Closure analysis is performed as a simple walk through
the program tree, marking L/~PlBD/L expressions to be closed
whenever any of the following occur:

• The L~4BDA expression appears as a funarg; that is,
other than in the function position of an application
or as the bound value in a LETREC pair.

• The value of the LAMBDA expression is bound by a
LETREC to some variable and that variable appears as
a funarg or its value is reassigned by SET!.

In addition, functions taking an arbitrary number of ar-
guments are always closed. Such functions have argument
lists of the form (A B . C), where C is a so-called rest ar-
gument. This feature was added late in the development
of PC Scheme and is not supported optimally.

Having determined which functions must be closed, the
compiler next identifies those lexical variables which have
indefinite extent in order to allocate space for them in the
heap. All other lexical variables may be allocated to reg-
isters or locations in the stack.

89

(de f ine (f i b n)
(i f (<? n 2)

n
(÷ (f i b (- n 1)) (f i b (- n 2)))))

FIB
LOAD R3, (QUOTE 2) ; r3 := 2
LOAD R2, R1 ; r2 := n
<? R2, R3 ; r2 := (<? n 2)
JUMP L5, MULL?. R2 ; (go L5) i f (n u l l ? r2)
EXIT ; r e t u r n value in r l

L5
PUSH R1 ; save n
~*IlO! R1, (QUOTE "1) : r l := (- n 1)
CALL-0PEN FIB. 0, 0, (1) ; Jar to FIB
PUSH R1 ; save (fib (- n I))
LOAD R3, (STACK 0 O) ; r3 :ffi n
LOAD El. R3 ; rl : - n
~*IMM RI, (QUOTE -2) ; rl := (- n 2)
CALL-OPEN FIB. O. O. (I) ;Jsr to FIB
P0P R2 : r e s t o r e (f i b (- n 1))
* RI, R2 ; (* (f i b . . .) (f i b . . .))
EXIT ; r e t u r n value in r l

Figure $: Sample PC Scheme code for the Fibonscci function

A variable has indefinite extent if it is freely referenced
from a funarg or from a function which is called directly or
indirectly from a funarg. Rather than compute the transi-
tive closure of function calls, we consider a lexicai variable
to have indefinite extent if onp fun~rg is defined within
its scope and it is freely referenced by any function. This
assumes that any function may be called by any other.

(In retrospect, the decision not to compute the transi-
tive closure of calls from funargs appears misguided. As
shown in Figure 2, additional time spent in this phase
would still be overshadowed by the costs of code gener-
ation, peephole optimization, and assembly.)

Variables are heap-allocated only if they must exist at
run time---identifiers which are bound to open functions
are never accessed as variables and so are not allocated
any storage at run time. More precisely, a iexical variable
is heap-allocated if it has indefinite extent and must exist
at run time; it must exist at run time if it is modified by
SET! or is initialized to some value other than an open
function.

This analysis is complicated slightly by the existence in
PC Scheme of the special form THEoFJVII~01MENT, which
reifies the lexicai environment at a point as a first-class
data object. The appearance of THEo£MVIlt0104FJT in a
variable's scope causes the variable to exist at run time
with indefinite extent.

When the compiler is operating in debug mode (speci-
fied by the value of a flag variable), it skips most optimiza-
tions and marks all lambda expressions for closure and all
variables for heap allocation. This preserves a closer corre-
spondence between the object code and its source, allows

every lambda expression to be traced, and permits debug-
ger access to all variable bindings. In this mode, programs
typically execute at about one fourth the normal speed.

3 . 3 Regis te r A l loca t ion

The code generator uses a stack-like approach to allo-
cate variables and temps to ~ registers. Registers RI
through Rn hold function arguments at function entry. As
LET and LETP.EC expressions are entered, the next avail-
able registers in ascending numerical order are assigned
to hold the new bindings. (Registers are not allocated to
heap-allocated variables or to identifiers bound to open
functions.) The temporary results from in-line expression
evaluation normally occur at this simulated ~top of stack,"
although most operations frequently access their operands
directly without stack-like pushes and pops. The ~peep-
hole" optimizer performs copy propagation and targeting
across entire blocks at a time, so redundant register moves
are infrequent.

