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Abstract

Automatic compiler generators and semantics
systems typically produce compilers which depend
heavily on the mechanism of S-reduction. This is
particularly true of those systems based on de-
notational semantics, since their descriptive nota-
tions are based on the A-calculus.

Performing S-reductions is expensive, however,
and this is a primary reason for the extreme inef-
ficiency of automatically-generated compilers and
the code they produce. Since LISP is in many
respects similar to the A-calculus, it seems a rea-
sonable idea to generate compilers which rely on
the LISP EVAL function rather than a S-reducer.
Then, the expensive simulation of S-reductions is
avoided, and the efficiency of LISP is obtained.
Unfortunately, moving to LISP is complicated by
the fact that the generated compilers quite often
depend on a f-reducer’s ability to partially evalu-
ate an expression — a capability lacking in LISP.

We have implemented a compiler generator
called MESS which produces realistic and effi-
cient compilers written in SCHEME. MESS pro-
cesses modular denotational descriptions, and ex-
ploits this modularity in order to avoid the de-
pendence on partial evaluation. An added bene-
fit of our approach is that the output of the gen-
erated compilers can be directly processed by an
automatically-generated table-driven code gener-
ator. This makes it possible to obtain object code
which compares favorably with that produced by
hand-crafted compilers.

Our results thub far are quite encouraging, as
we are finding that the compilers generated by
MESS are significantly more efficient and realis-
tic than those produced by other systems.
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Introduction

Several compiler generators and semantics sys-
tems have been developed [Mos79,Pau82,Wan84|
based on the direct implementation of denota-
tional semantics [St077]. The compilers generated
by these systems work in a rather strange way.
Given a source program, they typically derive its
A-expression “meaning” by performing a syntax-
directed translation based on the semantic equa-
tions. This A-expression is then usually simplified,
through S-reduction, as much as possible at com-
pile time. The resultant A-expression is taken as
the object code and can be *®executed” by per-
forming further S-reductions in the presence of an
input file.

Unfortunately, these compilers are not very
practical. This is due in large part to their in-
efficiency, which stems from the expense of per-
forming S-reductions. Since LISP is in many
respects similar to the A-calculus (particularly
lexically-scoped, full-funarg LISP dialects such as
SCHEME [StS78]), it seems reasonable to allow
the generated compilers to derive LISP programs
instead of A-expressions. This would allow the
use of a LISP implementation’s compiler or EVAL
function in executing the “object” code. Then, the
explicit simulation of F-reductions is avoided, and
the efliciency of LISP is obtained.

The problem with this approach is that LISP
programs are evaluated in one fell swoop — there
is no concept of “partial” evaluation as there is
when considering the f-reduction of A-expressions.
This is particularly crippling at compile time,
when certain runtime entities, such as the program
input file, may be “unbound.” Since most LISP
implementations treat the evaluation of unbound
entities as fatal errors, a generated compiler based
on LISP would often fail during compilation. On
the other hand, a S-reduction mechanism in the
same situation simply stops evaluation, and re-
turns the partially-reduced expression as the “an-
swer.” Furthermore, this “answer” expression has
the desirable property that only runtime compu-
tations are left to do ~— all compile time compu-
tations have at this point been reduced away.

In order for compiler generation based on de-
notational semantics to become feasible for realis-
tic and useful languages, we believe the generated
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This figure shaws the typical process of compilation by an automatically-generated compiler. The source program
is first translated to its A-expression meaning, and then f-reduced as far as possible. This results in a reduced
A-expression which is taken to be the object code for the program. The program can then be run by performing

farther reductions in the presence of the input file.

A significant amount of time and storage is consumed by the S-reduction processes, S, and thus it is desirable to
replace these by a more officient mechanism, such as a SCHEME evaluator.

Figure 1: Semantics-Based Compilation

compilers must accomplish the following:

1. Avoid explicit S-reduction while still retain-
ing the partial evaluation property.!

2. Avoid the introduction of unnecessary clo-
sures into the object code.

For languages like Pascal, closures in the ob-
ject code are always unnecessary since a simple
stack discipline may be used to represent environ-
ments. Other languages, for instance SCHEME,
which have higher-order functions and continua-
tions as first-class objects, may require closures;
but in this case they should be used only to han.
dle these particular language features. Unfortu-
nately, automatically-generated compilers usually
introduce many unnecessary closures, ¢.g., to rep-
resent the program store, into the object code.

We say that a compiler which accomplishes the
two goals listed above is realistic. Note that by this
deéfinition, hand-crafted compilers are realistic.

We have developed a new technique for lan-
guage specification based on modular denotational
descriptions. The technique has been imple-
mented in a compiler generation system called
MESS? which produces realistic compilers written
in SCHEME. This paper describes MESS and its
use of SCHEME in generating efficient and realis-
tic compilers.

1A compiler without the partial evaluation property has
no “pep.® This notion of partial evaluation should not
be confused with that in Jones' *mix” operator [Jon84].

3Marvelows Extensible Semantics System.
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Semantics-Based Compiler
Generation

Figure 1 shows the compilation process of com-
pilers generated by “classical” systems such as
Mosses’ Semantics Implementation System (SIS)
(Mos79] and Paulson’s Semantics Processor (PSP)
(Pau82]. Our extensive experience with these
systems has already been presented eclsewhere
[BoB82,Ple84al, so we shall refrain from discussing
them in detail here.

