
Connection Graphs

Alan Bawden

Artificial Intelligence Laboratory
Musachusetts Institute of Technology

Cambridge, Massachusetts 02139

When thinking about programming languages, it is im-
portant to choose an appropriate abstract machine model.
Such an abstract model serves to modularize the program-
ming language problem into two pieces: translation of some
high level language into the language of the abstract ma-
chine, and implemention of the abstract machine on real
hardware. This paper presents connection graph grammars
as an abstract model for parallel computation.

In order to obtain a good modularization, an abstract
machine model must satisfy three requirements:

• It must be an appropriate model of actual hardware.
It should not make operations that are expensive to
support on real hardware seem cheap.
On a parallel computer without shared memory, where
interprocessor communication is the principal expense,
connection graph grammars can be executed cheaply.
This is true in part because they can be executed using
graph reduction techniques that are purely local in na-
ture, but this locality is greatly enhanced by the use of
low-overhead ¢onnection~ for building the graph struc-
ture. Connection graph grammars closely approximate
the ways that processing elements must communicate
in such a parallel machine.

• It must be simple. Programmers will need to under-
stand the model so that they can write and debug pro-
grams. Compilers will need to easily manipulate the
model to compile and optimize programs.
Connection graph grammars will be seen to be ex-
tremely simple. Constructing a compiler for a language
based on connection graphs is relatively easy. That the
resulting language can prove acceptable to many pro-
grammers remains to be seen.

• Translation of familiar programming language notions
into the model must be straightforward. Programmer's
intuitions about the behavior of familiar constructs
should not be unduly violated.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advtntsge, the ACM copyright notice and the tide of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Most of this paper is devoted to demonstrating how a
programming language can be translated into a con-
nection graph grammar. The use of connections in the
model does have some curious consequences at the Ion-
guage level. Most importantly, variables cannot neces-
gorily occur multiple times within a single expression
without special arrangement. At first this seems like
a rather stiff limitation, but on closer examination it
proves more illuminating than limiting.
The principal trade-off is thus between the the ap-

propriateness of connection graphs as a model for paral-
lel machines, and the unorthodoxy of the connection graph
programming language. We can make the implementation
more natural, by using connections, if we are willing to ex-
periment with some changes in our programming language.

As will be shown, these changes cast some seemingly
unrelated issues, such ~s the nature of objects with state,
the relationship between generic operations and the types
of objects, and the interaction of slde-effects and non-deter-
minism with ~-reduction, in a new light. It would at least
be interesting to program in the connection graph universe.

Connec t i on G r a u h s
Intuitively, a connection graph is similar to the topo-

logical structure of an electronic circuit. An electronic cir-
cuit consists of a collection of gadgets joined together by
wires. Gadgets come in various types - - transistors, ca-
pacitors, resistors, etc. Each type of gadget always has the
same number and kinds of terminals. A transistor, for ex-
ample, always has three terminals called the collector, the
base, and the emitter. Each terminal of each gadget can be
joined, using wires, to some number of other terminals of
other gadgets.

A connection graph differs from a circuit chiefly in that
we restrict the way terminals can be connected. In a con-
nection graph each terminal must be connected to ezactly
one other terminal; in particular, there can be no uncon-
nected terminals.

Symmetrical gadgets are also ruled out. Some gadgets
found in circuits, such as resistors, have two indistinguish-
able terminals. In a connection graph all the terminals of
any particular type of gadget must be different.

Some convenient terminology: The gadgets in a con-
nection graph are called eer6ces. As in a circuit, the type
of a vertex is called simply a type, aQd the terminals of a
vertex are called terminals. The wires that join pairs of
terminals are called connections. The number of termimds
a vertex h u is its valence.

© 1986 A C M 0-89791-200-4/86/0800-8258 75¢ 258

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319838.319868&domain=pdf&date_stamp=1986-08-08

The type of a terminal is called a label. Thus, associ-
ated with each vertex type is a set of terminal labels that
determine how many terminals a vertex of that type will
possess, and what they are called. For example, if we were
trying to use a connection graph to represent a circuit, the
type TRA~SZBTOR might be associated with the three labels
COLLECTS, BASE, and ZNITTU.

t ~ up

¢ IL CAll, &Sit.