This straight-forward approach is an example of the
"best simple" design philosophy. Its success is due to sev-
¢ral factors:

* The availability of 64 general VM registers alleviates
the need to minimize the total number of registers in
use at any one time.

. The peephole optimizer does well at rectifying locally
inept instruction selection and register allocation.

. Several common functions (e.g., MEMQ, *, HOT) are im-
plemented as ~ instructions, avoiding register saves
and restores around out-of-line calls

00

. Tail-recursive calls do not require register saving.

• Many functions have high-probability execution paths
that do not involve further function calling (e.g.,
(lambda (n)(if (<? n 2) n ...))).

Improved code quality at the cost of longer compilation
times could be obtained with a global register allocation
strategy coupled with more inter-procedural variable anal-
ysis. RABBIT ISteele 78b] employs a stack-like allocator
similar to ours that works across procedure boundaries and
would work well with our VM. IMurtagh 84] describes an
algorithm for allocating environment frames and display
entries so they may be shared among several mutually non-
recursive procedures. We are investigating the application
of these ideas to a register allocator for Scheme.

$.4 F u n c t i o n Ca l l s

The VM registers are a globally allocated resource and
must be preserved across function calls. PC Scheme uses
the ~caller saves ~ protocol in order to reuse the regis-
ters for argument passing and so that only active registers
are saved. The compiler minimizes the total number of
pushes and pops by delaying them until the last possible
moment. Thus, between out-of-line calls, saved variables
are accessed directly from the stack instead of popped into
registers and then accessed. Indeed, pops are delayed until
the two branches of an IF expression are rejoined, since the
stack height must be made consistent at such points. Tail
recursive calls use the same argument passing mechanism
but do not require register saving.

A key benefit to passing arguments in global registers
is that subsequent calls with the same arguments in the
same positions in an argument list may not require register
shuffling. As a trivial example, the code generated for the
function (LAMBDA (A B) (F00 (* it I) B)) is simply the
following.

Z, I194 R1,'1 ; Argt :ffi (1* A)
LOAD R3. (GLOBAL F00) : fetch closure
CALL-TR R3 ; Arg2 is unchanged

4 Performance

Table I compares PC Scheme's execution speed against
other PC-class LISP systems~Golden Common Lisp, (~)
Large Memory (GCLISP LM TM) version 2.1; IQLISP TM ver-
sion 1.7; TLCT"-LISP version 1.51; and MacScheme/"

Most of these benchmarks are taken from the Gabriel
benchmark set [Gabriel 85[and were run without modi-
fication, except to account for differences in the LISP di-
alects. The 80286 runs were made on an IBM PC/AT TM
with 640K bytes of system memory, except for GCLISP
LM, which requires additional protected memory to run
the interpreter (I.5MB) and compiler (3MB). MacScheme
was tested on a 512K byte Apple ~ Macintosh. T M

The numbers show the execution time in seconds av-
eraged over three test runs in a clean, garbage collected,
system. The first run of a series was retested whenever it
appeared to be distorted by autoloading or other initial-
ization effects.

The timings show that the compiled systems con-
sistently outperform the interpreted ones and that PC
Scheme is intermediate in performance between TLC-
LISP, another "pseudo-coded" VM, and the native code
version of GCLISP LM. These results confirm our ex-
pectations about our register-based virtual machine and
threaded code emulator. We have also observed that our
generated code is considerably more compact than both
interpreted S-expressions and native object code. Our ap-
proach appears to be a good compromise between space
and speed for small PCs, as intended.

Each system has its own unique strengths and weak-
nesses. We note that PC Scheme's performance with in-
tegers larger than +2" suffers on benchmarks with larger
values; a benchmark that counts a million iterations of an
expression is dominated by bignum arithmetic.

5 T h e D e v e l o p m e n t E n v i r o n m e n t

The PC Scheme system includes an editor, debugger,
and object-oriented program_ruing facility called SCOOPS.

Lisp mode Of host
system execution processor
PC Scheme bytecode
MacScheme
TLC-LISP
GCLISP LM
TLC-LISP
GCLISP LM
IQLISP
TLC-LISP

bytecode
"P-code"

native code
native code
interpreter
interpreter
interpreter

BROWSE

Notes:

80286 581.51
68000 (1)
80286 743.45
80286 248.33
80286 (2)
80286 2008.37
80286 (1)
80286 3107.76

(I) This test was not run.

