
The Implementation of PC Scheme 

David H, Bartley 
John C. Jensen 

Computer Science Center 
Texas Instruments Incorporated 

P.O. Box 226015, M/S 235 
Dallas, Texas 75266 

A b s t r a c t  

PC Scheme is a compiler-based implementation of 
Scheme for PC-class machines. The compiler generates 
code for an idealized virtual machine which is emulated 
with threaded code techniques. The design has traded off 
the requirements of space sad speed effectively, resulting 
in one of the fastest PC-class LISP systems known to the 
authors. 

1 I n t r o d u c t i o n  

Scheme [RRRS 85] is a lexically ecoped dialect of LISP 
which was originally developed at MIT [Steele 78a] and 
has subsequently been used extensively for research, ed- 
ucation, and application programming. Like COMMON 
LISP, Scheme features lexical scoping and first-class func- 
tions. Unlike COMMON LISP, Scheme supports continu- 
ations as first-class objects and is properly tail-recursive. 
Many Scheme dialects, including ours, have also incorpo- 
rated environments and engines as first-class objects. 

Texas Instruments has been interested in Scheme for 
some time as a vehicle for experiments in compilation tech- 
niques and the design of architectures for symbolic com- 
puting. PC Scheme, a commercial by-product of this re- 
search, was created to support the development of such AI  
packages and products as TI's~Personal Consu~ant'" and 
Arborist.'" Since TI and IBIvi ~ PCs with Inte~ ~-) 8088 and 
80286 processors and typical memory capacities of 512K 
bytes were to be used as both the development and target 
machines for these efforts, PC Scheme was required to be 
both fast and small. 

Permission to cOW/without fee all or part of this material is granted 
provided that the copies are not made or dis~ribuUxl for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires • fee and/or specfic 
permission. 

Following Powell [Powel184], the design philosophy of 
our system is "best simple." Whenever possible, our de- 
sign decisions favored the simplest and most cost-effective 
alternatives available. Uncommon features were made to 
"pay their own way," while common ones were streamlined 
as much as possible. The result is a compilation strategy 
and virtual machine architecture that are highly tuned to 
our purpmes. 

2 T h e  V i r t u a l  M a c h i n e  ( V M )  

The key to a successful LISP implementation on a small 
machine is careful design of the environment in which pro- 
grams execute. The selection of data representations is 
particularly critical because of the pervasive use of type 
dispatching in program code and the garbage collector. 
Although our requirement for speed dictated a compiler- 
based approach, the expected bulkiness of true native code 
on 8-bit processors was excessive for the small memories 
available. We chose instead to emulate a virtual machine 
representing an idealized Scheme architecture. Our VM 
simplifies the compiler considerably yet is surprisingly fast. 

2.1 V M  I m p l e m e n t a t i o n  

Threaded code [Bell 73] is a well-known implementa- 
tion technique for the emulation of language-specific ar- 
chitectures. It combines compact encoding of programs 
with rapid execution. Our byto.level encoding is similar 
to most Paacal P-code implementations: the byte pointed 
to by the emulated "program counter" is used as an in- 
de.x into a table of machine language subroutine addresses. 
Each of these machine language routines performs an oper- 
ation, optionally conditioned by the contents of subsequent 
"operand" bytes in the emulated VM instruction stream, 
and then executes the NEXT sequence shown below to 
fetch and execute the next VM instruction. 

xor AX.AX ; c l e a r  AX 
lods byte p t r  ES:[SI] ; get next 
mov BX,AX : opcod, 
shl BX,I ; make word index 
imp op_tabla*[BX] : and Jump 
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The emulation overhead for this NEXT sequence repre- 
sents about 16% of the total  execution time for an average 
mix of VM instructions. 

As shown in Figure 1, the ~ emulator and that  part  
of the runtime support  which is written in assembly lan- 
guage and C consume 137,500 bytes of memory. The rest 
of the system is written in Scheme. The first 76,700 bytes 
of Scheme code are loaded into the heap during system 
initialization. The rest of the system code is autoloaded as 
needed. 