Figure 1. Example Connection Graph

Given a set of types, each with an associated set of la-
bels, we can consider the set of connection graphs over that
set of types, just as given a set of letters called an alphabet,
we can consider the set of strings over that alphabet. Figure
1 shows a connection graph over the two types TUNSlST rm
and CONS, where type CONS has the three associated labels
c&t, ~ i t , and UP. This example is a single connection graph

a connection graph may consist of several disconnected
components.

Figure 2. Illegal Connection Graph

Figure 2 is not an example of a connection graph; the
UP terminal of the ¢Ol~S vertex is not connected to exactly
one other terminal. The restriction that terminals be joined
in pairs is crucial to the definition. It is this key prop-
erty that makes connection graphs natural to implement
on parallel hardware, and most profoundly influences the
language.

C o n n e c t i o n G r a v b G r a m m a r s

A connection graph grammar is a collection of produc-
tion rules called methods. Each method describes how to
replace a certain kind of subgraph with a different sub-
graph. If the connection graphs over some set of types are
analogous to the strings over some alphabet, then a con-
nection graph grammar is analogous to the familiar string
grammar.

In a string grammar the individual rules are fairly sim-
ple, consisting of just an ordered pair of strings. When an
instance of the first string, (the left hand side) is found, it
may be replaced by an instance of the second string (the

,4-

Figure 3. Example Method

right hand side). It is clear what is meant by replacing one
string with another.

In a connection graph grammar the notion of replace-
ment must be treated more carefully. Figure 3 shows an
example of a method. Both the left hand and right hand
sides of a method are subgraphs with a certain number
of loose an&. A method must specify how the terminals
that used to be connected to terminals in the old subgraph
should be reconnected to terminals in the new subgraph. In
the figure, the loose ends in each subgraph are numbered
to indicate how this reconnection is to be done.

For example, when applying the method in figure 3, a
C0NS vertex and a 1~AXSlSl"01t vertex, connected from CDR
to BASE, are to be replaced with two new c0xs vertices con-
nected together as indicated. The terminal in the old con-
nection graph that was connected to the el, terminal of the
old CoNs vertex is reconnected to the Ctlt terminal of the
first new ¢01~$ vertex, as shown by the loose ends numbered
I. The terminal that was connected to the D/ ITrn terminal
of the old 1~tNslsroa vertex is reconnected to the Up ter-
minal of the same new C0}/$ vertex, as shown by the loose
ends numbered 4. The terminal that was connected to the
CAR terminal of the old CONS vertex, and the one that was
connected to the C0LLECT0g terminal of the old TPANSISTOIt
vertex, are reconnected to each other - - this is indicated
by the loose ends numbered 2 and 3.

It might be interesting to continue the analogy with
string grammars by introducing a distinction between ter-
minal and non-terminal types and identifying a initial non-
terminal type. Then we could define the language gener-
ated by a given connection graph grammar as the set of
connection graphs that can be generated by starting with
a graph consisting of a single vertex of the initial type and
applying methods until a graph with only terminal type
vertices results. There might be interesting results to be
proved, for example, about what kind of connection graphs
can be generated using only contez~ sensitsve connection
graph grammars, where that notion is suitably defined.

In using connection graph grammars as a model of par-
allel computation we have no need of terminal and non-
terminal types, nor of an initial type. We translate a pro-
gram into a connection graph grammar, and then apply it
to some input graph. After methods from the connection
graph grammar are applied until no more are applicable,
some output graph will result. Thus the connection graph
grammar may he viewed as computing some function from
connection graphs to connection graphs. (Actually it is a
multi-valued function m more properly a relation - - since
the output connection graph can depend on the order in
which methods from the connection graph grammar are
chosen.)

Only one form of method will appear in the connection
graph grammars generated: methods whose left hand side

250

consists of exactly two vertices joined by a single connec-
tion. Figure 3 is an example of such a two-vertez method.

