
Database Model for Web-Based Cooperative Applications
Waldemar Wieczerzycki

Dept. of Information Technology
The Poznari University of Economics
Mansfelda 4, 60-854 Poznan, Poland

+48 61 848.05.49

wiecz@ kti.ae.poznan.pl
ABSTRACT
In this paper we propose a model of a database that could become
a kernel of cooperative database applications. First, we propose a
new data model CD&Z (Collaborative Data Model) that is oriented
for the specificity of multiuser environments, in particular:
cooperation scenarios, cooperation techniques and cooperation
management. Second, we propose to apply to databases
supporting collaboration so called multiuser transactions.
Multiuser transactions are flat transactions in which, in
comparison to classical ACID transactions, the isolation property
is relaxed.

Keywords
CSCW, object-oriented databases, data model, transaction model.

1. INTRODUCTION
A common feature of the majority of collaborative systems is that
they require functions and mechanisms naturally available in
database management systems, e.g. data persistency, access
authorization, concurrency control, consistency checking and
assuring, data recovery after failures, etc. Notice, however, that
these functions are generally implemented in collaborative
systems from scratch, without any reference to the database
technology. Some systems provide gateways to classical
databases, however these databases are autonomous and external
to them, thus database access is organized in a conventional
manner.

Since the theory and technology of classical databases is very
mature, commonly accepted and verified over many years, the
following question naturally arises: can we apply this technology
in collaborative systems, instead of re-implementing database
functions from scratch and embedding them in collaborative
systems? In other words: can we develop collaborative systems as
database applications, thus probably saving time normally spent
on re-implementation of selected database functions? As usually
we can obviously try, but there is one substantial drawback we
have to take into account. The classical database paradigm
assumes namely that database users are totally isolated.

Permission to make digital or hard copies of all or part of this work for
personaf or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to fists, requires prior specific permission and/or a fee.
CfKM ‘99 11199 Kansas City, MO, USA
0 1999 ACM l-581 13-146-1/99/0010.,.$5.00

In such situation, in order to develop collaborative database
applications, we have to extend database technology. The required
extensions should be applied simultaneously to both: data
modeling techniques and transaction management algorithms.
Former techniques have to facilitate modeling data structures that
are specific to cooperation processes, while the latter techniques
have to support human interaction and exchange of non-
committed data.

There are many data models proposed in the literature that are
addressed to advanced domains of database applications, in
particular to computer aided design (CAD) and computer aided
software engineering (CASE). Most of them provide versioning
mechanisms that are necessary to model: data revisions, variants
and alternatives [l, 3, 4, 5, 9, lo]. These models substantially
support individual design and development activities of database
users. However, they do not sufficiently support group activities.
It follows from the common assumption that database users
communicate only via committed data. Since the users are totally
isolated by the database system, each of them has an impression
that the system is dedicated to him. When users collaborate to
achieve a common goal, this approach is obviously too restrictive.
Collaborators have to communicate directly before they agree on a
data value.

As mentioned before, parallel to data model extensions,
transaction model and transaction management techniques have to
be extended. There are two possible directions. The first one
consists in avoiding the concept of transaction and transaction
management mechanisms. Non-transactional databases, however,
are generally unsafe, and it is very difficult to preserve the
consistency of information stored in them. The second direction
aims at avoiding ACID transactions, and propose new transaction
models which are more oriented for advanced database
applications, especially for collaborative applications, thus
preserving all advantages of transactional systems.

There are many advanced transaction models proposed in the
literature [6, 7, 8, 111, There are also transaction models
supporting cooperation between transactions. The most general
approach proposes the cooperative transaction hierarchy [I21 that
allows associating transactions encompassed by a transaction
group with individual designers. Taking into account the needs of
generally understood collaborative work, cooperative transaction
hierarchies are very promising, since transactions from the same
group are not isolated mutually and can correspond to different,
though somehow related tasks.

An attempt to apply hierarchical transactions to databases has
some disadvantages. Contrarily to flat transactions, hierarchical
transactions require sophisticated transaction management
methods and, as a consequence, additional system overhead which
reduces its performance. Moreover, hierarchical transactions are

131

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319950.319968&domain=pdf&date_stamp=1999-11-01

still not sufficient, considering expectations of collaborating
users, since in many situations the transaction correctness
criterion restricts wide cooperation. Finally, they are not so
reliable as flat transactions, since in practice commercial
databases use the latter ones.

