
Word Segmentation and Recognition for
Web Document Framework

Chi-Hung Chi, Chen Ding, Andrew Lim
School of Computing

National University of Singapore
Lower Kent Ridge Road, Singapore 119260

ABSTRACT
It is observed that a better approach to Web information
understanding is to base on its document framework, which is
mainly consisted of(i) the title and the URL name of the page, (ii)
the titles and the URL names of the Web pages that it points to,
(iii) the alternative information source for the embedded Web
objects, and (iv) its linkage to other Web pages of the same
document. Investigation reveals that a high percentage of words
inside the document framework are “compound words” which
cannot be understood by ordinary dictionaries. They might be
abbreviations or acronyms, or concatenations of several (partial)
words. To recover the content hierarchy of Web documents, we
propose a new word segmentation and recognition mechanism to
understand the information derived from the Web document
framework. A maximal bi-directional matching algorithm with
heuristic rules is used to resolve ambiguous segmentation and
meaning in compound words. An adaptive training process is
further employed to build a dictionary of recognisable
abbreviations and acronyms. Empirical results show that over
75% of the compound words found in the Web document
framework can be understood by our mechanism. With the
training process, the success rate of recognising compound words
can be increased to about 90%.

1. INTRODUCTION

Table of content (TOC) is always an important source of
information for traditional document understanding. It gives
readers the outline of a document as well as the hierarchical
linkage among its chapters or sections. This is true even for short
articles where the headings and sub-headings can still reflect an
abstraction about its content. In a Web document, there exists a
new source of information, called the document framework,
which contains higher information entropy than the possible
“table of content” in a traditional document. This framework is the
skeleton of the Web document structure. A vertex in the graph is a
component Web page with attributes of its title and URL name of
the page together with alternate information source for all its
embedded objects. It can be a section or sub-section of the
document. An edge in the graph shows the referral relationship of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 1 l/99 Kansas City, MO, USA
0 1999 ACM 1-581 13.148-1199/0010..,$5.00

one Web page to the next one. It gives the relationships among
sections (or Web pages) of a Web document. Although most of
the framework information might be invisible to the Web surfers,
they are more important to Web document understanding than the
traditional TOC does because of the following reasons.

There are usually more “headings” and “sub-headings” (in
the form of page titles and URLs) in a Web document than in a
traditional one. A common practice in Web design is to fit what
can be displayed on the monitor screen into a Web page. This
often results in the number of pages in a Web-based document
being far more than its number of sections and sub-sections in a
traditional document. Each of these pages needs an unique
description for its title and URL address name.

The information entropy of the document framework of a
Web page is usually much higher than that of the TOC of a
traditional document. While a section heading is usually consisted
of only a few words, the document framework of a Web page is
made up of at least three components: title and URL name of the
Web page, titles and URL names of the Web pages it is
hyperlinked to, and alternate information for all embedded objects
inside the page. As a result, its information content is richer than
that of TOC.

The size of Web pages further increases the importance of its
framework in Web information understanding. We conducted an
experiment to find the size ranges of Web pages. For each Web
page under study, its size was measured as the word count of the
page, excluding the image information and the structural tags. It is
found that for the 1000 Web pages used in the experiment, about
60% of them have size between 100 to 1000 words. This page size
range is quite small and is not as much as that in traditional
documents. Consequently, understanding the Web document
framework becomes more important.

Diagnosa and Rep&r Your Web Site
http://WWW8.zdnet.com/pcmag/features/Webdiag/_open.htm

1.1 YOU upmad L lot of offort crmtinu tha porfwct Web sits.
Shouldn't YCIU maka sur. it actually works7

httpr//wwwS.zdnet.com/pcmag/features/Webdiag/_intro.htm
l-2 whst l-hey Do

http://www8.zdnet.com/pcmag/features/Webdiag/_introl.htm
1.3 so which on.

http://wwwS.zdnet.com/pcmag/features/Webdiag/-introZ.htm
2. Sharmrarm Link Chmckorm

http://www8.zdnet.com/pcmag/features/Webdiag/sbl.htm
3.1 marcury Int8r~ctir~ c0rp.r Aera Sitdamg~r

http://wwu8.zdnet.com/pcmag/features/Webdiag/revl.htm
3.2 coast Softwarr Inc.: coast w&l4ast*r

http://www8.zdnet.com/pcmag/features/Webdiag/revZ.htm
3.3 1ncont*xt systomsr w.bms1yzer

http://wwwE.zdnet.com/pcmag/features/W~diag/rev3.htm

Figure 1: Web Document Framework of the Article "Diagnose
and Repair Your Web Site"

