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When thinking about programming languages, it is im- 
portant to choose an appropriate abstract machine model. 
Such an abstract model serves to modularize the program- 
ming language problem into two pieces: translation of some 
high level language into the language of the abstract ma- 
chine, and implemention of the abstract machine on real 
hardware. This paper presents connection graph grammars 
as an abstract model for parallel computation. 

In order to obtain a good modularization, an abstract 
machine model must satisfy three requirements: 

• It must be an appropriate model of actual hardware. 
It should not make operations that are expensive to 
support on real hardware seem cheap. 
On a parallel computer without shared memory, where 
interprocessor communication is the principal expense, 
connection graph grammars can be executed cheaply. 
This is true in part because they can be executed using 
graph reduction techniques that are purely local in na- 
ture, but  this locality is greatly enhanced by the use of 
low-overhead ¢onnection~ for building the graph struc- 
ture. Connection graph grammars closely approximate 
the ways that processing elements must communicate 
in such a parallel machine. 

• It must be simple. Programmers will need to under- 
stand the model so that they can write and debug pro- 
grams. Compilers will need to easily manipulate the 
model to compile and optimize programs. 
Connection graph grammars will be seen to be ex- 
tremely simple. Constructing a compiler for a language 
based on connection graphs is relatively easy. That the 
resulting language can prove acceptable to many pro- 
grammers remains to be seen. 

• Translation of familiar programming language notions 
into the model must be straightforward. Programmer's 
intuitions about the behavior of familiar constructs 
should not be unduly violated. 
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Most of this paper is devoted to demonstrating how a 
programming language can be translated into a con- 
nection graph grammar. The use of connections in the 
model does have some curious consequences at the Ion- 
guage level. Most importantly, variables cannot neces- 
gorily occur multiple times within a single expression 
without special arrangement. At first this seems like 
a rather stiff limitation, but on closer examination it 
proves more illuminating than limiting. 
The principal trade-off is thus between the the ap- 

propriateness of connection graphs as a model for paral- 
lel machines, and the unorthodoxy of the connection graph 
programming language. We can make the implementation 
more natural, by using connections, if we are willing to ex- 
periment with some changes in our programming language. 

As will be shown, these changes cast some seemingly 
unrelated issues, such ~s the nature of objects with state, 
the relationship between generic operations and the types 
of objects, and the interaction of slde-effects and non-deter- 
minism with ~-reduction, in a new light. It would at least 
be interesting to program in the connection graph universe. 

Connec t i on  G r a u h s  
Intuitively, a connection graph is similar to the topo- 

logical structure of an electronic circuit. An electronic cir- 
cuit consists of a collection of gadgets joined together by 
wires. Gadgets come in various types - -  transistors, ca- 
pacitors, resistors, etc. Each type of gadget always has the 
same number and kinds of terminals. A transistor, for ex- 
ample, always has three terminals called the collector, the 
base, and the emitter. Each terminal of each gadget can be 
joined, using wires, to some number of other terminals of 
other gadgets. 

A connection graph differs from a circuit chiefly in that 
we restrict the way terminals can be connected. In a con- 
nection graph each terminal must be connected to ezactly 
one other terminal; in particular, there can be no uncon- 
nected terminals. 

Symmetrical gadgets are also ruled out. Some gadgets 
found in circuits, such as resistors, have two indistinguish- 
able terminals. In a connection graph all the terminals of 
any particular type of gadget must be different. 

Some convenient terminology: The gadgets in a con- 
nection graph are called eer6ces. As in a circuit, the type 
of a vertex is called simply a type, aQd the terminals of a 
vertex are called terminals. The wires that join pairs of 
terminals are called connections. The number of termimds 
a vertex h u  is its valence. 
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The type of a terminal is called a label. Thus, associ- 
ated with each vertex type is a set of terminal labels that  
determine how many terminals a vertex of that  type will 
possess, and what they are called. For example, if we were 
trying to use a connection graph to represent a circuit, the 
type TRA~SZBTOR might be associated with the three labels 
COLLECTS, BASE, and ZNITTU. 

t ~  up 

¢ IL CAll, &Sit. 