2.2 V M  A r c h i t e c t u r e  

Unlike P-code, which is a stack-based architecture ori- 
ented towards strongly typed languages, our virtual ma- 
chine architecture is register-based and emphasizes the re- 
quirements of Lisp-like languages. The choice of a register- 
based model was motivated by the desire to investigate 
compilation techniques for such register-based machines 
as the Motorola 68000, the National /TI 32000, and Berke- 
ley's SOAR [Ungar 84], a tagged Reduced Instruction Set 
Computer (RISC). The ~ architecture largely follows the 
tenets of the RISC philosophy but  integrates most low- 
level run time features and many commonly used primitive 
Scheme functions as VIVI instructions. This is a valuable 
aid to increased performance for an emulated VM, though 
less appropriate for an actual implementation in hardware. 

The heart of the PC Scheme VM is a set of 64 general 
purpose registers, R0-R63. Arguments to functions are 
passed in registers where they remain available for use un- 
til no longer needed or until another function call occurs. 
Except as described in section 2.5, all user variables and 
temporaries reside in the registers so they may be conve- 
niently accessed by VM instructions. There are also spe- 
cial purpose registers for the global and fluid environment 
pointers, the current code block pointer, and the current 
program counter. 

The VM is a conventional load/store architecture with 
most instructions operating directly on the registers. For 
fast decoding, each VM instruction has its own specific 
operand format and its handler is responsible for fetching 
and operating upon the operand bytes. Register operands 
are encoded as the register number scaled by 4, the width 
in bytes of an entry in the underlying table of VM "reg- 
i s ters /  Other operand types include immediate values, 
constant table indices, stack frame offsets, and branch dis- 
placements. A typical VM instruction is illustrated below. 

I n s t r u c t i o n :  ADD RS,R7 ; it5 := R5 ÷ R7 

Byte 1: 
Byte 2: 
Byte 3: 

0pcode • ADD. encoded as  80 
SD operand • It6. encoded as  5*4 = 20 
S operand = R7. encoded as 7*4 = 28 

Other virtual machine architectures for LISP include 
variations on the MIT LISP Machine [Greenblatt 84] and 
SPICE LISP /Wholey 84 I. RABBIT ISteele 78b], MAC- 
SCHEME, and an unnamed "small Scheme implementa- 
tion" at MIT [Schooler 84} propose VMs specific to the 
needs of Scheme. Of these, only RABBIT is register-based. 

. .  D~o~.ptio. 
"native code: program 

static da ta  
runtime stack 
C's heap 
(subtotal) 

Scheme: s tandard system 
Autoloaded " Edwin editor 

Size (b¢es) 
72,000 
23,700 
12,300 
29,500 

137,500 
76,700 

109,000 
Scheme: SCOOPS 18,700 

structure editor 8,200 
miscellaneous 30,900 
total 381,000 

Figure 1: Memory space allocation 

The others employ simple stack models, with instructions 
typically operating on implicitly specified operands at the 
top of the stack. Like PC Scheme, MACSCHEME and the 
MIT "small Scheme" are bytecoded implementations (al- 
though the MIT design was never completed). The RAB- 
BIT VM is actually a subset of LiSP with global variables 
serving as VM registers. SPICE and the LISP Machines 
have microcoded implementations. 

These LisP-oriented architectures have several features 
in common. Generally, instructions operate only on tagged 
data and validate the types of their operands. Frequently 
used operations like MF, HBER, SYMBOLP, and CONS are im- 
plemented as instructions. Except for RABBIT, they have 
been designed with reduced compiler complexity as a spe- 
cific goal and are oriented primarily to supplying the needs 
of software developers rather than to achieving the highest 
possible performance. 