458

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319950.320051&domain=pdf&date_stamp=1999-11-01

Figure 1 gives an example of the Web document framework
for an article in an on-line PC magazine. It shows that both the
title and URL address contain information about the main topic of
the corresponding Web page. The length of the title is usually
longer than that of the typical section headings. And the URL
address, which consists of the domain name and path directories,
shows information about the document hierarchy. To illustrate
this, let us look at the last entry in Figure 1. The title of the entry
is “Incontext systems : WebAnalyzer”, which is a Web
diagnose product mentioned in the article. The html file name
"rev3 . htm" in the URL address indicates that it is the third
product review in the article. The path directory of the URL
address reveals the information hierarchy of the Web site clearly.
This article “Webdiag” is in the “features” section of the PC
magazine “pcmag” under the Web site “www8. zdnet . corn”.
Each html file name also corresponds to a chapter of this article.
This shows the importance of the title and URL address of a Web
page to generate its “TOC”.

Further investigation found that understanding the Web
document framework is not as easy as it might appear. This is due
to the occurrence of compound words - words that are made up of
multiple (partial) words through concatenation and cannot be
found in ordinary dictionaries. From our experiment, we found
that the occurrence frequencies of compound words in URLs and
titles are actually quite high, more than 90% in URL addresses
and about 44% in titles.

There are at least three reasons for the occurrence of
compound words in the Web document framework. The first
reason is about the use of delimiters in the URL address. Except
for a few pre-defined delimiters such as I’.” and “I”, most
delimiters found in traditional documents are not allowed in the
URL address. This applies to both the domain name and the path
directory part. For example, the URL
“http://www.diamond.bob’s.publishing.com/int
reduction to the company/” is not a valid one because it
violates the definition to the URL address in the HTTP standard
131. As a result, it is common for people to ignore the delimiters
and use compound words instead. In the above instance, one
possible form of the WRL address might be
“http://www.diamondbobspublishing.com/intro/”
. The second reason is due to the limited number of words
allowed in an URL address. By incorporating compound words in
the URL address, it is hoped that more information can be
conveyed to both Web surfers and Web administrator. The third
reason is that compound words are often used as a unique way to
stand out Web pages.

The popular use of compound words in Web authoring
makes Web information understanding and retrieval difficult.
Compound words are seldom used in Web queries and stored as
Web document indexes. Content understanding is also difficult
because they cannot be found in the dictionary. To recover the
content hierarchy of Web documents, we propose a new word
segmentation and recognition mechanism to understand the
information derived from the Web document framework. A
maximal bi-directional matching algorithm with heuristic rules is
used to resolve ambiguous segmentation and meaning in
compound words. An adaptive training process is further
employed to build a dictionary of recognizable abbreviations and

acronyms. Since the compound words not only appear in the title
and URL address but they are also in the hyperlinks and
embedded object file names, we will take all these possible
information categories into our consideration. Empirical results
show that over 75% of the compound words found in the
document framework can be understood by our matching
algorithm. With the training process, the success rate of
recognizing compound words can be increased to about 90%.

2. RELATED WORK

Words in traditional English-like sentences are separated
with blank spaces and punctuation marks; they have little concern
(if any) about the issue of word segmentation. In World Wide
Web, the situation is quite different. However, after separated by
the delimiters, compound words without explicit boundaries are
still left in the document content, just like the case for oriental
languages. A typical analogy is the Chinese language.