Instead, we simply point out that a significant
amount of time and storage is consumed by the 8-
reduction processes (the boxes marked *f*). This
is because the reductions are performed on pro-
gram graphs and involve a considerable amount of
copying of substructures. It is still an open ques-
tion whether this can be done efficiently.? Indeed,
one reason for SCHEME’s efficiency is the fact
that lambda-variables can be “compiled away”
into stack offsets. A S-reducer, on the other hand,
can not do this since it must allow for partial eval-
uation.

Thus, a more promising strategy is to derive
LISP (i.e., SCHEME) expressions instead of A-
expressions, and then use a LISP implementation
for the reductions.

$Paulson’s system compiles the reduced A-expreéssions to
code for sn SECD machine (Lan64] for grester efficiency.
However, the compile time reductions are still performed
by expanding snd simplifying the program graph.



SCHEME as the Target Language

This is the method taken by Wand’s Seman-
tic Prototyping System (WaSP) [Wan84]. WaSP-
generated compilers translate a source program
into a semantically equivalent SCHEME target
program. The application of the target program
to the required runtime information (such as the
input file and the initial store) evaluates to the
program’s output.

However, since there is no concept of partial
evaluation in SCHEME, WaSP-generated compil-
ers do not perform any reductions at compile time.
Instead, all reductions are deferred to runtime.
While this approach has the advantage of being
able to use the highly efficient SCHEME imple-
mentation, the generated compilers are far from
realistic. Compile time computations, e.g., for
static semantic checking and storage allocation,
are embedded in the derived SCHEME programs,
and must be performed every time the program 1s
ezecuied, thus negating much of the advantage of
using SCHEME.

A New Technique for Semantic
Specification

In order to regain the partial evaluability prop-
erty, a compiler generation system must be able to
distinguish between those portions of the seman-
tic specification describing static components of
the language, and those describing dynamic com-
ponents. Then, runtime entities in the semantics
could be “marked” so as to avoid their evaluation
at compile time.

MESS is able to do this by enforcing a modu-
larsty in the semantic specifications. In a modular
semantics, the semantic equations are not written
in a low-level A-notation; rather, a higher-level no-
tation is used which allows one to abstract away
from model-dependent details such as stores and
continuations. This concept of modularity is the
same as that proposed by Mosses in his abstract
semantsc algebras [Mos84).

A complete description of our specification
technique is given in [Lee86]. Here we give just
a few brief examples to highlight the main ideas.
Consider the following fragment of a semantic
specification as might appear in one of the clas-
sical systems:¢

C [[stut1 »;» stmt2]] env store =
C [[etmt2]] env
( C [[stat1)] en¥ store ) ;

E [[expr1 "+ expr2]] env store =

4In this paper, all fragments of semantic specifications
are written in the embellished, ML-like [Mil85) notation
used by MESS.
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(¢ [[expri]) env store) +
(E [[expr2]] env store) ;

These equations define the semantics of state-
ment sequencing and addition expressions in the
so-called “direct” style. The semantic variable env
represents the static environment, and store rep-
resents the program store or state. These equa-
tions are non-modular because model-dependent
details such as stores are intertwined with the lan-
guage semantics. Thus, if a change is made to the
semantic model, drastic changes must be made to
the semantic equations. For example, if the model
changes so0 that continuations become necessary
(e.g., to model escapes from loops), then the equa-
tions must be rewritten as:

C [(stmtt »;* etmt2]] env cont =
C [{stmti]] env
{ ¢ [[stnt3]] env cont } ;

E [[expri "+ expr2]] env kont =
E [{expr1]] env { fn oi.
E [[expr2]] env { fn ¢2.
kont (o1 + ¢2) } } ;

which is completely different from the previous
equations. In these squations, cont and kont rep-
resent command and expression continuations, re-
spectively.

In MESS, the semantics is written in a modular
fashion:

C [[stmti *;* stat2]] env =
seq (C ([etmt1]] env, C ([stmt2]] env) ;

E [[expri "+ expri)] env =
add (E [{expri]] env, E [{expr2]] env) ;

where the model-dependent details have been en-
capsulated in the definitions of the semantic ®op-
erators” seq and add. These operators produce
values in the action domains A; (imperative ac-
tions) and Ay (value-producing actions), and can
be defined in any number of ways without affecting
these equations. For example, a continuation-style
definition can be given as follows:

ImpAction = CONT -> CONT ;
ValAction = KONT ~> CONT ;

seq : ImpAction * ImpAction -> ImpAction ;
seq (ci, ¢2) =
fn cont. ¢1 { ¢2 cont } ;

add : ValAction * ValAction -> ValAction ;
add (ei, 032) =
fn kont. e1 { In evi.
o2 { In eva.
xont (evi + ev2) } ) ;

Other definitions of the operators are possible,
for example a direct-style definition:



IspAction « STORE -> STOAE ;
ValAction = STORE -> EV ;

seq : ImpAction # ImpAction -> ImpAetion ;
seq (c1, ¢2) =
fn store. ¢2 ( ¢1 store ) ;

edd : ValAction * ValAction -> VelAction ;
0dd (o1, ¢2) =
fn store.
( o1 store ) + ( 2 store );

or even a SCHEME program:

(detine (seq c1 c2)
(begin ci c2))

(define (add o1 02)
(+ o1 ¢32))

The key point is that modularity preserves the
ability to choose any form of definition, or imple-
mentation, of the semantic model, whereas st s
destroyed in standard denotational descriptions by
the sntertwining of the language semantics with the
semantsc model.