In this paper we propose a solution of problems mentioned above
by the use of a new database model. First, we propose a new data
model CDM (Collaborative Data Model) that is oriented for the
specificity of cooperation scenarios, cooperation techniques and
cooperation management. Second, we propose to apply to
databases supporting collaboration so called multiuser
transactions. Multiuser transactions are flat transactions in which,
in comparison to classical ACID transactions, the isolation
property is relaxed. It is worth to emphasize that both: data model
and transaction model are strictly related to each other. Most of
concepts used in the CDM model match the basic concepts of the
transaction model and transaction management techniques, and
vice versa.

Finally, it is also worth to underline that both the data model and
transaction mode1 have been elaborated parallel to the
development of the prototype collaborative system, called Agora
[2]. Thus, the proposed approach is not purely theoretical but
instead, it reflects the problems and solutions that occurred during
the implementation of Agora.

The paper is structured in the following way. In section 2 the
CDM data structures are proposed. In section 3 related work
concerning multiuser transaction model is briefly presented. Next,
the model is combined with the CDM model. In section 4 the
Agora prototype is mentioned. More details concerning the Agora
system can be found in [2]. Section 5 contains concluding
remarks.

2. CDM MODEL
2.1 Basic Notions
In the CDM model a database is viewed as a set of domains. The
domain is a set of database objects operated by a group of
collaborating users. The users create (modify) domain objects
using cooperative database applications associated with the
domain. The users can also directly address domain objects by the
use of ad hoc queries. In this case, however, before the first object
operation, a respective domain has to be explicitly selected.

Every domain is composed of two disjoint subsets of objects:
local objects and global objects. First subset contains objects that
are available only in the encompassing database domain. These
objects are created and modified by cooperative applications
corresponding to the domain. Second subset is composed of
objects simultaneously available in all database domains. In other
words, the subset of global objects is the intersection of all
database domains - it will be further called the database core.

The database core is a communication mean between database
domains. It is composed of non-versionable objects containing
basic information concerning the database, that can be potentially
useful to all database users, no matter which domain they address
(e.g. a list of domains and applications associated with them, a list
of database users with the information necessary to contact them
by the use of available teleconferencing tools). Moreover, the
database core can store verified and commonly accepted final
products of group activities that can become available to all

database users, e.g. technical documentation, budget project of the
enterprise.

Objects contained in the database core are read-only for the
majority of database users. They can be modified only by
sufficiently privileged users (i.e. database administrators), in
response to requests sent by users working in different domains.
Modifications of database core consist in removing and adding
objects only. This approach aims at avoidance of conflicts
between users who do not cooperate, i.e. users who access core
objects through different domains.

The notions introduced so far are illustrated in Fig. 1. The
database is composed of eight domains having a common core.
Domains: d-Z and d-2 are assigned to cooperative application
CAl, which is used for collaborative document writing. Users of
the d-1 domain co-author a journal paper, while users of the d-2
domain work on a marketing leaflet. Domains: d-4 and d-5 are
assigned to cooperative application CA2, which is used for
collaborative software design. Users of the d-4 domain develop a
customer evidence program, while users of the d-5 domain try to
implement a program supporting finances of the enterprise. Four
other domains: d-3, d-6, d-7 and d-8 are assigned to application
CA3, which is used for workflow management, and thus supports
business processes of the enterprise.

Figure 1. Database core and domains

Local domain objects can be further divided into so called domain
content and domain abstract. The domain content groups objects
created and frequently modified by team members in order to
achieve the assumed outputs of cooperative work. Due to multi-
stage, multi-thread and multi-variant specificity of the
cooperation, the domain content can be versioned. Every version
of the domain content will be further called a context. Thus, the
domain content is the only versioning unit available in our
approach. As a consequence, users perceive the domain as a set of
contexts augmented by the abstract.

The domain abstract is as subset of non-versionable domain
objects playing the role of domain content generalization. It is
used to support team members assigned to the respective domain:
to coordinate the cooperation, to derive commonly agreed starting
assumptions, to store read-only input objects of cooperative work,
to present advances in elementary task execution, etc. For
example, a team co-authoring a book stores in the domain
abstract: a book title, table and outline of book contents,

132

assumptions concerning book size and structure, reference list,
figures and paragraphs taken from documents previously written
that can be useful in current work (directly or after modifications).
Moreover, the abstract contains also meta-texts that will not be
included in the final version of a book. They are exchanged
between team members for the purpose of efficient collaboration,
as well as for mutual awareness and notification, e.g. comments
and doubts concerning already written paragraphs, ideas
concerning future work, information on recently prepared new
sections.

A database composed of two domains: Dl and 02 is illustrated in
Fig. 2. Domain Dl contains three disjoint subsets of objects: the
database core (shared with the domain OZ), the domain abstract
AI and the domain content Cl. The content Cl is versioned - in
the Dl domain the following contexts are available: c-11, c-12,
c-13 and c-14. Similarly, the domain 02 contains the core, the
abstract A2 and the contents C2, which is available in five
contexts: c-21, c-22, c-23. c-24 and c-25.