A good survey for Chinese word segmentation can be found
in Wu and Tseng’s paper [7]. A Chinese sentence is composed of
a string of characters which does not have delimiters to separate
words. The absence of boundaries poses a problem to Chinese text
retrieval. Various solutions to word segmentation for Chinese
documents have been proposed. They are mainly divided into two
approaches: (1) statistical approach, (2) rule-based approach. In
the statistical approach, the occurrence frequencies of characters
and words, and their syntactic tags are collected. The co-
occurrence frequencies and other statistical measurements derived
from these data are also used to determine which characters
should be grouped together to form a word. Sproat [4] used the
association strength between characters to determine the word
boundaries. Sun [S] proposed a tagging-based, first-order Markov
model to perform word segmentation. Fan and Tsai [2] suggested
to use the statistical relaxation method that is usually used in the
field of image processing. In the rule-based approach, the
maximal matching algorithm is a typical mechanism. In this
algorithm, starting at a certain character in the string, the longest
valid word is always segmented. Chen and Liu [I] adopted the
matching algorithm with six different heuristic rules to resolve the
ambiguities. Yeh and Lee [63 presented a unification-based
system for identifying words; all information items including
lexicon, lexical rules, ambiguity-resolution rules and execution
results are stored in the knowledge base.

Although similarities exist between the oriental word
segmentation and the compound word segmentation for Web
documents, they are fundamentally different problems. We stiI1
take Chinese as an example. Apparently, most (if not all) Chinese
characters can be found in the dictionary; each of them can be
considered as an independent information container. However, in
the Web environment, the situation is different. Every author may
have a different style to form a compound word; every specific
domain may also have its unique rules for the abbreviations and
acronyms. It is much more difficult to find two identical
compound words from different Web site domains. In other
words, the composition pattern for one compound word might not
be applicable for another directly. Consequently, while research in
Chinese word segmentation gives good foundation to the word
segmentation problem of the Web document framework, their

459

techniques need to be modified and re-evaluated before they can
be applied here.

3. BASIC APPROACH TO WEB WORD
SEGMENTATION AND RECOGNITION

To address the word segmentation and recognition problem
for web document framework, we adopt some basic principles
from the rule-based approach. In this approach, words will be
identified by matching them with a well-prepared dictionary. The
dictionary should have a sufficient amount of word entries.
However, independent of the size of the dictionary, the occurrence
of compound words makes it very difficult to match every
component string exactly with the dictionary entries. The author
of a Web document often uses some affixes to compose a
compound word. A typical instance is “CompuServe”. The first
part of this word “compu” is the prefix of the word
“computer”. Another example is “edutainment”. The prefix
“edu” (for “education”) and the suffix “tainment” (for
“entertainment”) are combined to form the word. The
dictionary simply cannot cover all possible prefixes and suffixes
and their potential combinations. As a result, the problem of
understanding web document framework can be formulated into
two sub-problems. Given a compound word, how the component
strings can be identified and segmented. This is not easy because
these components might not be matched exactly with the
dictionary entries. The other problem is that after the
identification, how these affixes can be associated with the
dictionary entries. Again, this is not trivial because they can be
acronyms corresponding to some phrases, abbreviations for some
special words, or just meaningless and can be neglected.

To address the first problem, we propose to use a combined
approach of forward and backward maximal matching. Given a
compound word, there are various ways to segment it into
multiple strings. One heuristic that we adopt in our word
segmentation is to give preference to longer words. The longer the
word, the less likely is the case where the characters come
together independently, without forming a word. This heuristic
has also been verified empirically by many Chinese word
segmentation systems. The basic principle of the maximal
matching is to scan the input string from the beginning and to
match the prefix strings with words in a given dictionary. If more
than one word is found in the dictionary, the longest word will be
selected. Since the scanning starts from the beginning of the
compound word, it is called the forward maximal matching. This
mechanism is good for prefix strings. For possible suffix strings
that are left from the forward matching mechanism, the backward
maximal matching is used. It is similar to the forward matching
except that it scans the string from the end back to the beginning,
i.e., in the backward direction. After the two scans, possible
candidates for the word segmentation are obtained. Heuristic rules
are then used to select the most appropriate one. Fine-tuning and
adjustments are also made to the combined algorithm because the
component strings of compound words might not match with any
word entry in the dictionary. This will be discussed later in the
next few sections.

For the second problem, we suggest to maintain a table of
frequently occurred acronyms and abbreviations in a given

domain through a small training corpus. These acronyms or
abbreviations must be recognizable and have been accepted by the
specific domain. This table will be used together with the normal
dictionary in the word segmentation process. To maintain the
table up-to-date, new acronyms and abbreviations will be inserted
in the table manually through some feedback process. Note that
when a table optimized for one domain is used in another domain,
its effectiveness might be reduced.