In~plerrten~|na Conn--~ction G r a o h s

I shall assume a fairly general description of a parallel
computer: a collection of independent processing elements
embedded in some communications medium. There is no
shared memory - - all information is exchanged by explicit
interprocessor communications. There must be some global
addressing scheme for processing elements so that it makes
sense for one processing element to transmit the address of
another to a third party. Each processing element needs at
least enough local memory to hold a handful of processing
element addresses and small integers.

Connection graph grammars were originally devised as
a tool for programming massively parallel computers, such
as a connection machine [4], with processing elements only
a~ large as tile above description requires. However, con-
nection graph grammars may work just as well for pro-
gramming distributed computers possessing more powerful
processing elements with more local memory, perhaps even
for a collection of personal computers linked by a network.
The implementation techniques outlined in this section ap-
ply equally well to any size of processing element.

It is clear how the repr~entation of a connection graph
can be distributed among the processing elements of a par-
allel computer: individual vertices can be held locally in
processing elements, and connections can be implemented
by passing around addresses.

Method~. can be applied as a purely local operation.
The processing elements that contain the vertices that con-
stitute an instance of the left hand side of some method
can agree to replace that ~ubgraph with an instance of the
right hand side, without bothering any other processing el-
ements. Thus many methods can be applied in parallel
throughout the machine.

Two-vertex methods are particularly easy to imple-
ment because they require the cooperation of at most two
processing elements. It is hard to imagine a scheme for par-
allel computation in which no processing element ever has
to cooperate with any other processing element, so this, in
some sense, is minimal.

Any graph reduction based model can make similar
claims of locality; the distinguishing feature of the con-
nection graph model is the connection. Other models join
objects to each other using pointer-like mechanisms, which
allow an unbou~nded number of other objects to hold refer-
ences to any given object. In a connection graph a trivalent
vertex, for example, is referenced from (connected to) ex-
actly three other places.

Synchronization between processing elements is simpli-
fied because only a fixed, small number of other processing
elements have any interest in the status of a given vertex.
Communications bottlenecks are eliminated because only a
single copy of any given address ever exists.

At first glance, it appears that connections must be
implemented using a pair of addresses, giving each termi-
nal the address of the other terminal. In this case, splicing
new structure into the connection graph after applying a
method requires using the addresses stored in the termi-
nals of the old vertices to locate the terminals that need to
be reconnected to new vertices. This is clearly a general
implementation technique for connection graph structure.
Its communications behavior is fairly good. Only a small,

fixed number of interprocessor messages need to be sent in
order to execute a method.

With a little work it is possible to reduce both the
number of addresses that must be stored, and the number
of messages that must be sent to update the connection
graph after executing a method. Static analysis of a con-
nection graph grammar can identify connections that can
be implemented using only a single address stored at one
terminal addressing the other. When such a connection
needs to be reconnected after a method executes, the ad-
dress can simply be moved from the old terminal to the
new.

This optimization can often be applied when the pro-
grammer uses connection graph structure to build conven-
tional-looking data structures such as linked lists. If c0Ns
vertices are used to build lists in the familiar way, agd
the programmer writes code that manipulates these lists
converttiona]ly, then it can be deduced from the resulting
connection graph grammar that the connection joining the
CDlt terminal of one c0Ns vertex to the UP terminal of the
next can be implemented by storing the address of the UP
terminal in the CDi~ terminal. This is, of course, exactly
the way people have always represented linked lists. Thus
in conventional-looking cases, we can recover conventional
representations.

To facilitate the identification of applicable methods,
we can replace all addresses with labeled pointers which con.
taln both the address of a terminal and its label. Since the
left hand side of a two-vertex method is completely char-
acterized by the labels of the two terminals joined by its
single common connection, a labeled pointer allows local
identification of applicable methods. The label of a termi-
nal, and the label of the terminal it is connected to, are
both made syl lable in one place.