In addition to separating the semantics from
the semantic model, we believe it is important
to distinguish operators which represent dynamic
language concepts from those which represent
static concepts. A; and Ay are clearly dynamic
(i.e., runtime) action domains, whereas operators
in the domain of environment-producing actions,
Ap, might be static actions. One can regard
static actions as representing compile time com-
putations, and dynamic actions as pieces of object
code. This separation of static and dynamic ac-
tion domains not only increases the comprehensi-
bility of the semantic descriptions, but also allows
MESS to decide what operations can or should be
performed at compile time.

We use the term macrosemantics, or simply
semantics, to refer to a modular semantic specifi-
cation which completely avoids explicit references
to model details. The definition of the runtime op-
erators, then, is called the microsemantics. This
terminology is analogous with the terms microsyn-
taz and syntaz used for describing elements of lan-
guage syntax.

MESSy Compiler Generation

The basic idea of MESS is that modularity in
the semantic specifications is enforced by the sys-
tem. This allows MESS to decide which portions
of the semantics should be evaluated at compile
time, and which should be deferred to runtime.

Figure 2 shows the overall structure of MESS.
MESS has been implemented on an IBM Personal
Computer, with the front-end generator written
entirely in Pascal, and the semantic analyser in
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SCHEME. The Pascal implementation used is
Turbo Pascal [Bor85), and the SCHEME imple-
mentation is TI PC SCHEME [TI85].

As an example, Appendix A gives 3 macrose-
mantic specification (corresponding to “Ma spec.”
in figure 2) in MESS format for the language
KleinPL. KleinPL is an imperative language with
arrays, non-recursive procedures, and the usual
Paacal-like control structures.

MESS uses a semantic metalanguage similar
to ML [Mil85), i.e., it is applicative and has poly-
morphic types. The interface declaration in the
example specification tells MESS which file con-
tains the specification of the abstract syntax (“AS
spec.”). The abstract syntax specification is gen-
erated automatically by a compiler front-end gen-
erator, and is used by MESS to ensure the con-
sistency of the sbetract syntax expressions ap-
pearing in the macrosemantic specification with
those specified in the front-end specification (*FE
spec.”).

The microsemantics declaration gives the
name of a file containing the specification of the
microsemantics (corresponding to “Mi spec.” in
figure 2), i.e., the definitions of the dynamic opera-
tors and action domains. An example of a microse-
mantic specification is given in Appendix B. This
microsemantic specification is converted by MESS
into & SCHEME program which implements the
operators (“IM”). This program can then be used
as an environment in which compiled KleinPL pro-
grams can be executed.

A KleinPL Compiler

The compiler generated by MESS {*FE” and
*BE® in figure 2) from the KleinPL specifications
(“FE spec.” and “Ma spec.”) is a syntax-directed
transducer which translates KleinPL source pro-
grams into SCHEME code. The macrosemantic
specification is 434 (well-commented) lines long,
and required approximately 8 man-hours to write
and debug. The microsemantic specification is 389
lines long, and required about 18 hours of work.
In both cases, much of the time was spent fixing
type errors, since the MESS type checker is not
yet complete.

The generation of the front-end requires 52.47
seconds,® and results in a 5,000 line Turbo Pascal
program which performs lexical analysis and pars-
ing of KleinPL programs. Most of the Pascal code
is for automatic syntactic error recovery. Note
that the front-end generator is still under develop-
ment, and we expect its running time to improve
considerably. Semantic analysis and back-end gen-
eration requires 180.81 seconds, and results in a

$All timings were taken on an IBM PC with an *scceler-
ated” 10MHs clock.
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This pictorial representation of MESS shows the various phases of compiler generation. The semanticist
provides specifications for the front-end, macrosemantics, and microsemantics (FE spec., Ma spec., and Mi
spec., respectively). A specification of the abstract syntax (AS spec.) may also be given, although the front-
end generator, consisting of the Simple Lexical Analyser Generator, Parser Generator, and Tree-Builder
Generator (SLAG, PaG, and TBuG) generates this automatically. The semantics analyser (SA) analyses
the semantic descriptions and produces the compiler back-end (BE) and a SCHEME implementation of the
microsemantic operators (IM). The back-end transforms abstract syntax trees (generated by the front-end
(FE) or manually written) into object code (OBJ). If a code generator (CG) is available, the target code
can be translated to machine code. Otherwise, either an abstract machine (AM) or the implementation of
the microsemantics (IM) may be used to execute the program.

Figure 2: Our big MESS.
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868 line (pretty-printed) SCHEME program. Ex-
cerpts of this program are given in Appendix C.

The translation of the KleinPL macroseman-
tics to the SCHEME program in Appendix C is
relatively straightforward. The SCHEME pro-
gram transiates abstract symtax trees into pre-
fix expressions, where the prefix operators are
taken from the microssmantics. Note that in the
SCHEME equivalent of the KleinPL macroseman-
tics the names of the microsemantic operators are
quoted — it is this quoting which prevents evalu-
ation of these runtime operators at compile time.
Since the quoting is explicit, there is no need to
depend on partial evaluation. Other pieces of the
code involved only with compile time computa-
tions are mot quoted, and thus are evaluated at
compile time, which is the desired effect.

Appendix D gives a bubble-sort program writ-
ten in KleinPL, and excerpts of the object code
produced for it by the MESS generated compiler.

The compilation requires 20.26 seconds, and
results in 308 lines of object code. The compiler
spends its time as follows:

lexical analysis and parsing | 2.41 sec.
abstract syntax tree building | 8.62 sec.
translation to object code 2.47 oec.
object code output 6.76 sec.