4. SEGMENTATION AND RECOGNITION
ALGORITHM

In this section, we are going to describe the word
segmentation and recognition algorithm for Web document
framework, together its heuristic rules and training process.

4.1, Terminology and Definitions

Before we go into the discussion of the algorithm, some
terms need to be defined precisely.

Definition 1: The document framework WD of a Web page W is
consisted of the title and the URL address of the page, together
with all hyperlink addresses, embedded object file names and their
alternate texts in the page.

Definition 2: A word is a consecutive string of characters
separated by the blank space or some other delimiters.

l Delimiter = (d 1 d E Character h d B: ALPHABET h d e
DIGIT}

l ALPHABET=aIb).../z/A)BI...)Z
l DIGIT=OI1121...)9

For example, given a URL address
“http://www.iscs.nus.edu.sg/students/”, all the
words in it are “http”, %ww”, “iscs”, “nus”, “edu”, “sg” and
“students”. While some words (such as “students”) can be
found in a dictionary, the others might not be. Hence, we have
following definition:

Definition 3: A dictionary word is a consecutive string of
characters that exists as an entry in a given dictionary.

For example, the words in the URL
“http: / /www. ausedcar . corn/car/” are “http”, “WWW”,
“ausedcar”, “corn” and “car”. The sub-string “car” in the
word “ausedcar” is a dictionary word. The word “car” itself is
also a dictionary word. In other words, a dictionary word can be a
word or the sub-string of a compound word in the Web document
framework.

Definition 4: Given a Web document framework WD, its word set
S is the set of all the words extracted from WD.

Definition 5: The Reference Base RB of an item x in a Web
document framework WD is defined as a set of four possible
elements (C,(x), C,(X), C,(x), C,(x)] that are constructed by the
following relationships:

460

title text if x = URLAddressin WD

SeqConr- anchonextof the link ifx = hyperlinldn WD

alternat@ext qf the object ifx = embedderbbjectin WD

C/(X) = concatenation of all words as SeqCont

Cl(X) = concatenation of all words not in the stop-list as
seqcont

C,l(x) = concatenation of the first character of all words as
SeqCont

G(x) = concatenation of the first character of all words not in
the stop-list as SeqCont

Definition 6: The Reference Based Set RBS of a Web document
framework WD is defined as the collection set of the reference
bases associated with all items in WD.

Definition 7: A word w in the word set S of a Web document Find non-dictionary
framework WD is said to be a R&bused word if it is a (sub-)sting words & add recognized-
of any element in its corresponding reference based set RBS(WD). ones to the extra table

As an example, the word “Welles” is extracted from the URL
address “http : / /www . wellesbowen . corn/“. The title of
the Web page is “Toledo Real Estate Welles Bowen
Realtors” Then . I

. RB(“ht tp : / /www . wellesbowen . corn”) = (Cl, Cl, C,,
c41

Figure 2: Flow Diagram of Web Segmentation and Recognition
Algorithm

. CI=“toledorealestatewellesbowenrealtors”,

. C~=“toledorealestatewellesbowenrealtors”,

. C3 =“trewbr”, and

. Cd = “trewbr”
“we1 les” is the sub-string of Cl and C2, so it is a R&based
word.

The input of our algorithm is the extracted words in the word
set S of the Web document framework WD. These words come
from the title, URL address, hyperlinks and embedded object file
names. During our experimentation, we observed that compound
words can sometimes be segmented at the position of the turning
point from uppercase character to lowercase or vice verse. For
instance, a word “AIBonline” can be separated into “AIB” and
“on1 ine”. Thus, before the matching process, such
preprocessing for the change of letter case can be performed. If a
match is found, the compound word will be segmented according
to this pattern and it will not go through the combined forward
and backward matching process. Similar situation applies when
there are numeric characters in a compound word.

Definition 8: A word w in the word set of a Web document
framework WD is said to be a non-dictionary word if it does not
match in a dictionary and is not a R&based word in RBS(WD)

Based on this definition, the string “edu”, “corn”, and “nus” are
all non-dictionary words. Note that a non-dictionary word can be
a sub-string of a dictionary word.