When a processing element discovers that a vertex in
its local memory is connected to a non,local vertex in such
a way that a method can be applied, the easiest way to
handle the situation is to move the local vertex to the pro-
cessor containing the other vertex.]n the case where the
optimization described above has eliminated labeled point-
ers that address the terminals of this local vertex, there
is nothing to be done to accomplish this move other than
putting the vertex representation in the mall!

Although in general things will not be this easy, at least
in some cases communications costs can be reduced to this
absolute minimum of a single message. It is also reassuring
that at least some things the programmer can write put him
in more-or-less direct contact with the primitive operations
of the underlying hardware.

T rans la t in2 Lizv in to a G r a m m a r

A program written in a familiar, Lisp-like notation
can be translated straightforward.ly into a connection graph
grammar. As we will see, there are two key ideas involved:
a natural graph-structure is already associated with simple
expressions that don' t involve LtNaDt-sbstractions or condi-
tionals, and a two-vertex method can be used to implement
a procedure calling mechanism.

Variables will be a problem. Most programming le~.-
guages allow use of a variable to distribute a quantity to
multiple places. This is incompatible with connections,
which restrict the circulation of a reference to a single lo-
cation. It is not, however, unprecedented ~for a paraileA
programming language to place restrictions on variables to

260

avoid problems caused by widely distributed object refer-
ences. In NIL I7], for example, variables are controlled so
that data is owned by one process at a time.

Expres s ions

¢ONT ¢OI41"

A~G~* AlUbT*

Figure 4. Graph of (÷ 3 (* 4 5))

It is plain how to interpret simple expressions as the
description of a graph - - we can just use the ezpressson
tree. Figure 4 shows the connection graph for the expres-
sion (÷ s (* 4 5)) using the vertex types C,tLL2, *, *, 3, 4,
and 5. (CALL2 vertices are used to represent two-argument
procedure calls. ÷ and * vertices represent two well-known
primitive procedures, s, 4, and 5 vertices represent the in-
tegers three, four and five. Similar vertex types will be
introduced below without comment.)

This isn't really a proper connection graph because it
has a loose end at the top. Loose ends are an artifact of
the way expressions can be nested. If the example expres-
sion appeared as part of some more complicated expression,
then that loose end would be used to join the example graph
into some more complicated graph, t

Var iables a n d LAI~DA

Since the semantics of variables is intimately related to
that of IA~nA-abstraction, it is convenient to explain the
interpretation of IA~DA-expressions before taking up the
interpretation of'variables.

Figure 5. Graph of (> 2 (L~[BDA O (÷ S (* 4 5))))

The connection graph for the (admittedly unlikely) ex-
pression

(> 2
(L~mVA 0

(÷ s (* 4 s))))
is shown in figure 5. G0069 is a unique vertex type generated
to represent closures of the LL~DA-expression. Associated
with this vertex type is the method shown in figure 6. The

t An interesting discussion of the relationship between expres-
sions and the networks or graphs they notate can be found in
[6 I. Note, however, that a connection graph is not the same
thing as a constraint network; the notion of a two-ended con-
nection differs from the more wire-like notion of identification
used in a constraint languv.ge.

4.

Figure 6. Method for G0069 Vertices

Figure 7, Graph of (> 2 (L~I)A (T) (+ S (* Y S))))

right hand side of this method is just the graph represented
by the body of the L~lBI)A-expression. The left hand side is
the graph fragment that would occur were a vertex of type
00oe9 to be invoked as a procedure of no arguments.

The introduction of anonymous vertex types, such as
G0oeg, and new methods for those types, such as the method
in figure 6, is a consequence of the declarative nature of
L.t~nA-expressions. The graph of a L~DA-expression itself
is always very simple, consisting of a single vertex of an
anonymous type. The body of the L.t~D.t-expression de-
clares how that type should behave in conjunction with an
appropriate CALL vertex.

1

2

Figure 8. Method for GO25D Vertices

The handling of bound variables is an obvious exten-
sion. Consider now the expression

(> 2
(L~VA (Y)

(+ S (* Y 6))))

whose graph appears in figure 7. GO259 is again a vertex
type generated to represent closures of the LArVA-expres-
sion. Associated with this vertex type is the method shown
in figure 8. This method arranges that when a vertex of
type G0259 is invoked as a procedure of one argument, that
argument is connected to the place where the variable T
appeared in the graph of the body of the L~OA-expression.