Executing the Object Code

The object code is a prefix-form expression
comprised solely of applicstions of microsemantic
operators. Thus, this expression can be evaluated
by the SCHEME system in an environment which
has been augmented by an implementation of the
microsemantics. This implementation can be ob-
tained in a number of ways.

First, MESS can automatically produce, from
a microsemantic specification, a SCHEME pro-
gram implementing the microsemantics (*IM* in
figure 2). Appendix E gives fragments of the
SCHEME program derived for the continuation
microsemantics given in Appendix B. MESS re-
quires 154.12 seconds to generate this program,
which is 497 (pretty-printed) lines long. We have
also written a microsemantics for these operators
in the “direct” style. For this specification, which
is 364 lines long, MESS requires 142.20 seconds
to generate the implementation, resulting in a 476
line SCHEME program.

Alternatively, one can write an “abstract mas-
chine” implementation of the microsemantics by
hand (*AM” in figure 2). In this case, one might
take advantage of special knowledge about the se-
mantic model, for example that the store can be
implemented as a large vector, in order to gain
execution time efficiency. We have written an ab-
stract machine which implements the operators
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specified in Appendix B as a 138 line SCHEME
program.

Finally, since the object code is in prefix
form and the operators are suitably low-level, one
can use a table-driven, Bird-style code generator
[Bir82] in order to generate machine code. We
have written such a code generator for the In-
tel 8086 machine (this is the CPU used in the
IBM PC), resulting in a code generator written
in PROLOG. The PROLOG implementation used
is Turbo Prolog [Bor86]. For the bubble-sort pro-
gram, the code generator produces 205 instruc-
tions requiring approximately 400 bytes of stor-
age.
The following table gives the execution times
for the bubble-sort program, given a worst-case
input of ten integers, in each of the microsemantic
implementations described above.

continuation-style | 40.59 sec.
direct-style 14.94 sec.
abstract machine | 6.75 sec.
8086 machine code |€.50 sec.

Comparison with PSP

We are currently in the process of porting Paul-
son’s Semantics Processor (PSP) [Pau82] to the
IBM PC in order to provide for a direct compar-
ison of execution times. At the time of this writ-
ing, enough of PSP has been ported to allow us
to generate a small compiler. However, the PSP-
generated compilers produce code for an SECD
machine [Lan64] which we have not yet finished
porting. Thus, we can compare only compiler gen-
eration times and compile times.

For our test language we take ToyPL, which
is a very small imperative language with arrays.
The time required by each system (discounting
1/0 overhead time) to generate a ToyPL compiler
is given in the following table:

MESS | PSP
| 150.78 sec. I 28.00 sec. |

Part of the large time difference between MESS
and PSP can be attributed to the (presently) slow
front-end generator in MESS. However, MESS is
also spending considerably more time in semantic
analysis and back-end generation as well

For a small ToyPL program, the running times

(again discounting I/O overhead time) for these
compilers are as follows:

MESS | PSP |
I 4.61 sec. | 17.20 sec. I
The significant speed advantage exhibited by

the MESS-generated ToyPL compiler can be at-
tributed primarily to its use of the SCHEME




EVAL function for compile time reductions. The
PSP-generated compiler, on the other hand, is
hampered by the slow S-reduction process.

Making a MESS

Although MESS is now completely opera-
tional, some implementation work still remains.
The type-checker for the semantics analyser is in-
complete, and we have yet to write larger, more
realistic microsemantic specifications. Our plan is
to provide a microsemantics library, complete with
abstract machines and code generators, which de-
fine operator sets rich enough to handle a Pascal
semantics. We believe that this will provide the
semanticist with a solid basis on which to exper-
iment with language design and compiler genera-
tion.

Conclusion

This paper has described a compiler generator
called MESS which is able to automatically de-
rive realistic compilers from formal semantic de-
scriptions. As an example, we showed how MESS
generates a compiler for KleinPL, a language with
control structures, procedures, and arrays. The
generated compiler is both efficient and realistic.
We are not aware of any other system which is
able to generate such compilers from formal spec-
ification. Furthermore, we believe the engineering
feasibility of our approach is amply demonstrated
by the fact that MESS is operational on a desktop
microcomputer.

Sethi has developed a system [Set81] which can
generate a compiler which produces machine code
for a language with all of the control structures
in the C language. Unfortunately, the method
used in his system does not work for procedures
and data structures. Also, Appel has recently de-
scribed a new compiler generator [App85]. Al-
though the published accounts of his work are still
quite preliminary, the specification technique ap-
pears to be rather ad hoc. Furthermore, the re-
ported compile time of one VAX CPU second per
line of code is, we believe, much too slow to be
considered realistic.

The compilers generated by MESS are written
in SCHEME, which is used as a highly efficient A-
calculus machine. Our experience indicates that
SCHEME is a particularly good language for both
compiler writing and generation. This should not
be surprising, as compilers quite often deal with
tree structures which can be manipulated easily
and efficiently in SCHEME. In addition, SCHEME
handles higher-order functions (i.e., full funargs)
and continuations as first-class objects — both fea-
tures find good use in automatic compiler genera-
tion. Finally, SCHEME implementations usually
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come with compilers which are quite good at op-
timisation, and this helps to reduce the running
time of the generated compilers.
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Appendix A: The KleinPL Macrosemantics (excerpts)

semaatics KleiaPL;

iaterface *KleiaPL®;
micresemantics “"ceat®;

semaatic demmins

(+ ENV: Static eavireamests.
* Used to kesp track of the statically-determined iaformation (the MODE) for eack ideatifier.