Conversely, PC Scheme is an experiment in the design 
of fast delivery vehicles for AI programs. This has lead us 
to consider optimizing compilers and RISC-like, register- 
based VMs for the same reasons that  they are of interest to 
designers of conventional processors. Explicit operand ad- 
dressing significantly reduces the number of pushes, pops, 
and other data  movement instructions generated, resulting 
in shorter object programs compared to traditional stack 
VMs. Performance is further enhanced by the high average 
level of work performed by each V'M instruction compared 
to the overhead of the NEXT operation. Much of this work 
is dedicated to software tag checking, however--an oper- 
ation that can be performed much more effectively with 
suitable hardware. We believe that  our VM is a suitable 
architecture for a RISC implementation. 

2.3 M e m o r y  Mode l  and D a t a  Representat ions  

PC Scheme memory consists of a linear address space 
subdivided into logical pages to support  a BIBOP (big bag 
of pages) tagging mechanism. An object is represented by 
a three byte pointer. The page number and page displace- 
ment are stored in the top byte and bot tom two bytes, 
respectively. 
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The default page size is computed automatically as 
a function of available physical memory each time PC 
Scheme is loaded and varies between 3072 and 5136 bytes. 
A pointer is mapped into its associated physical memory 
address by looking up the base (segment) address for the 
page in a table and adding its displacement component. 
This mapping permits pages to be placed arbitrarily in 
physical memory. A given page may be made larger than 
the default value as needed to accommodate extremely 
large objects such as code blocks and arrays. 

(Although the release~ product is restricted to 640KB 
physical memory (768KB for TI PCs), experimental ver- 
sions exploiting extended and expanded memories execute 
somewhat more slowly due to address mapping complica- 
tions.) 

The type of a referenced object is determined by in- 
specting a table of type attr ibutes indexed by the number 
of the page in which it resides. A simple bit  test or byte 
comparison suffices for all of the da ta  type predicates and 
to distinguish the various representation formats. An in- 
dex byte is also associated with each page entry to allow 
fast dispatching on type. Although each page holds objects 
of only one type, all objects except list cells, fixnums, and 
characters have redundant type headers to aid the sweep 
phase of garbage collection. 

The PC Scheme da ta  types implemented as heap- 
allocated objects are list cells, arbitrary-precision integers, 
64 bit IEEE floating point numbers, symbols, strings, vec- 
tors, continuations, functions, code blocks, I /O  ports, and 
environments. 

Integers in the range -16,384 to +16,383 are repre- 
sented as immediate values; a page number is reserved 
as a 'fixnum' tag and the numeric value is stored in the 
displacement field of the reference. Character objects are 
represented similarly. 

2.4 G a r b a g e  C o l l e c t o r  

Long pauses for garbage collection are confusing and of- 
ten distressing to end-users of applications written in many 
PC LISPs. Although "mark and sweep ~ is acceptably fast 
on a nominal 512KB memory, much slower compaction 
algorithms are often employed to avoid the effective loss 
of space to fragmentation. PC Scheme uses a mixed strat- 
egy. When a memory allocation request cannot be satisfied 
from a free memory pool, a m~rk and sweep garbage collec- 
tion is performed. If this doesn't recover enough memory, 
a memory compaction phase is run to coalesce small frag- 
ments of free memory into larger blocks. 

The memory compaction operation copies referenced 
objects from pages which are the least full to those which 
are the most full. Thus, it moves the fewest objects possi- 
ble to accomplish dense packing of data. Fewer than half 
of tl~e objects in the heap are moved, even in the worst case 
(typically much fewer since system code is packed densely 
by the initial load and is never moved). After the objects 
have been moved, a sequential pass is made through mem- 
ory to relocate all pointers to moved objects. 

The mark and sweep phase causes a pause in execu- 
tion of 0.5 to 2.5 seconds for a 512KB 80286 system. The 
longest pause when compaction is needed is about six sec. 
onds. We consider this delay more acceptable than the 
VM overhead that  a real-time collector would incur. 