Next, we would like to consider an expression like

(L~m)A (T)
(* Z (* T S)))

261

Figure 9. Graph of
(LARVA (-X) (> 2 (LABDA (Y) (* X (* T 6)))))

that has free variables. Since a free variable is alw/~ys bound
by some surrounding contour, we consider instead the ex-
pression

(LkNImk (x)
(> 2

(L~m91 (Y)
(+ I (* ~ 6)))))

whose rather uninteresting graph appears in figure 9.

1

2.

Figure 10. Method for G1729 Vertices
1. z

pt

3 ~
3
Figure l l Method for 01778 vertices

Associated with the vertex type ¢,1"/29 is the method
shown in figure !0, and associated with the vertex type
G1776, which appears in the right hand side of that method,
is the method shown in figure 11.

The vertex type G1776, generated to represent closures
of the inner LA.ql)DA-expression, is bivalent - - previously all
such generated vertices have been univalent. "/'he extra
terminal is used to pass the value of the free variable g from
where the closure was generated to where it is invoked.

Now we can see why we need only consider two-vertex
methods: they can be used to capture the basic mechanism
of procedure calling. One vertex represents the procedure
to be called. Its terminals (except the one connecting it
to the other vertex) are the environment of the procedure.
Its type is the procedure code. The other vertex is the ar-
gument list. Its terminals are the arguments to be passed
to the procedure, and the continuation to be connected to
the returned v~lue. Its type is used to indicate the oper-
ation that should be performed (the procedure should be

ca/led), and allows a procedure ca!! to be distinguished from
a procedure that is merely connected to some static da ta
structure, such as when a procedure is an element of a a
list built from C0HS vertices.

i

Figure 12. Method for Incrementing a 4

This suggests how a two-vertex method can also be
viewed as a messaae pass [1] 19]. One vertex is the object,
the other is the message. The terminals of the object ver-
tex are its instance variables. The terminals of the message
vertex are the arguments to the message. The type of the
object vertex is the type of the object. The type of the mes-
sage v~ tex is the operation. Figure 12 shows the method
for an object of type 4 receiving an A9¢1 message. The
method dispatch normally associated with message passing
occurs when we look up which method to run for the pair
of vertex types in question. (This, of course, explains why
I called them "methods" in the first place.)

When a two-vertex method is viewed as a message
pass, the difference between the message and the object
is entirely in the eye of the beholder. The .method could
just as well be interpreted in the other way, so that object
and message exchange roles! This symmetry is possible be-
cause connections themselves are symmetrical. In ordinary
programming languages, where all objects are referenced
through asymmetrical pointers, this symmetcy doesn't ex-
ist.

This remarkable aspect of progrsmmiag with connec-
tion graph grammars results in the unification of several
pairs of concepts that are ordinarily only near-duals. For
example, if the implementation techniques (or connection
graphs discussed shove are employed, the actions performed
by the hardware when "sending a message" to a non-locaJ
object (or calling a non-local procedure) sometimes really
will consist of merely sending a hardware-level message.
Sometimes that message will, as expected, consist of the
description of an operation and a list of arguments. The
symmetry between objects and messages implies that in-
stead the object may be bundled up and znailed to the lo-
cation of the operation. In that case the hardware-level
message will consist of a description of a type and a list of
instance variables.

Figure 12 raises a minor issue about the relationship
between message passing and procedure calling that seems
to confuse many people. The expression (~I)1 4) describes
a procedure call rather them the message pass that appears
on the left hand side of figure 12. If the ~Vl procedure is
defined appropriately, however, the graph of (kDI)I 4) will
trivially transform into the right hand side of figure 12.