With these definitions, we can now proceed to discuss the
data and control flow of the word segmentation algorithm,
together with its heuristic rules and training process for word
recognition.

4.2. Design Considerations

Given a Web page, the document framework, which includes
the title, URL address, hyperlinks and embedded object file
names, is extracted. After the removal of the commonly-used
words in the stop list, each extracted word will be matched against
the dictionary. If no matching is found, this word will be
considered as a compound word and it will be sent for
segmentation. The matching process, with both forward and
backward matching will be executed to obtain ali the possible
segmentation candidates. Then, the maximal heuristic rules will
be applied to disambiguate and select the most appropriate

segmentation choice from the candidates. Any matched affix (sub-
)string will then be removed from the input word set and the
procedure will be repeated for the remaining strings until the input
word set is empty. For those compound words that fail in the
recognition process, they might be set for manual recognition
(with table updating, will be discussed in Section 4.5). The flow
diagram of the word segmentation and recognition for Web
document framework is shown in Figure 2. -

f-- the extra table

In our segmentation algorithm, the concepts of reference
base, reference based set, and reference based word (i.e.
Definition 5-7) are introduced. These concepts are mainly used to
describe compound words and abbreviations that are commonly
formed by concatenation of words or first characters of words in
the context respectively. Words in the reference base set are
usually not found in the dictionary directly. However, from their
reference bases, hints about their meanings can be deduced. Given
a R&based word, the segmentation for this word will be mapped
to its counterpart in its associated context. Its entry will also be
updated into the dictionary. Note that this context mapping for the
RB-based words will be processed before the matching algorithm.
This is to ensure that the matching algorithm will not segment
them wrongly. We will use “AIBonline” as the example. Its
context in the title is “American Institute of Baking”.
Consequently, the string “AIB” will be mapped to the word
collection of “American”, “institute” and “baking”.

With the basic understanding of our segmentation process,
let us go into details on the coding of the matching algorithm and
its heuristic rules in the next two sub-sections.

461

4.3. Pseudo-Code for Matching Algorithm

Procedure Forward-Scan (word w)
count := 9;.
startgositton := 0;
currentgosition := 1;
while (current_position != end of w) {

current-string := sub-string s from the startgosition to the
current_position of string w;

match current-string against the dictionary D;
if (match) (

push current-string onto the stack candidate-word;
move currentgosltion by one character forward;

) else {
if (current-string is the prefix of some entry in 0) {

move current-position by one character forward;
I else I , .

if (candidate-word != empty) (
pop item from stack canduhte-word;
push item into array
candidate_segment[count]; .
start

-L
osltion := startgosrtion +

Word ngth(item);
current position := start-position + 1;

) else (
remove the last character from current-string;
push current-string onto array candkiate-

segment[count];

I
start-position := currentgosition - 1;

count ++;

1
I

tf (current-position = end of w) (
if (current-string = top of stack candidate-word) (

pop item from stack candidate-word;
push item into array candidate-segment[count];

) else {

Fegment[count];
push current-string into stack candidate-

1
count ++;

I
while (candidate-word != em t

&I
)

pop item from stack can
{

I ate-word;
push item into array candidate-segment[count];
count ++;

I
I

Figure 3: Forward Matching Algorithm

The matching algoritlun is made up of two components: a
forward matching process and a backward matching process. The
pseudo-code for the forward matching algorithm is given in
Figure 3. To illustrate how the algorithm works, let us assume the
matching for a compound word “compuserve”. The steps
involved in the matching are given as follow:

1. “c” matches with the dictionary. Since there are lots of
entries in the dictionary that start with the character ‘c’, the
pointer will move one position forward.

2. “co” matches with the dictionary. Since the number of
dictionary entries that start with the string “co” is larger than
zero, the pointer will move one position forward.

3. “corn” matches with the dictionary. Since the number of
dictionary entries that start with the string “corn” is larger
than zero, the pointer will move one position forward.

4. “camp” matches with the dictionary. Since the number of
entries that start with the string “camp” is larger than zero,
the pointer will move one position forward.

5.

6.

7.

8,

9.

10.

11.

12.