2.$ C o n t r o l  M o d e l  

Unlike most LISps, Scheme provides ~escape functions" 
called continuations which may be called any number of 
times; the invocation need not be within the dynamic scope 
of the binding of the continuation. This behavior rules 
out the use of a simple contiguous control stack for the 
general case, so a judicious use of heap-allocated structures 
is needed. Likewise, the existence of first-class function 
objects, called ¢loeures, dictates heap allocation of some 
lexical environment bindings. 

The control stack holds the state needed to execute a 
continuation. Since the compiler is generally unable to de- 
termine which control frames will be retained indefinitely, 
it optimistically allocates them in a contiguous stack area. 
When CALL-¥ITH-CURREIIT-COIITINUATION is invoked, the 
stack is copied into the heap to make a continuation object. 
To reduce the worst-case cost of this copying and to per- 
mit arbi trary growth of the stack, a small buffer is used to 
hold the topmost stack frames. When this buffer overflows, 
all frames but  the currently active one are copied into a 
continuation object in the heap. Thus, a continuation is 
represented by a chain of such control stack segments. 

The compiler identifies those variables which have in- 
definite extent because they are freely referenced from clo- 
sures and arranges for them to be heap-allocated at run 
time. Thus, the da ta  structure stored in a closure object 
does not reference the stack. Temporaries and variables 
which are not accessed freely from any closure are allo- 
cated to registers or to locations in the stack. 

Smalitalk-80"" procedure activation environments (con- 
texts) correspond closely to Scheme closures and continu- 
ations. [Deutech 84] and [Suzuki 84] report  that  85% or 
more of Smalltalk-80 contexts may be allocated in a stack- 
like manner since operations that  require indefinite reten- 
tion of contexts occur infrequently. Deutsch allocates con- 
texts created by normal sends on the stack. When a refer- 
ence to a context is created (making it an object), space is 
allocated in the heap but  the context remains cached in the 
stack as long as possible. Heap-allocated contexts must be 
returned to the stack before they may be executed. 

Suzuki also has multiple representations for Smailtalk- 
80 contexts but  permits a context to be executed in the 
heap. As with PC Scheme, a small stack buffer behaves 
like a cache for heap-allocated environments and limits the 
time taken to save it to the heap. 

Both Smalltalk-80 implementations rely on "lazy" allo- 
cation methods at run time rather than static analysis at 
compile time. We adopt the same approach for continua- 
tions because CALL-MITH-CORRENT-CONTINUATION has dy- 
namic effects on the retention of environments. We pre- 
fer static analysis of free variable references from closures, 
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however, since it allows individual variables to be selec- 
tively heap-allocated. Although we make no at tempt to 
delay transferring such variables from the stack (or regis- 
ters) to the heap, it would be possible to do so. 

3 T h e  C o m p i l e r  

PC Scheme relies solely on its compiler for the evalua- 
tion of Scheme programs. An interpreter was considered 
but was not implemented for the following reasons: 

• Providing both a compiler and an interpreter takes 
more space than having either alone, especially when 
integrated with a comprehensive system maintenance 
facility. 

• It can be difficult to guarantee absolute consistency 
between two different evaluators. Many users pre- 
fer to avoid certain subtle errors by debugging their 
programs in their final compiled form rather than in 
interpreted form, despite the richer development en- 
vironment that interpreters make possible. 

• The debugging aids provided with our compiler suffice 
for most programmers'  needs. 

• Our compiler's speed is adequate for interactive de- 
velopment, particularly when program modules are 
separately compiled and placed in "fast-load ~ format 
after they are tested. 

The phases of the compiler are: macro expansion and alpha 
conversion, local optimization, closure and environment 
analysis, code generation, peephole optimization, and as- 
sembly. The relative amount of time spent in each phase 
is shown in Figure 2. A separate utility is available for 
converting files in compiled form into "fast-load" form. 