C o n d i t i o n a l s

The translation of the conditional expression

4
S)

is shown in figure 13. G1957 is a unique vertex type gen-
erated to test the ~alue returned by the expression (gvI~
S). Figure 14 shows the two methods aasociat~d with type
GI067. The first method covers the case where three is even

262

(~m- ¢,ott,~

Figure 13. Graph of (IF (EVEN? 3) 4 5)

1 1

Figure 14. Methods for G1957

1

Figure 15 Method for
(LAMBDA (X Y) (IF (EVENT X) Y (* 2 Y)))

coN'r ¢~N~"

2

Figure 16. Methods for G2020

by returning four. The second method returns five in the
case where three is odd.

Another example demonstrates the interaction of con-
ditionals with variables. Figure 15 shows the method asso-
ciated with the vertex type G1984, generated to represent
closures of the LAMBe,t-expression

CLAI4BDA (I Y)
(IF (EVEN? I)

Y
C* 2 Y))).

The vertex type G2020 is used to test the value returned by
the expression (EVEN? X). Since the variable Y appears in
both arms of the conditional, a G2020 vertex must have an
additional terminal to attach to the second argument to the
procedure so that the methods for G2020 vertices (shown in
figure 16) can use it.

Consider the expression

(LA~A (X)
(÷ X g)) .

Because X occurs twice in the body, the method associated
with the vertex type generated to represent this procedure
must arrange to distribute a single argument to two places.

J#

=~

1

Figure 17, Method for (LAMBDA (g) (+ X I))

1

1

Figure 18. Method for Duplicating S

We could simply outlaw such procedures, obtaining a
language in which the programmer is forced to specify ex-
actly how each reference will be duplicated. This would
be a great inconvenience, and would violate many people's
intuitions about the meaning of expressions, especially in
such straightforward operations as arithmetic, where it is
perfectly clear what it means to duplicate a integer.

Figures 17 and 18 suggest a solution. The method
in figure 17 uses a COPY vertex to increase the fan-out of
the procedure's argument. In the general case, a tree of
trivalent C0PY vertices will be constructed. The method in
figure 18 implements the usual semantics for duplicating an
integer. Methods for the duplication of other objects can
be constructed by the programmer on a type-by-type basis.

Not all types need respond to being copied by simply
duplicating a vertex. An object with local state can be
implemented by allowing the COpY vertices to accumulate
into a fan-in tree with the state variables stored at the
apex. Figure 19 shows six methods that can be used to
implement an object called a CELl. that responds to PUT and
OET operations to modify a state variable.

The bottom four methods are variations of the same
basic idea. They allow Purr and GET operations to propagate
from multiple references at the leaves, up the fan-in tree, to
the apex, where the state variable can be accessed. PUT and
GET vertices have a USERS terminal to hold the part of the
tree they have propagated past. The top two methods are
used when GET and PUT vertices encounter the CELL vertex
at the apex. The G£T operation returns a copy of the value
stored in the cell. The PUT operation replaces the value
stored in the cell and drops the old value. DROP vertices
are used to dispose of unwanted connections just as copy
vertices are used to multiply access to popular ones.

263

1

u~

.)

L

2.

q.

1 2.

2~ -A,J-

q. 1. q" 3

0 - 4 J ~

e /

c~,rf 6 L ~

Fisure 19. Methods to Implement • CZLL Figure 20. Usin | a O~LL

264

Figure 20 demonstrates how a CELL functions. Initially
there are two messages, one PUT and one GET, waiting at the
fringe of a small (single vertex) fan-in tree of COPY vertices
with a CELt. at its apex. This connection graph might result
from the expression

(LET ((X (CELL s)))
(PUT x 4)
(GET x))

assuming that the procedures PUT, GET, and CELL are given
the appropriate trivial definitions to construct PUT, GET, and
CELL vertices.