Figure 2. Abstract, content and contexts

Now we focus a bit more on domain content versioning, i.e. on
the creation of new contexts in the scope of a database domain.
The first context, called root context, is created in a particular way
based on a selection of objects included in the abstract (typically
abstract is created on the very beginning of cooperative work).
There are two possible selection strategies. First, the indicated
object may be moved from abstract to the root context. Second,
the indicated object may be physically copied from the abstract to
the root context. In this case a new object is created which
initially has the same value as the source object.

After the root context has been created, new non-root contexts can
be created by their derivation from already existing contexts. This
operation consists in logical copying of all objects included in the
indicated base context, providing the objects have committed
values. Thus, modifications introduced by non-committed
transactions are not taken into account. Next, the derived context
can continue its evolution independently from the base context,
due to modifications addressed to its objects. Notice, that the
number of object versions included in base and derived context
remains the same.

Since, except of the root context, every context is derived exactly
from one base context, contexts of the same domain constitute a
hierarchy. It is illustrated in Fig. 3. The domain content is
composed of five contexts: c-0, c-l, c-2, c-3 and c-4. The root
context c-0 contains two objects moved from the abstract,
represented by a rectangle and a circle. The rectangle is avaiIable
in two physical versions explicitly appearing in contexts: c-0 and
c-2. The circle is available in three versions appearing in

contexts: c-0, c-1 and c-3. Notice, that c-4 context shares
versions of both objects with its base context c-2.

With such assumptions concerning data model (isolated domain
contents are the only versioning granules) a natural question
arises that concerns the size of a consistency unit. Similarly to
other versioning models, in the CDM model the entire database is
not consistent, because in general it does not represent correctly
any fragment of the real world. Thus, in the CDM model a single
context extended by the respective abstract and database core is a
unit of consistency. This assumption can only be violated by
particular type of contexts that we introduce in Section 2.3.

abstract

root

CONTENT

Figure 3. Hierarchy of contexts

2.2 Formal Model
In this section we define CDM model in a formal way. Let 0
denote a set of all database objects. This set is composed of two
subsets: non-versioned objects NV0 and versioned (multiversion)
objects VO, such that:

O=NVOuVO; NVOnVO=0

Every non-versioned object NV0 = (oid, val) E NV0 is a pair
composed of object identifier aid and object value val. Every
versioned object VO = (aid, V) E VO is a pair composed of object
identifier oid and a finite set of object versions V = {V,, VI,
V,}. Every object version V E V is in turn a pair composed of an
identifier (defined later on in this subsection) and object version
value val. In both cases, i.e. non-versioned and versioned objects,
a value vu1 may be composed or simple. A composed value
contains at least one object identifier aid pointing to another
object. Non-versioned object may point only to non-versioned
objects, while object version may point to both versioned and
non-versioned objects. A simple value does not contain object
identifiers. Object 0 E 0 becomes a composite object if its
versions have composite values.

Domain D is defined as a quadruple:

D = (did, LX, A, C).

composed of the domain identifier did, a set of non-versioned
objects from the database core DC, a set of non-versioned objects

133

from the domain abstract A and a set of versioned objects from the
domain content C, for which the following holds:

q DC u A c NVO, C’G VO,

0 DCnA=0,

0 Domains belong to the set D. Every pair (Di, Dj) of different
elements of this set (i z j) fulfills the condition:

0 DCt=DCj A (AiU Ci)n (AjU Cj)=O

cl Every composite objects 0, E C can point only to objects Oi
(i f 1) appearing in the same domain, i.e. Oi E DC u AU C;
every composite object 02 E A can point only to objects Oj (j
f 2) appearing either in database core or abstract of the same
domain, i.e. Oj E DC u A; finally, every composite object
0s E DC can point only to objects 01, (k f 3) from the
database core, i.e. Ok E DC.

A database context CX is defined as a triple:

CX = (cid, D, ver),

where cid denotes the context identifier, D E D denotes the
domain, while ver is a set of versions of objects from the content
C of the domain D. Every context CX has to fulfill the following
conditions:

0 if V E ver, then object VO, with Vbeing its version, belongs
to the content C of the domain D,

q card [C 1 = card [ver],

0 for every object belonging to the domain content VO = (aid,
V) E C, there is exactly one its version Vi E V, which
belongs to the set ver, i.e. Vi E ver. in particular nil version.