Figure 1. Example Connection Graph 

Given a set of types, each with an associated set of la- 
bels, we can consider the set of connection graphs over that  
set of types, just as given a set of letters called an alphabet,  
we can consider the set of strings over that alphabet. Figure 
1 shows a connection graph over the two types TUNSlST rm 
and CONS, where type CONS has the three associated labels 
c&t, ~ i t ,  and UP. This example is a single connection graph 

a connection graph may consist of several disconnected 
components. 

Figure 2. Illegal Connection Graph 

Figure 2 is not an example of a connection graph; the 
UP terminal of the ¢Ol~S vertex is not connected to exactly 
one other terminal. The restriction that  terminals be joined 
in pairs is crucial to the definition. It is this key prop- 
erty that  makes connection graphs natural to implement 
on parallel hardware, and most profoundly influences the 
language. 

C o n n e c t i o n  G r a v b  G r a m m a r s  

A connection graph grammar is a collection of produc- 
tion rules called methods. Each method describes how to 
replace a certain kind of subgraph with a different sub- 
graph. If the connection graphs over some set of types are 
analogous to the strings over some alphabet,  then a con- 
nection graph grammar is analogous to the familiar string 
grammar.  

In a string grammar the individual rules are fairly sim- 
ple, consisting of just an ordered pair of strings. When an 
instance of the first string, (the left hand side) is found, it 
may be replaced by an instance of the second string (the 

,4- 

Figure 3. Example Method 

right hand side). It is clear what is meant by replacing one 
string with another. 

In a connection graph grammar the notion of replace- 
ment must be treated more carefully. Figure 3 shows an 
example of a method. Both the left hand and right hand 
sides of a method are subgraphs with a certain number 
of loose an&. A method must specify how the terminals 
that  used to be connected to terminals in the old subgraph 
should be reconnected to terminals in the new subgraph. In 
the figure, the loose ends in each subgraph are numbered 
to indicate how this reconnection is to be done. 

For example, when applying the method in figure 3, a 
C0NS vertex and a 1~AXSlSl"01t vertex, connected from CDR 
to BASE, are to be replaced with two new c0xs vertices con- 
nected together as indicated. The terminal in the old con- 
nection graph that was connected to the el, terminal of the 
old CoNs vertex is reconnected to the Ctlt terminal of the 
first new ¢01~$ vertex, as shown by the loose ends numbered 
I. The terminal that  was connected to the D/ ITrn  terminal 
of the old 1~tNslsroa vertex is reconnected to the Up ter- 
minal of the same new C0}/$ vertex, as shown by the loose 
ends numbered 4. The terminal that  was connected to the 
CAR terminal of the old CONS vertex, and the one that  was 
connected to the C0LLECT0g terminal of the old TPANSISTOIt 
vertex, are reconnected to each other - -  this is indicated 
by the loose ends numbered 2 and 3. 

It might be interesting to continue the analogy with 
string grammars by introducing a distinction between ter- 
minal and non-terminal types and identifying a initial non- 
terminal type. Then we could define the language gener- 
ated by a given connection graph grammar as the set of 
connection graphs that can be generated by starting with 
a graph consisting of a single vertex of the initial type and 
applying methods until a graph with only terminal type 
vertices results. There might be interesting results to be 
proved, for example, about what kind of connection graphs 
can be generated using only contez~ sensitsve connection 
graph grammars, where that notion is suitably defined. 

In using connection graph grammars as a model of par- 
allel computation we have no need of terminal and non- 
terminal types, nor of an initial type. We translate a pro- 
gram into a connection graph grammar, and then apply it 
to some input graph. After methods from the connection 
graph grammar are applied until no more are applicable, 
some output graph will result. Thus the connection graph 
grammar may he viewed as computing some function from 
connection graphs to connection graphs. (Actually it is a 
multi-valued function m more properly a relation - -  since 
the output connection graph can depend on the order in 
which methods from the connection graph grammar are 
chosen.) 