* Alse coatains & "aew® location pointer for sterage allocation aad the curreat block aestiag level. *)
ENV = (IDENT -> MODE) * LOC ¢ INT;

(s IDENT: Ideatifiers ia the static eaviromment.

* These are represented as tuples: (AST leaf giviag the id nmame, its dlock level) ¢)
IDENT = AST + INT;

(* MODE: Identifier modes.
* For sach of the three denetations for ideatifiers, we keep track of its address (or
¢ its parsmeter's sddress, ia additiea te ether iaformatien. ¢)
TYPE = uaien int_type | beol_type;
NODE = uaion aeae | var ef (LOC ¢ TYPE) | array ef (LOC = UPPERBOUND + IYPE) | procedure of (LOC » TOKEN);

(* DECL_ELEMENT: Declaratiea elemeats.

¢ These car be either & variable, whick has a name; or elss an array with & name and size. ¢)
DECL_ELEMENT = unien varDecl of AST | arrayDecl ef (AST « ASD);

auxiliary functieas
initkavy : BNV = ((fa 1d4. aeme), 0, 0);

looksp (name, (assoc, _, level)) =
let fun lockupi (aame, scope) =
case assoc (asme, scope) of
aene => if scope = O thea nene else leskupi (name, scope - 1) |
mode => mede
ia
lockupl (aame, level)
oad;

allocirray (aame, ub, eav, typ) =
1ot (assoc, aeswloc, level) = eav
and id = (aame, level) ia
case assec id of
noae => ([id = array(sewloc, mb, typ)) assoc, aswloc + (ub ¢ sizelf (typ)), level) |

- => grror eav aame “Variable already declared.®
oad;

allocEach (vars, eav, typ) =
let fun allocOne (declElt) =
let (assoc, aewloc, level) = eav ia
case declilt of
*  wvarDecl (aame) => allocVar (aame, eav, typ) |
arrayDecl (aame, ¥b) => allocirray (aame, ub, eav, typ)

ond
i
case vars of
ail = env |
varElt :: rest => allocEach (rest, allocOne (varElt), typ)
ond;

lvalue_error id meg = error (iat_type, loadAddr (0)) id meg;

exp.error exp msg = error (iat_type, loadlat (0)) exp meg;

imp_error v msg = error (aull) v meg;

bad_expr exp e orror (iat_type, loadlat (0)) exp "Nismatched type in expression.”;

checkTypes (typ, (t1, v1), (22, v2)) =
it (typ = t1) aadalso (typ = t2) ther (vi, v2)
else recover (loadIat (0), loadIat(0)) “"Mismatched types ia expression.®;

semantic functions

P : AST -> OUTPUITILE; (* program semaatics ¢)
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D : AST => KNV -> (ENV » DACTION); (+ declaratiea semantics *)

V : AST ~> DECL_ELEMEST list: (* liets of vars ia declarations *)
B : AST -> KNV -> (REV « IACTION); (* scope bleck semaatics ¢)

C : AST -> ENV -> IACTION; (* command semantics #)

L : AST «> KNV => (TYPE » LACTION); (* l-value expressien semsatics *)
B : AST -> BNV => (TYPR » VACTION);: (* expressien ssmantics *)

semaatic equatiens

(¢ -~ Programs *)
P ([ *progren® same *(° imputfile °," eutputfile *)* %1s® dedy )] =
et ((_, nmBize, .), progrealedy) = B [[bvedy]l] taitRav 1a
wxecate (
prog (nmBise, oise0f (1at_type), sizeff (beel.type), [[inpatfile]], [[eutpatsfile]]), seq (pregrambedy,
wrapup) ) )
oad;

(» -~ Declaratieas o)
D (£ docl docls )] v » 1ot (eavi, dactl) = D [{decl)] eav is
1ot (eav3, dact2) = D [[decls]) eavi ia
(eav3, declBeq (dactl, dactl))
ol
oad;

D [[ }] eav = (eav, sullDecl);
P {[ *1at® vare ]) eav = (allecEach (V [(vars]], eav, iat_type), anllbecl);

D [ "proc® samel *(® samel )" ®ie® bedy ]) eav =
1ot (asoec, paramlec, level) » eav
asd 14 o (mamet, level) in
case assec id of
asne *> let proclid = makeToken aamel
asd nestedlav = (assec, paranlec, level + 1)
asd preciay = allecVar (zame2, nestedfav, int_type)
and (aowEav, bdedyict) = B [{bedy)] precRav
and (aowissec, aevlec, .) = anvBav
i
4 :[u => precedure (paremlec. precid)] aewlesee, newlec, level), prec (preclid, Yedyict) )
oad
- ® errer (env, aePreciction) aamel "Precedsre alrealy declared.®
ond;

(¢ == liete of variadles *)
Vv [ varBls ©,° varBits )] = ¥ [[varf2s)] :: ¥V ([varklte]);

v I[]1) =1
¥ [ 14 ]) = varDecl {(14]);
v ([ 14 °[" 2w *]* ]] = arrsyDecl ([(14]), ((axm)]);

(¢ -- Blecks ¢)
B L[ decls *bogin® stnts "end® ]] eav = 1ot (senv, dast) = D {{decls)) eav fa

(ooav, bleek (dact, C [[stmts]] seav))
oad;

(¢ -~ Coamands *)
C [L stat *;® otmts ]) eav © seq (C [[etms]) eav, C [(otmts]) eav):

C ([ ]) eav @ 2u2);