There are two methods in figure 19 that can be applied
to the initial graph in figure 20. I arbitrarily chose to apply
the method for propagating the PUT message through the
fan-in tree first. Had I chosen to propagate the GET, a dif-
ferent final graph would have been the result. Presumably
the programmer who wrote this program didn't care which
of the two possible answers, 3 or 4, he obtained. In the sec-
ond graph, where there are also two applicable methods, the
method for delivering a PUT message to a CELL is chosen. In
this case the choice does not change the final answer. In
the next graph only the method for propagating the GET
can be applied, and then in the following graph the sole
possibility is to deliver the GET message to the CELL. (The
resulting debris of COPY and DROP vertices can be cleaned
up by some methods for combining DI~0P and C0PY vertices,
dropping and duplicating integers, and dropping CELL ver-
tices. These methods are easy to construct, but are not
given here.)

This implementation of a CELL exhibits two phenomena
well known to be associated with the notions of object, state
and side-effea [2] [3] {5]. First, it involves a bottleneck - -
PUT and GEt" operations are forced to line up and wait their
turn at the state variable. This eliminates parallelism in
the connection graph grammar implementation. Second, it
is non-deterministic. The order in which" the methods in
figure 19 are applied affects the order in which PUT and GET
operations reach the apex of the tree. Thus it is difficult to
reason about the outcome of a program that includes such
methods.

That ~-reduction is in some way incompatible with
both side-effects and non-determinism is well-known. Con*
nection graphs give us a new way to look at this incom-
patibility. Expressions have a basically tree-like structure;
multiple occurrences of variables in an expression introduce
loops into the structure, as in figure 17. When ~-reduction
textually substitutes expressions for variables, it eliminates
the loops. Therefore, the ~-reduction rule is not sound
when the meaning of an expression is taken to be the con-
nection graph it describes.

Connection graphs are a more realistic way to assign
meanings to programming language expressions, because
the interactions of expressions with side-effects and non*
determinism are explicitly accounted for.

~[mDlementatlon .Status

A prototype compiler for a connection graph program-
ming language, and a simulator, have been implemented on
Symbolics Lisp Machines.

A code generator for the Thinking Machines Corpora-
tion connection machine, a fine grained, massively parallel
computer [4], is currently under development.

A few small test programs have been written. We are
just beginning to write our first sizable program, a parallel
production system.

Conc lus ion

Connection graphs are well suited for implementation
on at least the class of parallel computers consisting of inde-
pendent, communicating processing elements. The mecha-
nism of connections and two-vertex methods makes it easy
and natural for such parallel machines to execute a connec-
tion graph grammar. With a little work, many common
cases of interprocessor communication can be reduced to
a single message transmission, and more efficient represen-
tations for vertices serving as conventional data structures
can be deduced.

A programming language based on connection graph
grammars can be constructed using two-vertex methods to
implement a procedure calling and message sending mech-
anism. The symmetry of connections allow the notions of
obje~t and message to emerge in a new light as completely
dual concepts. A difficulty arises with respect to multiple
occurrences of variables in expressions, but it is shown to
be merely an old adversary in new clothing.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Goldberg, Adele; and Robson, David Smalltalk-80:
The Languase and its Implementation Addison-
Wesley (1983).

Henderson, Peter " k It Reasonable to Implement a
Complete Programming System in a Purely Func-
tional Style?" The University of Newcastle upon
Tyne Computing Laboratory (Dec. 1980).

Hewitt, Carl "Viewing control structures as patterns
of passing messages" AI Journal VoL 8 no. 3 (June
1977) 323-363.

Hillis, W. Daniel The Connection Machine MIT
Press (1085).

Lieberman, Henry "Thinking About Lots Of Things
At Once Without Getting Confused: Paralleilism in
Act 1" MIT AI Memo 626 (May 1981).

Steele, Guy Lewis Jr.; and Sussman, Gerald Jay
"Constraints" MIT AI Memo 502 (November 1978).

Strata, Robert E.; and Yemini, Shaula "NIL: An In-
tegrated Language and System for Distributed Pro-
gramming ~ $IGPLAN 1983 Symposium on Program-
ming Language/ssues in Software Systems (June
19s3).

Wall, David W. "Messages as Active Agents" ACM
'82 Symposium on Principles of Programming Lan.
guages (January 1982).

Weinreb, Daniel; and Moon, David "Lisp Machine
Manual" Symbolics Inc. (July 1981).

265