Only one form of method will appear in the connection 
graph grammars generated: methods whose left hand side 
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consists of exactly two vertices joined by a single connec- 
tion. Figure 3 is an example of such a two-vertez method. 

In~plerrten~|na Conn--~ction G r a o h s  

I shall assume a fairly general description of a parallel 
computer: a collection of independent processing elements 
embedded in some communications medium. There is no 
shared memory - -  all information is exchanged by explicit 
interprocessor communications. There must be some global 
addressing scheme for processing elements so that it makes 
sense for one processing element to transmit the address of 
another to a third party. Each processing element needs at 
least enough local memory to hold a handful of processing 
element addresses and small integers. 

Connection graph grammars were originally devised as 
a tool for programming massively parallel computers, such 
as a connection machine [4], with processing elements only 
a~ large as tile above description requires. However, con- 
nection graph grammars may work just as well for pro- 
gramming distributed computers possessing more powerful 
processing elements with more local memory, perhaps even 
for a collection of personal computers linked by a network. 
The implementation techniques outlined in this section ap- 
ply equally well to any size of processing element. 

It is clear how the repr~entation of a connection graph 
can be distributed among the processing elements of a par- 
allel computer: individual vertices can be held locally in 
processing elements, and connections can be implemented 
by passing around addresses. 

Method~. can be applied as a purely local operation. 
The processing elements that contain the vertices that con- 
stitute an instance of the left hand side of some method 
can agree to replace that ~ubgraph with an instance of the 
right hand side, without bothering any other processing el- 
ements. Thus many methods can be applied in parallel 
throughout the machine. 

Two-vertex methods are particularly easy to imple- 
ment because they require the cooperation of at most two 
processing elements. It is hard to imagine a scheme for par- 
allel computation in which no processing element ever has 
to cooperate with any other processing element, so this, in 
some sense, is minimal. 

Any graph reduction based model can make similar 
claims of locality; the distinguishing feature of the con- 
nection graph model is the connection. Other models join 
objects to each other using pointer-like mechanisms, which 
allow an unbou~nded number of other objects to hold refer- 
ences to any given object. In a connection graph a trivalent 
vertex, for example, is referenced from (connected to) ex- 
actly three other places. 

Synchronization between processing elements is simpli- 
fied because only a fixed, small number of other processing 
elements have any interest in the status of a given vertex. 
Communications bottlenecks are eliminated because only a 
single copy of any given address ever exists. 

At first glance, it appears that connections must be 
implemented using a pair of addresses, giving each termi- 
nal the address of the other terminal. In this case, splicing 
new structure into the connection graph after applying a 
method requires using the addresses stored in the termi- 
nals of the old vertices to locate the terminals that need to 
be reconnected to new vertices. This is clearly a general 
implementation technique for connection graph structure. 
Its communications behavior is fairly good. Only a small, 

fixed number of interprocessor messages need to be sent in 
order to execute a method. 

With a little work it is possible to reduce both the 
number of addresses that must be stored, and the number 
of messages that must be sent to update the connection 
graph after executing a method. Static analysis of a con- 
nection graph grammar can identify connections that can 
be implemented using only a single address stored at one 
terminal addressing the other. When such a connection 
needs to be reconnected after a method executes, the ad- 
dress can simply be moved from the old terminal to the 
new. 

This optimization can often be applied when the pro- 
grammer uses connection graph structure to build conven- 
tional-looking data structures such as linked lists. If c0Ns 
vertices are used to build lists in the familiar way, agd 
the programmer writes code that manipulates these lists 
converttiona]ly, then it can be deduced from the resulting 
connection graph grammar that the connection joining the 
CDlt terminal of one c0Ns vertex to the UP terminal of the 
next can be implemented by storing the address of the UP 
terminal in the CDi~ terminal. This is, of course, exactly 
the way people have always represented linked lists. Thus 
in conventional-looking cases, we can recover conventional 
representations. 