3.1 Local Opt imizat ion 

As with most sytems with architectures tuned towards 
the needs of LISP, the performance of PC Scheme depends 
more on the "fit" of the VM to the needs of the language 
than it does on extensive compiler optimization. The lo- 
cal optimization phase, called the 8amplifier, is designed 
primarily to cope with anticipated inefficiencies in macro- 
expanded expressions and to shape the code to fit the pref- 
erences of the code generator. The peephole optimizer is 
quite effective in overcoming the lack of more intelhgent 
optimizations elsewhere; it typically reduces the program 
size by a quarter. 

A Beta-conversion optimizer similar to the one in RAB- 
BIT [Steele 78b I was tried and found to be successful but 
proved too slow for our purposes. However, the compiler 
produces surprisingly good code in most instances due to 
careful tuning of macro definitions, the simplifier, the code 
generator, and the peephole optimizer. This can be seen 
in the sample code for the Fibonacci function in Figure 3. 

Compiler Phase Tsrn¢ 
macro expansion 18 % 
10cal optimization 5 % 
closure and any. analysis 6 %-" 
code generation 23 %'" 
apeephole" optimization ] 29 % 
assembly [ 19 % 

Figure 2: Relative time spent in each compder phase 

3.2 Closure and Environment  Analys is  

We have found that  two related optimizations, avoid- 
ing function closures and allocating variables to VM regis- 
ters instead of the heap, have considerable impact on the 
size and speed of compiled Scheme programs. Following 
ISteele 78bl, we analyze each program to determine which 
LANBDA expressions require that closure objects be created 
at run time because they are treated as data  ("funargs') .  
All lexical variables whkh must be retained because they 
are accessible from such funargs are the1~ marked for heap 
allocation in environment objects. The heuristic algo- 
rithms used to identify these funargs and variables are fast 
but somewhat pessimistic. 

Conventional programming languages seldom create a 
closure for a procedure at  run time because all calls to the 
procedure can generally be found through static analysis 
by the compiler. This is often the case in Scheme programs 
as well and such procedures are well worth identifying. A 
related optimization is to determine when a given call to a 
closed function can jump directly to the appropriate code 
location rather than indirectly through the closure object. 
Thus, we distinguish whether a LARBDA expression is closed 
from whether a given call to it uses the closure object. 

Closure analysis is performed as a simple walk through 
the program tree, marking L/~PlBD/L expressions to be closed 
whenever any of the following occur: 

• The L~4BDA expression appears as a funarg; that  is, 
other than in the function position of an application 
or as the bound value in a LETREC pair. 

• The value of the LAMBDA expression is bound by a 
LETREC to some variable and that  variable appears as 
a funarg or its value is reassigned by SET!. 

In addition, functions taking an arbitrary number of ar- 
guments are always closed. Such functions have argument 
lists of the form (A B . C), where C is a so-called rest ar- 
gument. This feature was added late in the development 
of PC Scheme and is not supported optimally. 

Having determined which functions must be closed, the 
compiler next identifies those lexical variables which have 
indefinite extent in order to allocate space for them in the 
heap. All other lexical variables may be allocated to reg- 
isters or locations in the stack. 
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(de f ine  ( f i b  n) 
( i f  (<? n 2) 

n 
(÷ ( f i b  (-  n 1)) ( f i b  (- n 2 ) ) ) ) )  

FIB 
LOAD R3, (QUOTE 2) ; r3 := 2 
LOAD R2, R1 ; r2 := n 
<? R2, R3 ; r2 := (<? n 2 )  
JUMP L5, MULL?. R2 ; (go L5) i f  ( n u l l ?  r2) 
EXIT ; r e t u r n  value  in  r l  