Now we can define object version identifier as a pair (oid, cid). As
a consequence, object version is a triple V = (oid, cid, val). Object
version identifier (aid, cid) represents version identity. Thus, we
consider two object versions: V = (oid, cid, val) and V’ = (aid’,
cid’, val’) as identical, if oid = oid’, cid = cid’ and val = val’.
Notice, that two versions of the same object, belonging to two
different contexts of the same domain D are never identical. They
can be at most equal, if their values are equal. Formally, two
object versions: V = (oid, cid, val) and V’ = (oid’, cid’, val’) are
equal, if oid = oid’ and val = val’.

Having basic concepts of the CDM model formally introduced,
we can finally define a database as a finite set of contexts CXi,
augmented by a finite set of abstracts Ai and the database core
DC. The database fulfills the following conditions:

0 Every non-versioned object NV0 belongs either to the core
DC or to exactly one abstract Ai;

0 Every versioned object belongs to exactly one content Ci of
the domain Di;

0 For every object version V there exists exactly one database
context CX = (cid, D, ver) such that V E ver.

2.3 Context types
The specificity of collaborative work in the database environment,
in particular: long duration of database transactions, the need to
store transient stages of work which sometimes may be
inconsistent, as well as different levels of the cooperation intensity
and scope, imply the necessity of distinguishing different types of
contexts. In the CDM model we classify domain context in three

orthogonal ways, considering respectively: context life-time,
context consistency and semantic relationships between contexts.

Taking into account context life-time, we distinguish persistent
contexts and temporary contexts. A persistent context is stored in
the database directly after the commitment of a transaction that
has created this context. Next, the context is accessible to all other
transactions executed in the same domain. A persistent context
may become a base for context derivation. It can be removed from
the database only as a result of explicit delete context operation,
invoked by a transaction different than the transaction that has
created it.

Temporary context life-time may not exceed the duration of a
transaction related to this context. We mean here a transaction that
has explicitly created the context during its execution, or a
transaction that has implicitly created the context, as a result of a
particular database operation that requires temporary context
derivation. A temporary context may be addressed only by the
transaction related to it (i.e. a temporary context behaves like a
private context of a single transaction). A temporary context may
be promoted to a persistent context, thus gaming the features
mentioned above.

Temporary contexts are used to achieve the following purposes:
(1) to increase the level of concurrency among transactions, (2) to
automatically merge contexts, and (3) to partially roll-back
transactions. Now we will focus a bit more on these purposes.

Concurrency control. If many transactions simultaneously address
the same context, then in case of incompatible operations an
access conflict arises that implies a suspension or a roll-back of
one of conflicting tmnsactions. Trying to avoid conflicts one of
transactions may derive a temporary context, logically move all its
uncommitted operations from the base context to the temporary
context, and re-address all future operation to the temporary
context. As result, the level of concurrency is potentially
increased. It follows from the isolation of the re-addressed
transaction which execution is continued in a private context.
Notice, that since a derived context (temporary context) becomes
initially a logical copy of its parent, the execution environment of
the re-addressed transaction is preserved. Notice also, that there is
no need for lock setting in a temporary context, since it is private,
thus the system overhead related to concurrency control is
reduced.

Temporary contexts are particularly useful in case of read-only
transaction (queries), hypothetical reasoning transactions and
conditional transactions (pre-condition and post-condition).
Transactions of this type usually do not modify a database or their
modifications are temporary, i.e. the modifications are removed
during transaction commitment. Since they are usually long-
duration its reasonable to address them to a temporary context that
in most cases can be simply removed from the system during
transaction commitment.

Context merge. Cooperating database users sometimes
deliberately decide to temporary isolate their work by addressing
different (often private) contexts. Then, in agreed time moment,
they decide to merge their mutual efforts by the creation of a new
context, containing selected object versions from previously
accessed base contexts. This process may be supported by the
database system that can apply a specific merging algorithm that
avoids a tedious task of object version comparison done manually
by respective users. A context resulting from automatic merge

134

operation has to be temporary, since in general it requires users’
verification (authorization), after which it may be promoted to a
persistent context.

Partial transaction roll-back is related to so called save points.
Defining a save point in the CDM model consists in deriving by
the database system a new temporary, isolated and inconsistent
context, directly from the context addressed by the transaction
which requests save point definition. Since this context is not
visible to any transaction (thus, it can not be modified), it stores a
frozen image of its base context. A transaction may define many
save points during its execution. Every time the same derivation
mechanism is applied. If a transaction is committed, save points
be useless. Thus, corresponding contexts are simply removed by
the database system.