To facilitate the identification of applicable methods, 
we can replace all addresses with labeled pointers which con. 
taln both the address of a terminal and its label. Since the 
left hand side of a two-vertex method is completely char- 
acterized by the labels of the two terminals joined by its 
single common connection, a labeled pointer allows local 
identification of applicable methods. The label of a termi- 
nal, and the label of the terminal it is connected to, are 
both made syl lable  in one place. 

When a processing element discovers that a vertex in 
its local memory is connected to a non,local vertex in such 
a way that a method can be applied, the easiest way to 
handle the situation is to move the local vertex to the pro- 
cessor containing the other vertex. ]n the case where the 
optimization described above has eliminated labeled point- 
ers that address the terminals of this local vertex, there 
is nothing to be done to accomplish this move other than 
putting the vertex representation in the mall! 

Although in general things will not be this easy, at least 
in some cases communications costs can be reduced to this 
absolute minimum of a single message. It is also reassuring 
that at least some things the programmer can write put him 
in more-or-less direct contact with the primitive operations 
of the underlying hardware. 

T rans la t in2  Lizv in to  a G r a m m a r  

A program written in a familiar, Lisp-like notation 
can be translated straightforward.ly into a connection graph 
grammar. As we will see, there are two key ideas involved: 
a natural graph-structure is already associated with simple 
expressions that don' t  involve LtNaDt-sbstractions or condi- 
tionals, and a two-vertex method can be used to implement 
a procedure calling mechanism. 

Variables will be a problem. Most programming le~.- 
guages allow use of a variable to distribute a quantity to 
multiple places. This is incompatible with connections, 
which restrict the circulation of a reference to a single lo- 
cation. It is not, however, unprecedented ~for a paraileA 
programming language to place restrictions on variables to 
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avoid problems caused by widely distributed object refer- 
ences. In NIL I7], for example, variables are controlled so 
that data is owned by one process at a time. 

Expres s ions  

¢ONT ¢OI41" 

A~G~* AlUbT* 

Figure 4. Graph of (÷ 3 (* 4 5)) 

It is plain how to interpret simple expressions as the 
description of a graph - -  we can just use the ezpressson 
tree. Figure 4 shows the connection graph for the expres- 
sion (÷ s (* 4 5)) using the vertex types C,tLL2, *, *, 3, 4, 
and 5. (CALL2 vertices are used to represent two-argument 
procedure calls. ÷ and * vertices represent two well-known 
primitive procedures, s, 4, and 5 vertices represent the in- 
tegers three, four and five. Similar vertex types will be 
introduced below without comment.) 

This isn't really a proper connection graph because it 
has a loose end at the top. Loose ends are an artifact of 
the way expressions can be nested. If the example expres- 
sion appeared as part of some more complicated expression, 
then that loose end would be used to join the example graph 
into some more complicated graph, t 

Var iables  a n d  LAI~DA 

Since the semantics of variables is intimately related to 
that of IA~nA-abstraction, it is convenient to explain the 
interpretation of IA~DA-expressions before taking up the 
interpretation of'variables. 

Figure 5. Graph of (> 2 (L~[BDA O (÷ S (* 4 5))))  

The connection graph for the (admittedly unlikely) ex- 
pression 

(> 2 
(L~mVA 0 

(÷ s (* 4 s ) ) ) )  
is shown in figure 5. G0069 is a unique vertex type generated 
to represent closures of the LL~DA-expression. Associated 
with this vertex type is the method shown in figure 6. The 

t An interesting discussion of the relationship between expres- 
sions and the networks or graphs they notate can be found in 
[6 I. Note, however, that a connection graph is not the same 
thing as a constraint network; the notion of a two-ended con- 
nection differs from the more wire-like notion of identification 
used in a constraint languv.ge. 

4. 

Figure 6. Method for G0069 Vertices 

Figure 7, Graph of (> 2 (L~I)A (T) (+ S (* Y S)))) 

right hand side of this method is just the graph represented 
by the body of the L~lBI)A-expression. The left hand side is 
the graph fragment that would occur were a vertex of type 
00oe9 to be invoked as a procedure of no arguments. 