L5 
PUSH R1 ; save n 
~*IlO! R1, (QUOTE "1) : r l  := ( -  n 1) 
CALL-0PEN FIB. 0, 0, (1) ; Jar  to  FIB 
PUSH R1 ; save (fib (- n I)) 
LOAD R3, (STACK 0 O) ; r3 :ffi n 
LOAD El. R3 ; rl : -  n 
~*IMM RI, (QUOTE -2) ; rl := (- n 2) 
CALL-OPEN FIB. O. O. (I) ;Jsr to FIB 
P0P R2 : r e s t o r e  ( f i b  (-  n 1)) 
* RI, R2 ; (* ( f i b  . . . ) ( f i b  . . . ) )  
EXIT ; r e t u r n  value in  r l  

Figure $: Sample PC Scheme code for the Fibonscci function 

A variable has indefinite extent if it is freely referenced 
from a funarg or from a function which is called directly or 
indirectly from a funarg. Rather than compute the transi- 
tive closure of function calls, we consider a lexicai variable 
to have indefinite extent if onp fun~rg is defined within 
its scope and it is freely referenced by any function. This 
assumes that any function may be called by any other. 

(In retrospect, the decision not to compute the transi- 
tive closure of calls from funargs appears misguided. As 
shown in Figure 2, additional time spent in this phase 
would still be overshadowed by the costs of code gener- 
ation, peephole optimization, and assembly.) 

Variables are heap-allocated only if they must exist at 
run time---identifiers which are bound to open functions 
are never accessed as variables and so are not allocated 
any storage at run time. More precisely, a iexical variable 
is heap-allocated if it has indefinite extent and must exist 
at run time; it must exist at run time if it is modified by 
SET! or is initialized to some value other than an open 
function. 

This analysis is complicated slightly by the existence in 
PC Scheme of the special form THEoFJVII~01MENT, which 
reifies the lexicai environment at a point as a first-class 
data object. The appearance of THEo£MVIlt0104FJT in a 
variable's scope causes the variable to exist at run time 
with indefinite extent. 

When the compiler is operating in debug mode (speci- 
fied by the value of a flag variable), it skips most optimiza- 
tions and marks all lambda expressions for closure and all 
variables for heap allocation. This preserves a closer corre- 
spondence between the object code and its source, allows 

every lambda expression to be traced, and permits debug- 
ger access to all variable bindings. In this mode, programs 
typically execute at about one fourth the normal speed. 

3 . 3  Regis te r  A l loca t ion  

The code generator uses a stack-like approach to allo- 
cate variables and temps to ~ registers. Registers RI 
through Rn hold function arguments at function entry. As 
LET and LETP.EC expressions are entered, the next avail- 
able registers in ascending numerical order are assigned 
to hold the new bindings. (Registers are not allocated to 
heap-allocated variables or to identifiers bound to open 
functions.) The temporary results from in-line expression 
evaluation normally occur at this simulated ~top of stack," 
although most operations frequently access their operands 
directly without stack-like pushes and pops. The ~peep- 
hole" optimizer performs copy propagation and targeting 
across entire blocks at a time, so redundant register moves 
are infrequent. 

This straight-forward approach is an example of the 
"best simple" design philosophy. Its success is due to sev- 
¢ral factors: 

* The availability of 64 general VM registers alleviates 
the need to minimize the total number of registers in 
use at any one time. 

. The peephole optimizer does well at rectifying locally 
inept instruction selection and register allocation. 

. Several common functions (e.g., MEMQ, *, HOT) are im- 
plemented as ~ instructions, avoiding register saves 
and restores around out-of-line calls 
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. Tail-recursive calls do not require register saving. 

• Many functions have high-probability execution paths 
that  do not involve further function calling (e.g., 
(lambda (n)(if (<? n 2) n ...))). 