If a transaction requests a r’oll back, first a respective context is
identified by the database system. Next all contexts derived after
the identified context are automatically removed. Finally, the
historical state of the base context is restored using objects from
the context that represents a save point. This operation consists in
copying to the base context all values of objects that have been
exclusively locked by the transaction (it suggests that they could
be modified after the save point definition). Other objects do not
change. Earlier save points are potentially still useful, thus
corresponding contexts remain unchanged.

The second way of context classification, orthogonal to the one
considered above, distinguishes consistent and inconsistent
contexts. As mentioned before, in CDM model a single context
extended by a domain abstract and the database core is a unit of
consistency. It concerns, however, only consistent contexts, since
inconsistent contexts do not contribute in database consistency
units. A consistent context, augmented by a respective abstract
and database core, does not violate integrity constraints defined
for the corresponding database domain and it reflects the
expectations of users responsible for information stored in this
context.

Contrarily, inconsistent context does not fulfill the requirements
stated above. It can be created as a result of particular operations
automatically performed by the database system. Furthermore,
initially consistent context may also become inconsistent, as result
of deliberate operations done by a database user, who is aware of
context inconsistency, however, because of some reasons, decides
to keep the context in the database. For example, a user writing a
journal paper during many hours is aware that the paper lacks
cross-references, conclusions and final review, however, he
decides to keep the paper in the database and to resume his work
next day, aiming at the promotion of the context into consistent
one.

Classically a transaction can be addressed only to a consistent
subset of data stored in the database; as result of its execution a
transaction moves this subset of data from one consistent state to
another consistent state. It means that classical transaction might
not be addressed to inconsistent context of the CDM model. It
also might not violate a context consistency. In such situation, in
the proposed approach, besides classical transactions with the
consistency property, we distinguish two particular transaction
types that do not preserve this property: inconsistent transactions
and verifying transactions. An inconsistent transaction is
addressed to a consistent subset of CDM data (i.e. inconsistent
context extended by an abstract and database core) moving it into

inconsistent state. A verifying transaction is addressed to an
inconsistent subset of data moving it into a consistent state (as
result of its commitment).

The third way of context classification refers to semantic
relationships between contexts. We distinguish isolated and linked
contexts. Up till now, speaking about contexts we have meant
only isolated contexts. An isolated context is logically
independent from all other contexts. Logical independence
concerns also isolated contexts from the same domain, in
particular a base context and its descendants. Two transactions
addressed to two isolated contexts never conflict, even if they
operate on the same multiversion object, whose value is
physically shared.

Linked contexts have at least one link explicitly defined in the
database. A link is a semantic relationship of a particular type
binding a pair of contexts. A link between two contexts causes in
general that an execution of an operation in one context
automatically triggers an execution of a derived operation in the
second context. Linked contexts are particularly important for
cooperative database applications. Mutual operation triggering
supports mutual awareness of collaborating users, concerning the
state of current work and its dynamic evolution. It also supports
users’ notification about the occurrence of system events that are
important to the users.

Contrarily to isolated contexts, two transactions addressed to two
linked contexts may fall into conflicts. To solve this problem so
called multiuser transactions (cf. section 3) are used.

Links between contexts are directed. In the most general case,
links are bi-directional and of different type. As a consequence,
for two linked contexts CXI and CXZ, operations performed in
context CXI may trigger in context CX2 operations different than
operations triggered in context CX1 by operations done in context
cx2.

Links between contexts can be global or limited. Global links
concern all context objects, while limited links concern only
subsets of context objects.

Among basic link types one can distinguish strong and weak
update propagation. Strong propagation is an extreme type of link.
It consists in exact copying of updates from one context to the
other. Weak propagation concerns only objects physically shared
between contexts. This link can be very useful for cooperating
users. As an example, consider user CJ who derives a new private
version of a co-authored book and starts to modify its second
chapter. The base and derived contexts are bound by a global,
weak propagation link. Thus, the user U can observe the evolution
of other chapters, because updates introduced to them by
colleagues are immediately propagated to the user U context.
There are many other types of links, i.e. propagation of object
creation, removal.

In case of well-defined cooperative applications the semantics of
links between contexts may be much more complex, which
reflects the specificity of collaboration processes supported by the
application and application functionality. For example, in case of
collaborative writing application, a modification of a paragraph in
a particular context, instead of update propagation, triggers only
changing a color of this paragraph in linked context.

135

3. RELATED WORK
In this section we briefly present a transaction model especially
elaborated for databases supporting web-based collaborative
database applications. The model has been developed parallel to
the CDM model. Most of the concepts used in the transaction
model are strictly related to the CDM concepts introduced in the
previous section. More details concerning the transaction model
can be found in [131.