The introduction of anonymous vertex types, such as 
G0oeg, and new methods for those types, such as the method 
in figure 6, is a consequence of the declarative nature of 
L.t~nA-expressions. The graph of a L~DA-expression itself 
is always very simple, consisting of a single vertex of an 
anonymous type. The body of the L.t~D.t-expression de- 
clares how that type should behave in conjunction with an 
appropriate CALL vertex. 

1 

2 

Figure 8. Method for GO25D Vertices 

The handling of bound variables is an obvious exten- 
sion. Consider now the expression 

(> 2 
(L~VA (Y) 

(+ S (* Y 6))))  

whose graph appears in figure 7. GO259 is again a vertex 
type generated to represent closures of the LArVA-expres- 
sion. Associated with this vertex type is the method shown 
in figure 8. This method arranges that when a vertex of 
type G0259 is invoked as a procedure of one argument, that 
argument is connected to the place where the variable T 
appeared in the graph of the body of the L~OA-expression. 

Next, we would like to consider an expression like 

(L~m)A (T) 
(* Z (* T S))) 
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Figure 9. Graph of 
(LARVA (-X) (> 2 (LABDA (Y) (* X (* T 6 ) ) ) ) )  

that has free variables. Since a free variable is alw/~ys bound 
by some surrounding contour, we consider instead the ex- 
pression 

(LkNImk (x) 
(> 2 

(L~m91 (Y) 
(+ I (* ~ 6 ) ) ) ) )  

whose rather uninteresting graph appears in figure 9. 

# 

1 

2. 

Figure 10. Method for G1729 Vertices 
1. z 

pt 

3 ~ 
3 
Figure l l  Method for 01778 vertices 

Associated with the vertex type ¢,1"/29 is the method 
shown in figure !0, and associated with the vertex type 
G1776, which appears in the right hand side of that  method, 
is the method shown in figure 11. 

The vertex type G1776, generated to represent closures 
of the inner LA.ql)DA-expression, is bivalent - -  previously all 
such generated vertices have been univalent. "/'he extra 
terminal is used to pass the value of the free variable g from 
where the closure was generated to where it is invoked. 

Now we can see why we need only consider two-vertex 
methods: they can be used to capture the basic mechanism 
of procedure calling. One vertex represents the procedure 
to be called. Its terminals (except the one connecting it 
to the other vertex) are the environment of the procedure. 
Its type is the procedure code. The other vertex is the ar- 
gument list. Its terminals are the arguments to be passed 
to the procedure, and the continuation to be connected to 
the returned v~lue. Its type is used to indicate the oper- 
ation that  should be performed (the procedure should be 

ca/led), and allows a procedure ca!! to be distinguished from 
a procedure that  is merely connected to some static da ta  
structure, such as when a procedure is an element of a a 
list built from C0HS vertices. 

i 

Figure 12. Method for Incrementing a 4 

This suggests how a two-vertex method can also be 
viewed as a messaae pass [1] 19]. One vertex is the object, 
the other is the message. The terminals of the object ver- 
tex are its instance variables. The terminals of the message 
vertex are the arguments to the message. The type of the 
object vertex is the type of the object. The type of the mes- 
sage v~ tex  is the operation. Figure 12 shows the method 
for an object of type 4 receiving an A9¢1 message. The 
method dispatch normally associated with message passing 
occurs when we look up which method to run for the pair 
of vertex types in question. (This, of course, explains why 
I called them "methods" in the first place.) 

When a two-vertex method is viewed as a message 
pass, the difference between the message and the object 
is entirely in the eye of the beholder. The .method could 
just as well be interpreted in the other way, so that  object 
and message exchange roles! This symmetry is possible be- 
cause connections themselves are symmetrical.  In ordinary 
programming languages, where all objects are referenced 
through asymmetrical pointers, this symmetcy doesn't  ex- 
ist. 