€ ([ lvar *:=* pr }) eav @ 10t (itype, 1lwalee) = L [[ivar)) eav
and (rtype, rvalne) o B [{expr)] env 12
12 Isype = type Rdea
case 1type of
iat_type => sterelat (ivalue, rvalue) |
beed_type => sterelos) (lvalee, rvalue)
olse
inp_errer lvar *Type mismateh in assigament.®
od;

C [{ *while® axpr ®de® stmts )] eav v
let (typ, value) * K [[expr]] eav ia
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case typ of .
beel_type => while (value, C [[etmts]]) eav) |
- o> imp_errer oxpr *WEILE expression must be boelear.®

oad;

€ ([ ®call® 42 *(" axpr *)* ]] aav =
let (typ, value) = B ((expr]] eav 12
case typ of
iat_Sype =>
(case leskup ([[14]], eav) of
procedure (arglec, same) => seq ( sterelat ((loaddddér arglec), valus), call (name) ) |
- > imp_errer id *Identifier net declered as & precedure.®) |
- 8> imp_errer expr "Procedure argumest mast be iateger.®
oad;

(¢ == L-Values *)
LI[34]) eav e
case looksp ([[14]], eav) o2

aene => lvalue_errer 44 *Varieble net declared.® |
var (loc, typ) => (syp, leaddddr (lec)) |
array () > lvalse_errer id "Nissiag aa array subscript.®;

(s -- Expressions ¢)
Ril1¢])] eavr=
case lookup (14, env) of
asme *> qxp_errer id “Varisble aet declared.® |
var (loc, Syp) => (case syp of
iat_sype = (Syp, foschlat (lec)) |
bosl_sype > (typ, fetchBesl(lec)) ) |
array () ®> exp_earrer ié “Missiag sz array ssbecript.®;

Bl 12 *(* expr *)* ]] eav =
1es (syp, value) = E {[expr]] eav fa
case typ of
int_sype => (case leekup (id, eav) of
seas = exp_exrer id “Array aet declared.® |
var () = exp_errer id *Variadle net declared as an array.® |
arrsy (lec, b, typ) ®
(ease typ of
fas_sype => (typ, contIat (indexIat (lec, chock (ub, valne)))) |
bosl_type => (syp, contBosl (indexBeel (lec, check (wb, value)))))) |
- s> imp_errer «xpr “Array index mast be integer.®
ound;
E {[ expri ®+® «xpr2 1) eav = 1ot (vi, v2) = checklypes (iat_type, B [[expril) eav, B [[expr2]] eav) 12
(1as_type, odd (vi, v3))
ud;
2 ([ awm ]) eav = (ias_type. leadlat (aem));

ond semantics

Appendix B: A Continuation-Style Microsemantics (excerpts)

micresemantics ceat;
semantic demaias

(¢ Stere lecatieons are simply iategers. *)
LOC = INY;

(* Array wppezbenads are slse iategers. *)
UPPERBOUND = INY;

(* Integers and booleans are the only storable and expressible
* values, and store locations may be unriaitialized. »)

sv = union uniait | iValue of INT | bValue of BOOL;

Ev s 8V;

MEMORY = LOC -> 8V;

(* The store consists of:

* -~ the memory mapping, iaput and output files
* « the maximum size of memory, ia locatioas
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* « the namber ¢ lecaticns seeded to etore aa integer, nd & dooleas *)
SIOAR = MENORY » INPUIFPILE * SUTPUITILE « LOC ¢ IBT » INT;

(* The ¢ynmmic eaviremmsat 15 woed for heeping track of
* prosedure dedy ections. ¢)

DENV = T0KEE -> PROC_DODY;

PROC_DODY = gynien sePrec | precBedy of IACTION;

(* The contiamations. *)
ANSVERS = OUIPUITILE;
CONT = STONRE -> ARDUERS; (s command centimustions o)

LT = KV -> CONY; (* expression contimmations ¢)
LCSNT = LOC -> CONT; (* 1-value continnations »)
DCONT = DENV -> CONT: (* declarstion seantinsaticns *)

actien demaise

IACTION = DREV -> CSNT -> CONY; (¢ imperative astiens ¢)

VACTIN = KDNY -> CONT; (* valve-producisg sctions ¢)
LACTION = LCONT -> CONT; (s lesasicn-preducisg scticns ¢)
DACTION = DOGET -> CONT; (¢ daclaretion sstions o)

asxiliary fuacticans

(¢ Perfora the given aritimetic eperation.
¢ ((INT ¢ INT) -> INT) o VACTISN ¢ VACTION) -> VACTION ¢)
iafix eper;

doXatlp (op oper. vi, v2) »
fak vi {(fael. v3 { s 3.
1t {Value (11) = of asd iValue (12) » @2 42
k (4Valse (i1 eper 12))
ol ) );

neafix eper;

(* Retrieve the centents of tho stere at ke gives lesatien.
. (LOC » STARR) -> BV o)
contenss (lee, o) ©
st (n, _, .. - = ) 0 12
case (m lee) of
winit =y fatal ("Referenciag sainitislised lesatica.®, 1ec) |
v -v
od;

(+ Update the store lecatien with the gives walue.
. (LOC ¢ SV » STORE) -> STORR )
spdate (lec, v, (m, inp, out, mes, iss, be3)) » ([lec => v] m, inp, ent, mex, isz, bsz);

(e Givea the lecatien-preducing and walue-producisg actieas,

¢ compite the lecation aad value, and thes stere the Walue.