“compu” matches with the dictionary. Since the number of
entries that starts with the string “compu” is larger than zero,
the pointer will move one position forward.
“cornpus” matches with the dictionary. There is no
dictionary entry that can match it. So a separation point is
found. “compu” will be taken as a non-dictionary,
segmented candidate and will be removed from the testing
string.
“s” matches with the dictionary. Since there are lots of
entries in the dictionary that start with the character ‘s’, the
pointer will move one position forward.
“se” matches with the dictionary. Since the number of
entries that start with the string “se” is larger than zero, the
pointer will move one position forward.
“se? matches with the dictionary. Since the number of
entries that start with the string “se? is larger than zero, the
pointer will move one position forward.
“serv” matches with the dictionary. Since the number of
entries that start with the string “se+ is larger than zero,
the pointer will move one position forward.
“serve” finds a match in the dictionary. Hence, it will be
taken as a dictionary word and be removed from the testing
string.
The input word string is empty and this causes the matching
procedure to end.

So the word “compuserve” will be segmented into
“compu” and “serve”. Sometimes, more than one match can be
found for a sub-string. For example, the sub-string “ban” in the
word “bannerad” can be a dictionary word itself or a sub-string
of the dictionary word “banner”. When it happens, all the
possible matches will be stored. As a result, several different
segmentations might exist after the forward matching. If there is
at least one choice in the segmentation candidate set that consists
of dictionary words and RB-based words only, backward
matching will not performed. Otherwise, the input word will
continue to be segmented with the backward matching algorithm.

The backward matching algorithm is similar to the forward
matching one, except that the word is scanned from the end back
to the beginning. In this case, a reverse dictionary (i.e. with
character order of each dictionary entry reversed) is used. It is
important to note that the results of the two matching algorithms
are often different. For example, the word “imaginet” will be
segmented as “imagine” and “t” by forward matching, and as
"imagi" and "net" by backward matching.

4.4. Heuristic Rules

In word segmentation, one of the most powerful and
commonly used disambiguation rule is the heuristic of maximal
matching. There are different variations for the maximal
matching. After detailed investigation on the feasibility and
applicability of these variations in the context of Web documents
and the composition pattern of English words, we propose the
following maximal matching rules. The priorities/importance of
these rules are in the order of their listing sequence (i.e. smallest
number implies highest priority).

462

Rule 1: If there exists a segmentation candidate that contains
words in the reference base set RBS only, this candidate will be
chosen as the final result.

This rule suggests that the context information is a key factor
to perform word segmentation and recognition for Web document
framework. For example, given an URL address
“http: / /www. diamondbobpublishing . corn” and its
associated title “Diamond Bob’s Publishing House”.
After the reference base RB of the URL address is computed, a
string match between the word “diamondbobpublishing” in
the URL address and its title is found. As a result, the compound
word “diamondbobpublishing” can easily be segmented to
the candidate set (“diamond”, “bob” and “publishing”}
from the title information. Note that in this case, no forward or
backward matching will be required.

Rule 2: If there exists a segmentation candidate that contains RB-
based words and dictionary words only, this candidate will be
retained as the correct segmentation.

A simple example is the word “abbottrealty”.
“abbott” is a person’s name and it appears in its reference base
as a RB-based word. “realty” is a dictionary word. Hence, this
candidate will be chosen.

Rule 3: If the component strings of two segmentation candidates
are all dictionary words, then the one with the least number of
words will be chosen for segmentation.

This rule is to enforce that a segmentation choice with only
dictionary words will be given higher priority in selection.
Furthermore, if there are more than one such segmentation
choices, the longest matching one (i.e. the least number of words),
which foIlows the maximal heuristic rule, will be retained. For
example, “americanet” can be segmented as “America” and
“net” which are all dictionary words. The sub-string “america”
can be a dictionary word itself and can also be a sub-string of
“American”. If only the longest matching rule is used, the
segmentation will become “American” and “et”, which
contains a non-dictionary word. Another example is the word
“apart”. “apart” itself is a dictionary word. But it can also be
segmented into two dictionary words - “a” and “part”.
According to our rule, the first segmentation choice will be
chosen. That is “apart” will be treated as one single word.

Rule 4: If there exists a segmentation candidate that consists of
R&based words and non-dictionary words only, it will be retained
as the correct segmentation.