This remarkable aspect of progrsmmiag with connec- 
tion graph grammars results in the unification of several 
pairs of concepts that  are ordinarily only near-duals. For 
example, if the implementation techniques (or connection 
graphs discussed shove are employed, the actions performed 
by the hardware when "sending a message" to a non-locaJ 
object (or calling a non-local procedure) sometimes really 
will consist of merely sending a hardware-level message. 
Sometimes that  message will, as expected, consist of the 
description of an operation and a list of arguments. The 
symmetry between objects and messages implies that  in- 
stead the object may be bundled up and znailed to the lo- 
cation of the operation. In that  case the hardware-level 
message will consist of a description of a type and a list of 
instance variables. 

Figure 12 raises a minor issue about the relationship 
between message passing and procedure calling that  seems 
to confuse many people. The expression (~I)1 4) describes 
a procedure call rather them the message pass that  appears 
on the left hand side of figure 12. If the ~Vl  procedure is 
defined appropriately, however, the graph of (kDI)I 4) will 
trivially transform into the right hand side of figure 12. 

C o n d i t i o n a l s  

The translation of the conditional expression 

4 
S) 

is shown in figure 13. G1957 is a unique vertex type gen- 
erated to test the ~alue returned by the expression (gvI~ 
S). Figure 14 shows the two methods aasociat~d with type 
GI067. The first method covers the case where three is even 
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Figure 13. Graph of (IF (EVEN? 3) 4 5) 

1 1 

Figure 14. Methods for G1957 

1 

Figure 15 Method for 
(LAMBDA (X Y) (IF (EVENT X) Y (* 2 Y))) 

coN'r ¢~N~" 

2 

Figure 16. Methods for G2020 

by returning four. The second method returns five in the 
case where three is odd. 

Another example demonstrates the interaction of con- 
ditionals with variables. Figure 15 shows the method asso- 
ciated with the vertex type G1984, generated to represent 
closures of the LAMBe,t-expression 

CLAI4BDA (I  Y) 
(IF (EVEN? I) 

Y 
C* 2 Y))).  

The vertex type G2020 is used to test the value returned by 
the expression (EVEN? X). Since the variable Y appears in 
both arms of the conditional, a G2020 vertex must have an 
additional terminal to attach to the second argument to the 
procedure so that the methods for G2020 vertices (shown in 
figure 16) can use it. 

Consider the expression 

(LA~A (X) 
(÷ X g ) ) .  

Because X occurs twice in the body, the method associated 
with the vertex type generated to represent this procedure 
must arrange to distribute a single argument to two places. 

J# 

=~ 

1 

Figure 17, Method for (LAMBDA (g) (+ X I ) )  

1 

1 

Figure 18. Method for Duplicating S 

We could simply outlaw such procedures, obtaining a 
language in which the programmer is forced to specify ex- 
actly how each reference will be duplicated. This would 
be a great inconvenience, and would violate many people's 
intuitions about the meaning of expressions, especially in 
such straightforward operations as arithmetic, where it is 
perfectly clear what it means to duplicate a integer. 

Figures 17 and 18 suggest a solution. The method 
in figure 17 uses a COPY vertex to increase the fan-out of 
the procedure's argument. In the general case, a tree of 
trivalent C0PY vertices will be constructed. The method in 
figure 18 implements the usual semantics for duplicating an 
integer. Methods for the duplication of other objects can 
be constructed by the programmer on a type-by-type basis. 

Not all types need respond to being copied by simply 
duplicating a vertex. An object with local state can be 
implemented by allowing the COpY vertices to accumulate 
into a fan-in tree with the state variables stored at the 
apex. Figure 19 shows six methods that can be used to 
implement an object called a CELl. that responds to PUT and 
OET operations to modify a state variable. 