. (LACTION * VACTION) -> IACTION o)

storeVal (1, v) = fa deav. fa c. 1 {22 lec. v { fa ov. { 22 6. ¢ (wpdate (loc, ev, 0)) } } };

(s Load the coateats of the givea lecatiea.
* LOC -> VACTION »)
fotchVal (loc) = fa k. { fa . k (conteats (lec, 8)) s };
(s Givea & lecation-preduciag actiean, cemputs the lecaties and
* lead its ceatents.
. LACTION -> IACTION )
leadContents (1) = 22 k. 1 { fa loc. { 22 5. k (econtents (loc, 0)) ¢ } }:
(* Combine the twe declaratien eavireameats iate eme. *)
combine (deavi, deavd) tek = case deavi tek of
aePrec => deav2 tek |
4 = p

3811Deav : DRNV = fa2 asme. aoPrec; (* The 3ull declaration eavireament. *)
2i18tore = ():STOAR; (s The ®irrelevaat® stere. *)

nilCoat = fa ¢. ():ANSYRRS; (s The “irrelevast® coatiauation. *)
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(* The roquired "sxecute® fuactien.
. IACTI0N -> OUTPUITILE o)
exscete (2) = s asllDeav 211Cent ailStere;

speraters

(* Basic arithmetic speraters. )
add .: VACTION » VACIION -> VACTION is
add (vi, v2) = delntOp (op +, Vi, v2);

(* Load she iateger/beslean cesstant. *)
leadInt : INT ~> VACTION ie
loadInt (a) = 2a k. X (iValue 2);

(* Lead the conteats of the lecatien. ¢)
fetchlat : LOC => VACTION is
fotchlat (loc) = fetchVal (loc);

(s Lead the lecation (aet its centests). )
loadAddr : LOC -> LACTIOR is
loaddddr (Qoc) =22 ). {(fa s. 1 1ec s };

(* Cempute the lecation and lead its ceateass. *)
contlat : LACTION -> VACTION is
contIat (1) = leadContents (1);

(* Compute She lecation anéd value, and thea stere the value. ¢)
sterelat : (LACTION * VACTION) -> IACTION gs
sterelat (1, v) = etereVal (1, v);

(s Porforn esch actien ia sequence. *)
seq : (IACTION » JACTION) -> IACTION is
seq (a1, a2) = fa deav. fa ¢c. al deav { a2 daav ¢ );

(¢ Loop uatil the test expreasien evaluates to Zalss ¢)
while : (VACTION » IACTION) -~> IACTION is
while (v, @) = fa deav. 22 ¢c. v { 12 ov.
1ot Walse (b) = ov ia
47 b then & deav (while (v, 2) deav ¢) olse ¢
oad );

(¢ Portorm the givea imperative actiea after takiag care of the
* declarstien actions. I.e., open & new scope block. ¢)
Plock : (DACTION * IACTION) ~-> IACTION is

block (dact, act) = fa deav. £a ¢. dact { fa deavl. act (combine (deav, deavil)) ¢ };

(s Call the procedure *)
call : TOKEE -> IACTION ie
call (name) = fa deav. fa c. { case deav name of
procBody (body) => body deav ¢ |
> fatal ("Can’'t fiad procedsre.®, nume) };

(s Declare the procedure *)
proc : (TOXEN & IACTION) -> DACTION ie
proc (aame, body) = fa dcont. dcont ({aeme > precBody (body)] aullDeav):

oad microsemantics

Appendix C: A KleinPL Compiler (excerpts)
; Cenerated by MESS from macrosemantic specification file kleinpl.mes

(DEFINE (IE AST)
(LET ((NODE (CAR AST))
(ARGS (CDR AST)))
(CASE ¥ODE
(oM
(APPLY
(LANBDA (1XON)
(LANBDA (IENV)

(TUPLE IINT_TYPE (LIST °ILOADINT 1NUN))))
ARGS))
({EXPR1 "+ EIPR3{
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urery
(LAVEDA (IKXPR1 IRXPR2)
(LAMBDA (1ENV)
(LET+ ((v (ICEECKTIYPES (TUPLE 1INT_TYPE ((IE IEIPR1) IRNV) ((I1E IEXPR2) IENV))))
(ivs (Caz V))
(1v2 (cADR V)))
(TOPLE 1INI_YYPE (LIST °*4ADD (LIST "IUPLE 1¥i 1V2))))))
4208)))))

(DEFINE (1€ AST)
(IRY ((NoDE (CAR AST))
(ARCS (COR AST)))
(CASE NODE
C(lowhile® EIPR "de® SINYS|
(APPLY
(LAYEDA (IEXPR ISTNTS)
C(LAMBDA (IENV)
(LETs ((v ((IE 1KIPR) IENV))
QIYP (Car V)
(1vaLoR (came V)))
((Laveos V)
(CoND ((EQ? Vv 1900L_TYPR) (LIST *IWNILE (LISY °‘TUPLE IVALUE ((1C 1STNTIS) 1ENV))))
(ELSE ({1 INP_ERROR IRIPR) *WNILE expressiss mests be beolearn.®))))
177P))))
ARGS))

CILYAR *:=* XM
areLy
(LAMBDA (ILVAR IRXPR)
(LABDA (1EBV)
(LETs (v CQIL 1LVAR) 1RBV))
Quivee (cak V)
C(ILVALUE (CADR V))
v (C1z 18XPR) 1ENV))
CIRTTPR (CAR V))
CIRVALER (CADR V)))
CIF (1= ILTTPE IRITPE)
((LAMBDA (V)
(COND ((EQ? V 1INT_TYPE) (LISY *ISTORKINT (LIST °TUPLE ILVALUE IRVALUE)))
(RLSE (LIST °ISTOREBOOL (LIST *TUPLE ILVALUE IRVALUK)))))
(1541, )

((IIMP_ERROR 1LVAR) "Type miematch ia assigament.®)))))
4208)))))

Appendix D: The Bubble-Sort Program and Object Code (excerpts)

program babdleBers ( “stdia®, ®stdent® ) is
{* Thie KleiaPlL pregram eerts & sequonce ¢f istegers.