DERIV DIV2
iter

101.21 25.03
243.36 60.17
146.34 88.00

39.46 16.50
(2) 40.85

219.301253.68
293.62 348.60
369.74 J 325.62

(2) Stack overflow during compilation.
(3) Stack overflow during execution.

DIV2 FACT
recur 1000
s8.~4 6.76

143.69 (1)
110.47 (4)
29.88 (3,4)
77.81 (4)

221.09 (3,4)
273.73 (3) i

(3) (4)

(4) GCLISP LM and TLC-LISP restrict integer values to 32 bits.

FIB TAK
20 18 12 6
6.47 19.17

22.50 72.24
18.46 55.11

2 . 0 4 6.65
! 12.56i 34.0o
35.30 I 144.36 37.08 154.10
49.38 162.67

Table L Comparatlve execution times for several PC LISPs

91

PC Scheme's editor is a substantially modified version
of Edwin, an EMAC$-style editor which was originally de-
veloped by the Scheme project at MIT. As a Scheme pro-
gram itself, Edwin was easily integrated into our develop-
ment environment, although it was necessary to cut its size
considerably. Edwin's Scheme mode provides parenthesis
matching, indenting comm~mds, and the ability to eval-
uate an expression, region, or the entire buffer. Moving
between the Scheme listener and the editor is facilitated
by the ability to split the screen into separate windows for
each.

Both the size and speed of the editor were considerable
concerns at the onset of the port. The m~jority of the code
size reduction came through careful selection of features to
omit. Achieving acceptable speed hinged on identifying a
few key functions which could be made VIVl "instructions."

Although PC Scheme does not provide extensive source-
level debugging support, it has extensive trace and break-
point facilities and an interactive Inspector with'com-
mands to display and manipulate call stack frames and
lexicsl environments, edit variable bindings, trace back
through a chain of procedure calls, and evaluate expres-
sions in the environment of a breakpoint. All nser-
correctable errors trap to the Inspector.

SCOOPS is an experimental object-oriented program-
ming system with multiple and dynamic inheritance based
on first-class environments. Although it is similar in con-
cept and syntax to the LOOPS [Bobrow 83] and Flavors
[Weinreb 83] systems, the implementation of SCOOPS re-
lies heavily on the features of the Scheme language.

Other development features include a pretty-printer,
window system, color graphics, autoloading, structure ed-
itor, and a utility that converts compiled object files into
fast-load format.

6 Concluding Remarks

PC Scheme has met our goals for high performance and
compact code for AI applications on PC-class machines.
The byte-encoded VM and relatively simple compiler ap-
pear to offer a better compromise in these respects than
either traditional interpreters or native code compilers.
Although we have emphasized performance over richness
of the development environment, hundreds of users have
found PC Scheme to be a productive and friendly system.

Our experience with PC Scheme has vindicated our se-
lection of Scheme over COMMON LISP as our application
language for small PCs. Scheme's radically simpler struc-
ture and absence of expensive features make it much eas-
ier to compile and execute efficiently. Unfortunately, it is
harder to make many of COMMON LlSP's expensive fea-
tures "pay their own way." Moreover, COMMON LISP
lacks first-class continuations, engines, and environments,
which are important to many users.

The focus of our work is now shifting towards support-
ing both Scheme and COMMON LISP with a portable byte-

code emulator. The principal difficulty for COMMON LISP,
the immense size of a complete implementation, is amelio-
rated by our compact encoding. We see no fundamen-
tal problems in extending our VM to encompass multiple
values, complex procedure calls, and other aspects of the
language. Indeed, our results so far corroborate Steele's
conjecture [Steele 78b] that Scheme is an excellent basis
for compiling other languages--particularly other LISPs.

A c k n o w l e d g e m e n t s

We would like to thank the following members of the
CSC Computer Architecture Branch who assisted in the
creation of PC Scheme: Rusty Haddock, Paul Kristoff,
Don Oxley, Amitabh Srivastava, John Gateley, Mark
Meyer, and Glen Slick. Keith Carlson, Terry Candill, and
Jennifer Hso were responsible for its release by our product
group. Jan Stevens guided the development of the manu-
als. Bill Cohagan prototyped an experimental translator
from Pascal to Scheme and experimented with COMMON
LISp with the help of Ken Lewis.