The bottom four methods are variations of the same 
basic idea. They allow Purr and GET operations to propagate 
from multiple references at the leaves, up the fan-in tree, to 
the apex, where the state variable can be accessed. PUT and 
GET vertices have a USERS terminal to hold the part of the 
tree they have propagated past. The top two methods are 
used when GET and PUT vertices encounter the CELL vertex 
at the apex. The G£T operation returns a copy of the value 
stored in the cell. The PUT operation replaces the value 
stored in the cell and drops the old value. DROP vertices 
are used to dispose of unwanted connections just as copy 
vertices are used to multiply access to popular ones. 
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Figure 20 demonstrates how a CELL functions. Initially 
there are two messages, one PUT and one GET, waiting at the 
fringe of a small (single vertex) fan-in tree of COPY vertices 
with a CELt. at its apex. This connection graph might result 
from the expression 

(LET ((X (CELL s)))  
(PUT x 4) 
(GET x)) 

assuming that the procedures PUT, GET, and CELL are given 
the appropriate trivial definitions to construct PUT, GET, and 
CELL vertices. 

There are two methods in figure 19 that can be applied 
to the initial graph in figure 20. I arbitrarily chose to apply 
the method for propagating the PUT message through the 
fan-in tree first. Had I chosen to propagate the GET, a dif- 
ferent final graph would have been the result. Presumably 
the programmer who wrote this program didn't care which 
of the two possible answers, 3 or 4, he obtained. In the sec- 
ond graph, where there are also two applicable methods, the 
method for delivering a PUT message to a CELL is chosen. In 
this case the choice does not change the final answer. In 
the next graph only the method for propagating the GET 
can be applied, and then in the following graph the sole 
possibility is to deliver the GET message to the CELL. (The 
resulting debris of COPY and DROP vertices can be cleaned 
up by some methods for combining DI~0P and C0PY vertices, 
dropping and duplicating integers, and dropping CELL ver- 
tices. These methods are easy to construct, but are not 
given here.) 

This implementation of a CELL exhibits two phenomena 
well known to be associated with the notions of object, state 
and side-effea [2] [3] {5]. First, it involves a bottleneck - -  
PUT and GEt" operations are forced to line up and wait their 
turn at the state variable. This eliminates parallelism in 
the connection graph grammar implementation. Second, it 
is non-deterministic. The order in which" the methods in 
figure 19 are applied affects the order in which PUT and GET 
operations reach the apex of the tree. Thus it is difficult to 
reason about the outcome of a program that includes such 
methods. 

That ~-reduction is in some way incompatible with 
both side-effects and non-determinism is well-known. Con* 
nection graphs give us a new way to look at this incom- 
patibility. Expressions have a basically tree-like structure; 
multiple occurrences of variables in an expression introduce 
loops into the structure, as in figure 17. When ~-reduction 
textually substitutes expressions for variables, it eliminates 
the loops. Therefore, the ~-reduction rule is not sound 
when the meaning of an expression is taken to be the con- 
nection graph it describes. 

Connection graphs are a more realistic way to assign 
meanings to programming language expressions, because 
the interactions of expressions with side-effects and non* 
determinism are explicitly accounted for. 

~[mDlementatlon .Status 

A prototype compiler for a connection graph program- 
ming language, and a simulator, have been implemented on 
Symbolics Lisp Machines. 

A code generator for the Thinking Machines Corpora- 
tion connection machine, a fine grained, massively parallel 
computer [4], is currently under development. 

A few small test programs have been written. We are 
just beginning to write our first sizable program, a parallel 
production system. 

Conc lus ion  

Connection graphs are well suited for implementation 
on at least the class of parallel computers consisting of inde- 
pendent, communicating processing elements. The mecha- 
nism of connections and two-vertex methods makes it easy 
and natural for such parallel machines to execute a connec- 
tion graph grammar. With a little work, many common 
cases of interprocessor communication can be reduced to 
a single message transmission, and more efficient represen- 
tations for vertices serving as conventional data structures 
can be deduced. 

A programming language based on connection graph 
grammars can be constructed using two-vertex methods to 
implement a procedure calling and message sending mech- 
anism. The symmetry of connections allow the notions of 
obje~t and message to emerge in a new light as completely 
dual concepts. A difficulty arises with respect to multiple 
occurrences of variables in expressions, but it is shown to 
be merely an old adversary in new clothing. 
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