Rule 5: If the component strings of two segmentation candidates
include dictionary words and non-dictionary words, the one with
the least number of non-dictionary words will be chosen for
segmentation. If the numbers of non-dictionary words for all the
candidates are the same, then the result from backward matching
will be retained.

These two rules simply imply that dictionary and RB-based
words are given higher priority in the selection process;
segmentation result from the backward matching is also prior to
the one from the. forward matching. As an example, one
segmentation choice for the word “prowrestling” is “prow”,
"rest" and “ling”. Among them, “prow” and “rest” are
dictionary words, and “ling” is a non-dictionary word. Another

segmentation choice is “pro” and “wrestling”, which is
obtained from the backward matching. “pro” is non-dictionary
word and “wrestling” is a dictionary word. Since the numbers
of non-dictionary words are the same, the second candidate,
which is the result from backward matching wilt be chosen.

Rule 6: If the component strings of two segmentation candidates
are all non-dictionary words only, the one with the least number
of words will be chosen for segmentation. If their numbers are the
same, the result from the backward matching will be retained.

Finally, if ambiguities in segmentation are still not resolved
after the applications of these heuristic rules, the final
segmentation choice will be picked randomly. This should not
have much impact to the overall performance. Next, we are going
to describe the training process for the setting up and maintenance
of an additional table for abbreviations and acronyms.

4.5. Training Process

It is pointed out in the previous section that due to the
existence of abbreviations, acronyms, and compound words that
are made up from affixes, standard dictionary often cannot give
the best segmentation result in the matching process. These words
simply cannot be found in the dictionary. The decision for the
points of segmentation in the affix case is also difficult to make.
The concept of reference base might be abIe to help in the
segmentation process, but this depends on the co-occurrence of
the compound words and their associated context in the Web
document framework. To make up for this, we propose to
establish an additional table for those frequently occurred,
recognizable non-dictionary words. This table will be used
simultaneously with the standard dictionary in the matching
process. It is hoped that the combined dictionary will improve the
effectiveness of word segmentation and web document
understanding. Just like the multilingual document translation, the
table will be somewhat domain-specific; application of a table
from one domain to another domains will result in ineffectiveness.

To establish such a table, we propose the following training
process with sample corpus. Given a domain area, sample Web
documents are selected and they will be segmented by our
algorithm to find out all compound words in them. Then, all the
non-dictionary words are extracted from the result. Those
frequently occurred ones will be recognized by some area-relevant
knowledge. They are mainly abbreviations of dictionary words or
acronyms that have commonly been accepted in the area. For
example, “gov” is the abbreviation of “government”, “erg” is
the abbreviation of “organization”, “edu” is the abbreviation
of “education” and “c om” is the abbreviation of
“commerce”. These abbreviations are widely accepted in the
World Wide Web. In the field of computer science, “sys” is the
abbreviation of “system” and “img” is the abbreviation of
“image”. The recognized, non-dictionary words will finally be
added into the table. This training process will be iterated several
times until the content of the table is stabilized.

Finally, as we mentioned previously, the table will also be
kept update by the feedback of the matching of compound words
in their associated reference base set.

463

5. EXPERIMENTAL STUDY

To test our segmentation and matching algorithm and the
associated heuristic rules, we implemented a word segmentation
system for Web document framework. The word dictionary used
in our system is constructed primarily from the system dictionary
in Digital UNIX system and it has about thirty thousand word
entries. For the input testing data, Internet search engines are used
to collect Web pages for the analysis. This is to ensure the
randomness of the data samples. Furthermore, Web pages are also
collected from different domain areas to study the domain-
sensitivity of the training process. Four domain areas are chosen;
they are “finance”, “network”, “chemistry” and
“biology”. In each domain test, the name of the area is used as
the input to the search engine and the top 50 Web pages are
collected as the training corpus for the setting up of the additional
table. Then the next 50 more pages will be used for the testing of
the algorithm. In the experiment, the following four parameters
are measured:

. N, = Number of words in a Web document framework (i.e.
title, URL addresses, hyperlinks, and embedded object
names).

. Nz = Number of compound words in a Web document
framework.

. N3 = Number of words of a Web document framework after
segmentation.

. N4 = Number of recognisable words of a Web document

framework.