R e f e r e n c e s

[Bell 73] Bell, J. R., "Threaded Code." Communications
of the ACM, XVI, (1973) pp. 370-372.

{Bobrow 83] Bobrow, D.G.; and Stefik, M.J.. The LOOPS
Manual. Pslo Alto, CA: Xerox Corporation, 1983.

IDeutsch 84] Deutsch, L. Peter, and Schiffman, Allan M.
"Efficient Implementation of the Smalltalk-80 Sys-
tem." In Conference Record of the 11th Annual
ACM Symposinm on Principles of Programming
Languages. January 1984, pp. 297-302.

[Gabriel 85} Gabriel, Richard P., Performance and Evalu-
ation of Lisp Systems. The MIT Press, 1985.

IGreenblatt 84] Greenblatt, R. D., et al. "The LISP
Machine," Interactive Programming Environments,
D, R. Barstow, H. E. Shrobe, E. Sandewall, eds.
McGraw-Hill, 1984.

IMurtagh 84] Murtagh, Thomas P. "A Less Dynamic
Memory Allocation Scheme for Algol-like Languages."
In Conference Record of the l l th Annual A CM Sym-
posium on Principles o? programming Languages.
January 1984, pp. 283-289,

IPowel184] Powell, Michael L. "A Portable Optimizing
Compiler for Modula-2." In Proceedings of the ACM
SIGPLAN '84 Symposium on Compiler Construc-
tion. June 1984, pp. 310-318.

IRRRS 85] Clinger, W., ed. "The Revised Revised Report
on Scheme." Massachusetts Institute of Technology
AI Memo No. 848 (August 1985).

!Schooler 84] Schooler, Richard, and Stamos, James W.
"Proposal for a Small Scheme Implementation."

92

Massachusetts Institute of Technology Laboratory
for Computer Science Memo No. TM-267 (October
1984).

[Steele 7~] Steele, Guy Lewis, Jr., and Sussmem, Get-
aid J. ~The Revised Report on Scheme, a Dialect
of Lisp." Massachusetts Institute of Technology AI
Memo No. 452 (January 1978).

[Steele 78b] Steele, Guy L. "RABBIT: a Compiler for
Scheme." Massachusetts Institute of Technology AI
Technical Report No. 474 (May 1978).

ISuzuki 84] Suzuki, Norihisa and Terada, Minoru. "Cre-
ating Efficient Systems for Object-Oriented Lan-
guages." In ConEerence Record of the l l t h An-
nual A CM Symposium on Principles of Programming
Languages. January 1984, pp. 290-296.

[Ungar 84] Ungar, David, et al. ~Architecture of SOAR:
Smalltalk on a RISC." In Proc. l l t h Annual Interna-
tional Symposium on Computer Architecture. 1984,
pp. 188-197.

[Weinreb 83] Weinreb, D.; Moon, D.; and Stallman, R.
Lisp Machine Manual. Cambridge, MA: Mas-
sachusetts Institute of Technology, 1983.

[Wholey 84] Wholey, Skef. "The Design of an Instruction
Set for Common Lisp. ~ In Conference Record of the
1984 A CM Symposium on Lisp and Functional Pro-
gramming. August 1984, pp. 150-158.

Trademark Information

"Apple" Is • registered trademark and ~/scintolh I • trademark of Ap-

ple Computer, Inc "Arborist" and "Personal Consultant" are trademarks

of Tex~ Instruments Incorporated "Golden Common L/rp" is • registered

trademark and "GCLISP Llv~ • trademark of Gold Hill Computers, Inc.

"IBh~' is a registered trademark and "PC/AT" a trademark of International

Bulmess] ~ c h m o . "inte1" ~ • trademark of Intel Corpor•tion. "IQLISP"

is • trademark of Intel~ra] Quality, Inc. ~lacScheme" is • trademark of

Semantic l~ucrosysteml Inc. "SmaUtslk-80" is • trademark of Xerox Cot-

potation "TLC" is • trademark of The LISP Company

93