3.1 Multiuser Transactions
The multiuser transaction model is inspired by the natural
perception, that a team of intensively cooperating users can be
considered as a single virtual user, who has more than one brain
trying to achieve the assumed goal, and more than two hands
operating on keyboards.

Depending on whether database users collaborate or do not, and
how tight is their collaboration, we distinguish two levels of
users’ grouping: conferences and teams. A conference Ci groups
users who aim at achieving the common goal, e.g. to write a co-
authored book. Users belonging to the same conference can
communicate with each other and be informed about progress of
common work by the use of typical conferencing tools, like
message exchange, negotiation, etc. Conferences are logically
independent, i.e. a user working in the scope of a single
conference is not influenced by work being done in other
conferences. It is possible for a single user to participate
simultaneously in many conferences, thus the intersection
between two conferences need not be empty. In this case,
however, actions performed in one conference are logically
independent from actions performed in other conferences.

Tightly collaborating users of the same conference are grouped
into the same team Ti. Thus, a team is a subset of users of a
corresponding conference, with the restriction that a single user
Ui belongs in the scope of a single conference exactly to one
team, in particular, to a single-user team. Of course, if he is
involved in many conferences, say n, then he belongs to n teams.

A multiuser transaction is a flat, ordered set of database
operations performed by users of the same team, which is atomic,
consistent and durable. In other words, a multiuser transaction is
the only unit of communication between a virtual user
representing members of a single team, and the database
management system.

Two multiuser transactions from two different conferences behave
in the classical way, which means that they work in mutual
isolation, and they are serialized by database management system.
In case of access conflicts, resulting from attempts to operate on
the same data item in incompatible modes, one of transactions is
suspended or aborted, depending on the concurrency control
policy.

Two multiuser transactions from the same conference behave in a
non-classical way, which means that the isolation property is
partially relaxed for them. In case of access conflicts, so called
negotiation mechanism is triggered by DBMS, which informs
users assigned to both transactions about the conflict, giving them
details concerning operations which have caused it. Then, the
users can consult their intended operations using conferencing
mechanisms provided by the system, and negotiate on how to
resolve their mutual problem. If commonly agreed, they can
undertake one of actions provided by the system [131, in order to

avoid access conflict. If they succeed, transactions can be
continued, otherwise classical mechanisms have to be applied.

A particular mechanism is used in case of operations of the same
multiuser transaction, if different users perform them, and the
operations are conflicting in a classical meaning. There is no
isolation between operations of different users, however in this
situation so called notijication mechanism is triggered by DBMS,
which aims to keep the users assigned to the same transaction
aware of operations done by other users. We have to stress that it
concerns only the situation when a user accesses data previously
accessed by other users, and the modes of those two accesses are
incompatible in a classical meaning. After notification, users
assigned to the same transaction continue their work, as if nothing
happened.

3.2 Operations on Multiuier Transactions
We distinguish the following operations: initialize, commit, abort,
connect, disconnect, merge and split.

initialize

Every multiuser transaction can be created explicitly by the
initialize0 operation, invoked by an arbitrary user who is a
participant of at least one conference. The user, however, can not
belong to any other team already working in the scope of the
conference concerned, i.e. the conference in which the initialize
operation is called. After transaction creation, this user becomes
automatically so-called transaction leader.

initialize0 operation can also be triggered automatically, directly
after one of the members of team Tn performs explicit
commit(TMn) operation, or implicit auto-commit(TMn) database
operation. All consecutive transactions of the same team are
executed in a serial order.

commit and abort

commit(TMn) is a classical DBMS operation that commits
multiuser transaction TMn. abort(TMn) is another classical
DBMS operation that aborts transaction TMn. These operations
do not require further explanation.

connect and disconnect

After a multiuser transaction is initialized by the transaction
leader, other team members can be attached to this transaction at
any moment of the transaction execution, by the use of explicit
connect(TMn) operation, which is performed in asynchronous
manner. Once connected to the transaction, any member of a team
can perform disconnect(TMn) operation, providing there is still at
least one user assigned to the transaction TMn. disconnect(TMn)
brakes the link between transaction TMn and the user.