Improved code quality at the cost of longer compilation 
times could be obtained with a global register allocation 
strategy coupled with more inter-procedural variable anal- 
ysis. RABBIT ISteele 78b] employs a stack-like allocator 
similar to ours that works across procedure boundaries and 
would work well with our VM. IMurtagh 84] describes an 
algorithm for allocating environment frames and display 
entries so they may be shared among several mutually non- 
recursive procedures. We are investigating the application 
of these ideas to a register allocator for Scheme. 

$.4 F u n c t i o n  Ca l l s  

The VM registers are a globally allocated resource and 
must be preserved across function calls. PC Scheme uses 
the ~caller saves ~ protocol in order to reuse the regis- 
ters for argument passing and so that  only active registers 
are saved. The compiler minimizes the total number of 
pushes and pops by delaying them until the last possible 
moment. Thus, between out-of-line calls, saved variables 
are accessed directly from the stack instead of popped into 
registers and then accessed. Indeed, pops are delayed until 
the two branches of an IF expression are rejoined, since the 
stack height must be made consistent at such points. Tail 
recursive calls use the same argument passing mechanism 
but  do not require register saving. 

A key benefit to passing arguments in global registers 
is that subsequent calls with the same arguments in the 
same positions in an argument list may not require register 
shuffling. As a trivial example, the code generated for the 
function (LAMBDA (A B) (F00 (* it I) B) ) is simply the 
following. 

Z, I194 R1,'1 ; Argt :ffi (1* A) 
LOAD R3. (GLOBAL F00) : fetch closure 
CALL-TR R3 ; Arg2 is unchanged 

4 Performance 

Table I compares PC Scheme's execution speed against 
other PC-class LISP systems~Golden Common Lisp, (~) 
Large Memory (GCLISP LM TM) version 2.1; IQLISP TM ver- 
sion 1.7; TLCT"-LISP version 1.51; and MacScheme/" 

Most of these benchmarks are taken from the Gabriel 
benchmark set [Gabriel 85[ and were run without modi- 
fication, except to account for differences in the LISP di- 
alects. The 80286 runs were made on an IBM PC/AT TM 
with 640K bytes of system memory, except for GCLISP 
LM, which requires additional protected memory to run 
the interpreter (I.5MB) and compiler (3MB). MacScheme 
was tested on a 512K byte Apple ~ Macintosh. T M  

The numbers show the execution time in seconds av- 
eraged over three test runs in a clean, garbage collected, 
system. The first run of a series was retested whenever it 
appeared to be distorted by autoloading or other initial- 
ization effects. 

The timings show that the compiled systems con- 
sistently outperform the interpreted ones and that  PC 
Scheme is intermediate in performance between TLC- 
LISP, another "pseudo-coded" VM, and the native code 
version of GCLISP LM. These results confirm our ex- 
pectations about our register-based virtual machine and 
threaded code emulator. We have also observed that our 
generated code is considerably more compact than both 
interpreted S-expressions and native object code. Our ap- 
proach appears to be a good compromise between space 
and speed for small PCs, as intended. 

Each system has its own unique strengths and weak- 
nesses. We note that PC Scheme's performance with in- 
tegers larger than +2" suffers on benchmarks with larger 
values; a benchmark that counts a million iterations of an 
expression is dominated by bignum arithmetic. 

5 T h e  D e v e l o p m e n t  E n v i r o n m e n t  

The PC Scheme system includes an editor, debugger, 
and object-oriented program_ruing facility called SCOOPS. 

Lisp mode Of host 
system execution processor 
PC Scheme bytecode 
MacScheme 
TLC-LISP 
GCLISP LM 
TLC-LISP 
GCLISP LM 
IQLISP 
TLC-LISP 

bytecode 
"P-code" 

native code 
native code 
interpreter 
interpreter 
interpreter 

BROWSE 

Notes: 

80286 581.51 
68000 (1) 
80286 743.45 
80286 248.33 
80286 (2) 
80286 2008.37 
80286 (1) 
80286 3107.76 

(I) This test was not run. 