¢ Iategers are read in uatil either o *~090° walue, or 20 olamenss, are read. ¢}
iat

awm (20]; {* The array te sert ¢)

proc eort (amilte) 1o
{+ This precedure uses & bubdle sert te arraage the O..aunklte-1 olements of the "ama® array. ¢}

prec owisch (idx) is
{* Exchasge amm{idx] with awm{idxei]. o}
iat temp;
bogin
tenp := amm [i¢x);
s [44x] := awm {4d4x+ 1);
aem (idx + 1) := temp
ead; (¢ evitch ¢}

1at last, curreat;

begia {* Maia body of sort s}
last :=» auaklts - §;
while last >= § do
curreat :s 0;
while curreat < last do
i2 awm [curreat] < sum [curreat ¢ 1] then
call ewitch (curreat)
ond if;
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curreat :s curreat ¢ i
oad while;
last := last - &
oad while
oad; {* sort »)

proc priathins (sise) i
{* Dump out the array, 0 .. size-1. »)
int 4;
begia
i :=0;
while {1 < size do
write amm [1);
1 s8¢
ond while
exd; {* pristiums )

izt aualead, {* The ammber of integers read iz o)
nl; {* The curreat iaput »}

bool notDene; {» Deas reading? »)

{* Main pregraa ¢}
bogis
aunlead := O;
road val;
notDoae := val <> -000;

while astDene do
asn [{aumlead] := wval;
sualead := numRead + §;
i2 anmRead = 20 then
notDene := false
olse
road val;
if wval = ~999 thea
astDene := false
ead it
oad it
oad while;

call priatiams (aumRead):

write ~900;

call sors (aumlead);

call priatisms (aumBead)
ond

The following is the object code produced for the procedure “switch”:

Groc
(TurLs
‘isvITcR
(1sLocx
(rorLe
()DRCLERQ (TUPLE )NULLDECL INULLDECL))
(182§ (TUPLE
()STORRINT (TUPLE (ILOADADDR 44)
C1CONTINE (IINDRXINT (TUPLE O (1CHNECKX (TUPLE 20 (IFETCHINT 42))))))))
(152 (rUPLE
CI1STORRINT
(Yums
C1INDEXINT (TUPLE O (ICHECK (IUPLE 20 ($FEICHINT 42)))))
C1conTINg
(1INDEXINT
(roMms
0
(1cxex
(TUPLE 20 C1ADD (TUPLE (IFETCHINT 42) (ILOADINT 1))))))))))
(1szq (TUPLE

(1STORRINT
(TUPLE
(1IXDEXINT
(TUPLE
[}
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(1cuncx
(rorLx
20

C1ADD (TUPLE (IFEICHINT 42) (ILOADINT 1)))))))
CITRYCHINT 44)))

Appendix E: The MESS-Generated Implementation of the Microsemantics

N
; Genorated by NESS frem microsemantic specification f£1il¢ ceas.mes

(DEFINE 1ADD
(REC 1ADD
(LaBDA (Iv?])
CLET C((1V1 (CAR IvT1))
(1v2 (CADR [v¥71)))
(IDOINTOP (TUPLE 1+ IV1 VD))

(DEFINE I1STOREINT
(RRC 1STORBINT
(LBDA (Iv30))
(LEY (L (car 1v201))
1V (CADR (v201)))
(1STORRVAL (TUPLE IL 1V))))))

(DEFINE 18%Q
(REC 1829
{La@bs (1vaal)
(Ler ((1a3 (CAR {va3l))
(1A3 (CaDR ivaa])))
(LAMBDA (I1DENY)
(LAMBDA (1C)
(C1A1 1DENV) ((1A2 IDENV) 1C))))))))

(DEFINE IWHILE
(REC IVHILE
(LAMBDA (lv24l)
(LET ((1v (CAR 1va4l))
14 (CADR {vadl)))
(LAMBDA (1DENV)
(LaveDa (10)
1V (LAMBDA (IXV)
(LET+ ((V 1XV)
B (cR V)))
e 13
(C1a 1DENV) ((CIVEILE (TUPLE IV 14)) 1DENV) 1C))
1CDNNNN

(DEFINE 1CALL
(REC 1CALL
(LANBDA (1NAME)
(LA®DA (1DRNV)
(LAMBDA (10)
((LaBDA (V)
(conD ((EQ? *111PROCBODY (CAR V))
(LET ((1BODY (CDR V)))
((130DY IDENV) 1C)))

(ELSE (IFATAL (TUPLE "Can’t fiad procedure.® INANE)))))
(1IDENV 1NANE)))))))

(DEFINE 1PROC
(REC 1PROC
(LBDA (lvaTl)
(LET ((INAME (CAR |v371))
(1B0DY (CADR 1v271)))
(LAMBDA (1DCONT)
(tbcont
(LANBDA (V)

(Ir (RQUAL? V 1NAME) (1PROCBODY 1BODY) (INULLDENY V)))))))))
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