Transaction TMj can merge into transaction TMi by the use of
merge(TMi) operation, providing the members of a team assigned
to TMi allow for it. After this operation, transaction TM/’ is
logically removed from the system, i.e. operation aborr(TMj) is
automatically triggered by the DBMS, and all TMj operations are
logically re-done by transaction TMi. These actions are only
logical, since in fact at the system level operations of TMj are just
added to the list of TMi operations, and TMi continues its
execution. However, the number of users assigned to TMi is now
increased. It means, that until the end of TMi execution, the team
assigned previously to TMj is merged into the team assigned to

136

TMi. Of course, merge(Z) operation is only allowed in the scope
of the same conference. merge(TMi) can be useful when an access
conflict between two teams of the same conference arises.

split

Similarly to merge operation, spZit(UT) operation can be used in
order to avoid access conflicts. Contrarily to merge operation that
is always feasible, providing members of the other team allow it,
spIit(U7’) operation can be done only in particular contexts.
split(UT) operation causes that a single multiuser transaction TMi
is split into two transactions: TMi and TMj. After split0 operation,
a subset of team members UT being operation argument,
originally assigned to TMi, is re-assigned to newly created
transaction 7iVj. Also all operations performed by reassigned
users are logically removed from transaction TMi and redone in
transaction TM/’ directly after its creation.

The two transactions resulting from split operation are related to
each other in such a way that they can be either both committed or
both aborted. It is not possible to abort one of them and commit
the other, since in this case the atomicity property of the original
transaction (i.e. the transaction before split operation was
requested) would be violated.

As mentioned before, split operation can be executed in particular
contexts only. Speaking very briefly, a transaction can be split if
two sub-teams, which intend to separate their further actions, have
operated on disjoint subsets of data, before split operation is
requested. If the intersection between the data accessed is not
empty, spfit operation is still possible, providing the two sub-
teams have accessed the data in compatible modes.

Finally we combine multiuser transactions with the CDM model
presented in section 2. It can be achieved in a very straightforward
way. Every conference C from the transaction model is bound to a
single domain of the CDM model. Thus conferences preserve their
isolation property, since most of their data, except the database
core, are physically disjoint. Remember that the database core is
read-only, thus access conflicts between conferences are not
possible.

Teams working in the scope of the same conference, i.e. multiuser
transactions, are addressed to contexts of the same domain
extended by the domain abstract. There are two possible
approaches. First, teams can operate on the same database
contexts. In this case access conflicts can occur frequently, thus
negotiation mechanism and problem solving mechanisms
presented in this section can be very useful. Second, teams can
operate on different database contexts. In this case access conflicts
happen rarely. They can occur when abstract objects are
simultaneously accessed or when contexts addressed are bound by
semantic relationships (e.g. update propagation).

4. PROTOTYPE APPLICATION
Most of the concepts introduced in previous sections have been
implemented in Agora prototype system [2]. Agora is composed
of two functional parts. The first one is a virtual conference tool,
and the second one is a support for collaborative document
writing. Agora provides negotiators (i.e. conference participants)
with an arbitrary number of conferences and arbitrary number of
cohaboratively written versionable documents, with the restriction
that only one document can be associated with a single
conference. All negotiators discuss and present their positions by

exchanging electronic messages. Each negotiator of a conference
sees all the messages exchanged. A negotiator can be involved in
several negotiations simultaneously, i.e. he can virtually attend
different conferences. Negotiations in different conferences may
concern different topics, different aspects of the same topic, or the
same topic discussed by different partners.

The part of Agora devoted to support collaborative writing is
required to prepare a final document, which is a result of
negotiations [14]. This common document is seen and accessible
to all the negotiators. When a negotiator writes or modifies a
paragraph of the document and commits changes, it becomes
instantaneously visible to other negotiators. Next, any negotiator
can modify this paragraph. Agora provides versioning
mechanisms that additionally facilitate collaborative writing.

Agora has been implemented in Java language and connected to
the Oracle database management system through Java Database
Connectivity interface (JDBC) to provide persistency of both
documents and negotiation history. The use of Java and JDBC
provides Agora with platform independence, concerning
hardware, operating systems and database management system.

Agora architecture is client-server. Both clients and the server are
implemented as Java objects which communicate by Remote
Method Invocation (RMZ). The Agora server is connected to a
database management system by Java Database Connectivity
interface.

Concurrency control mechanisms provided by Oracle DBMS are
overridden in Agoru server, what is necessary to validate the
concept of multiuser transactions and new concurrency control
mechanisms proposed in this paper.

Every document version is stored in one database table, thus if a
document is available in n versions, then n tables have to be
created, The first version of a document is entirely represented in
a respective table, while in case of derived document versions
only differences in comparison to the parent document version are
represented, i.e. paragraphs explicitly modified in the child
document version. This aims to avoid redundancy that can be
really painful in case of documents having many slightly different
versions.

Every paragraph of a document version is stored in a single row of
a corresponding table, which is composed of a paragraph content
and its layout attributes. Paragraph content is modeled by a single
attribute of long raw type. It means that a paragraph can contain
not only pure text but also multimedia data (pictures, sounds,
etc.). Layout attributes contain typical information about the way
a paragraph is visualized to the users, e.g. color, font, size, indent.