DERIV DIV2 
iter 

101.21 25.03 
243.36 60.17 
146.34 88.00 

39.46 16.50 
(2) 40.85 

219.301253.68 
293.62 348.60 
369.74 J 325.62 

(2) Stack overflow during compilation. 
(3) Stack overflow during execution. 

DIV2 FACT 
recur 1000 
s8.~4 6.76 

143.69 (1) 
110.47 (4) 
29.88 (3,4) 
77.81 (4) 

221.09 (3,4) 
273.73 (3) i 

(3) (4) 

(4) GCLISP LM and TLC-LISP restrict integer values to 32 bits. 

FIB TAK 
20 18 12 6 
6.47 19.17 

22.50 72.24 
18.46 55.11 

2 . 0 4  6.65 
! 12.56i 34.0o 
35.30 I 144.36 37.08 154.10 
49.38 162.67 

Table L Comparatlve execution times for several PC LISPs 
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PC Scheme's editor is a substantially modified version 
of Edwin, an EMAC$-style editor which was originally de- 
veloped by the Scheme project at MIT. As a Scheme pro- 
gram itself, Edwin was easily integrated into our develop- 
ment environment, although it was necessary to cut its size 
considerably. Edwin's Scheme mode provides parenthesis 
matching, indenting comm~mds, and the ability to eval- 
uate an expression, region, or the entire buffer. Moving 
between the Scheme listener and the editor is facilitated 
by the ability to split the screen into separate windows for 
each. 

Both the size and speed of the editor were considerable 
concerns at the onset of the port. The m~jority of the code 
size reduction came through careful selection of features to 
omit. Achieving acceptable speed hinged on identifying a 
few key functions which could be made VIVl "instructions." 

Although PC Scheme does not provide extensive source- 
level debugging support, it has extensive trace and break- 
point facilities and an interactive Inspector with'com- 
mands to display and manipulate call stack frames and 
lexicsl environments, edit variable bindings, trace back 
through a chain of procedure calls, and evaluate expres- 
sions in the environment of a breakpoint. All nser- 
correctable errors trap to the Inspector. 

SCOOPS is an experimental object-oriented program- 
ming system with multiple and dynamic inheritance based 
on first-class environments. Although it is similar in con- 
cept and syntax to the LOOPS [Bobrow 83] and Flavors 
[Weinreb 83] systems, the implementation of SCOOPS re- 
lies heavily on the features of the Scheme language. 

Other development features include a pretty-printer, 
window system, color graphics, autoloading, structure ed- 
itor, and a utility that converts compiled object files into 
fast-load format. 

6 Concluding Remarks 

PC Scheme has met our goals for high performance and 
compact code for AI applications on PC-class machines. 
The byte-encoded VM and relatively simple compiler ap- 
pear to offer a better compromise in these respects than 
either traditional interpreters or native code compilers. 
Although we have emphasized performance over richness 
of the development environment, hundreds of users have 
found PC Scheme to be a productive and friendly system. 

Our experience with PC Scheme has vindicated our se- 
lection of Scheme over COMMON LISP as our application 
language for small PCs. Scheme's radically simpler struc- 
ture and absence of expensive features make it much eas- 
ier to compile and execute efficiently. Unfortunately, it is 
harder to make many of COMMON LlSP's expensive fea- 
tures "pay their own way." Moreover, COMMON LISP 
lacks first-class continuations, engines, and environments, 
which are important to many users. 

The focus of our work is now shifting towards support- 
ing both Scheme and COMMON LISP with a portable byte- 

code emulator. The principal difficulty for COMMON LISP, 
the immense size of a complete implementation, is amelio- 
rated by our compact encoding. We see no fundamen- 
tal problems in extending our VM to encompass multiple 
values, complex procedure calls, and other aspects of the 
language. Indeed, our results so far corroborate Steele's 
conjecture [Steele 78b] that Scheme is an excellent basis 
for compiling other languages--particularly other LISPs. 
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