5. CONCLUSIONS
A particular model of a database supporting collaborative
applications has been proposed in this paper that is based on the
CDM data model and the multiuser transaction model. The
proposed database model is very straightforward and natural, on
one hand, and allows practically unrestricted collaboration among
members of the same team, on the other hand. The basic
assumption of this model is that coilaborating users try to solve
their access conflicts at a higher level than the level of a database
management system, as it happens classically. The DBMS
presents to the users available information on access conflicts.

137

Then the users can negotiate, presenting their intentions
concerning future work, and choose one of proposed transaction
management mechanisms which aim at conflict avoidance. During
collaborative work, DBMS supports flexible versioning
mechanisms and wide information exchange between team
members, on one hand, and users’ awareness and notification, on
the other hand. These functions are extremely important in case of
every cooperative system.

The proposed database model supports three typical cooperation
strategies: sequential, reciprocal and parallel. These strategies
applied to one of the most popular group activities - collaborative
writing - are illustrated in Fig.4. In case of sequential strategy
(Fig. 4a), a user who continues work of his co-author simply
derives a new CDM context from colleague’s context, i.e. contexts
are ordered and a derivation tree is reduced to a list of contexts. In
case of reciprocal strategy (Fig. 4b), all users address the same
context. If they want to freeze a particular stage of their
collaborative work, they derive a new context and re-address all
their consecutive operations to this new context. In case of
pardeE strategy (Fig. 4~). users derive private contexts from the
same base context. In order to support users’ awareness and
notification, these new contexts could be linked by mutual
semantic relationships. When required, e.g. when assumed
milestone of cooperation is reached, users can automatically
merge the results achieved by the creation of a shared context that
in general is inconsistent and requires verification transaction,
Next, users can repeatedly continue the aforementioned steps
towards next milestones.

a)

Figure 4. Different cooperation strategies

The proposed approach was verified in Agora prototype which is
a Web-based multi-user conferencing system, offering conference
participants a flexible tool for collaborative document writing. It
is worth to emphasize that Agoru is implemented on the top of a
conventional and commercial database system, i.e. Oracle
RDBMS, instead of another prototype specifically designed to
support object versioning mechanisms. It makes the achieved
results more reliable.

6.

[II

PI

[31

141

PI

[61

[71

PI

PI

REFERENCES

Agraval R. et al., Object Versioning in Ode, IEEE,
1991.

Cellary W., Picard W., Wieczerzycki W., Web-Based
Business-to-Business Negotiation Support, Proc. of the
Int. Conference on Trends in Electronic Commerce
TrEC-98, Hamburg, Germany, 1998.

Cellary W., Vossen G. and Jomier G., Multiversion
object constellations: A new approach to support a
designer’s database work, Engineering with Computers,
vol. 10, 1994, pp. 230-244

Chou H., Kim W., A Unifying Framework for Version
Control in CAD Environment, Proc. of the 12 Intl.
Conf. on Very Large Databases, Kyoto, 1986.

Chou H. T., Kim W., Versions and Change
Notification in Object-Oriented Database System,
Proc. of the Design Automation Conf., 1988.

Chrysanthis P.K., Ramamtitham K.: Acta - A
framework for specifying and reasoning about
transaction structure and behavior, Proc. of ACM-
SIGMOD Int. Conference on Management of Data,
1990.

Elmagarmid A. (ed.): Database Transaction Models,
Morgan Kaufmann, 1992.

Garcia-Molina H, Salem K.: Sagas, Proc. of the ACM
Conf. on Management of Data, 1987.

Katz R. H., Toward a Unified Framework for Version
Modeling in Engineering Databases, ACM Computing
Surveys, Vol. 22, No 4, 1990.

[lO]Lamb C., Landis G., Orenstein J., Weinreb D., The
ObjectStore Database System, Communications of the
ACM, Vol. 34, No. 10, 1991.

[l l] Moss J. E.: Nested Transactions: An Approach to
Reliable Distributed Computing, The MIT Press, 1985.

[121 Nodine M., Zdonik S.: Cooperative transaction
hierarchies: A transaction model to support design
applications, Proc. of VLDB Conf., 1984.

[131 W. Wieczerzycki, Multiuser Transactions for
Collaborative Database Applications, Proc. of 9”
International Conference on Database and Expert
Systems Applications - DEXA’98, Vienna, pp. 145
154,1998.

[141 Wieczerzycki W., Advanced Transaction Management
Mechanisms for Document Databases, 3rd World
Conf. on Integrated Design and Process Technology -
IDPT’98, Berlin, Germany, pp. 31-38, 1998.

138