With these data, the followings can be computed:

. CP (Percentage of compound words) = Nz I N1

. WI (Increased word rate) = (N3 - N2) I N2

. RE (Recognition rate) = N4 / N3

Among the above measurements, CP gives a hint on the
importance of segmentation for the compound words. The value
of WI implies the average number of words a compound word
will be segmented into. Finally, RE can measure the effectiveness
of our algorithm. Note that since common words in the stop list
(e.g. common words such as “the”, “of”, etc. and Web-specific
words such as “www”, “http” etc.) are removed from the Web
document framework before segmentation, their word count is not
included in the above measurement.

5.1. Results

Due to the limited space of the paper and the consistency of
the results among different domain areas, we will mainly use the
“network” area as an example for discussion

Figure 4 gives the distribution trend for the number of words
extracted from the title, URL address, hyperlinks and embedded
object file names in the Web document framework. In our testing
corpus, the framework for more than 70% of the Web documents
has word count ranging from 10 to 200. This is quite substantial,
especially when it is compared with our previous experimental
result that more than 60% of the Web pages have an average page
word count (including all kinds of information categories) of 100
to 1000 only. This confirms our argument that the Web document

framework is an important source of information for Web
document understanding. The fact that the average entropy of the
words from the Web document framework is usually higher than
the words in the Web pages makes the segmentation problem
more important in Web document understanding.

Figure 4: Distribution of Total Number of Words per Page
(Network)

q m- n lcmamdd/

Figure 5: Percentage of Compound Words in Web Document
Framework (Network)

Figure 5 shows the percentage of compound words in the
Web document framework. The graph clearly agrees with what
we predict: there is a very high percentage of compound words in
the Web document framework. No matter whether the total word
count of the framework is less than 10 or around 1000, the
percentage of compound word is often over 70%, which is very
high. This figure verifies our claim on the importance of
understanding compound words in Web document framework.

A compound word is the concatenation of several separate
strings; thus the understanding of a compound word implies to
segment it back to the original component strings. After the
segmentation for a set of compound words, the total word count
will be raised. The WI parameter is such a measurement. Figure 6
plots the distribution graph of WI for different ranges of total
word count. It shows that there is an average of 60% increase in
the word count, which is quite a lot. This confirms with our
argument that compound words are very concise and have higher
information entropy. Furthermore, the increase in word count WI
is quite independent of the framework size (except for very small
page sizes). This is reasonable because the use of compound

464

words is more the style of the Web designers than the constraint
of the Web page size.

O-10 10-60 60-100 102-m zoo-3w m-low

-.d*nId*WpI+

/riiizEz

Figure 6: Distribution of Increase in Word Count (Network)

D-10 IO-50 so-IW 100-200 200-900 JOD-two
tow I ot ID,68 p.r p.g.

q P.fon lnlnlnp .*ner tr.mng

Figure 7: Distribution of Recognition Rate (Network)

Figure 8: Distribution of Recognition Rate (Biology)

Figure 7 and Figure 8 give the recognition rate of our
algorithm before and after training in the domain areas of network
and biology. The first series of each column is the recognition rate
before the training process and the second series is the value after
training. Dn average, the recognition ranges from 70% to SO%,
which is reasonably high. This shows the applicability and
potentials of our proposal. Furthermore, it is quite insensitive to
the Web document size, which is expected. With training, an
additional of a few percents to 15% increase in the recognition

rate is obtained. This justifies the use of the additional table. Note
that the effect of training is actually expected to be higher. After
detailed investigation, we found out that this lower than expected
result is due to the inaccurate query result returned to the Web
surfers. Quite a number of “top Web pages” returned are actually
not related the query subject. Since the second mapping table is
trained from this corpus, a less effective, domain specific table
results.

6. CONCLUSION

Web document framework, which is mainly consisted of the
title, URL address, hyperlinks, and embedded object files names,
is an important source of information for Web document
understanding. From the statistical data, it is found that a high
percentage of the words are actually compound words, which
cannot be understood by the standard dictionary. So the issues of
segmenting the compound words, followed by partial word
recognition are the two main concerns that we focus in this paper.
A combined forward and backward matching, together with its
heuristic rules, is proposed to approach these problems. In
particular, the concept of reference base is introduced. Our
experimental results verify that the maximal matching algorithm,
with its heuristic method, is very effective. Considering the
frequent occurrences of abbreviations or acronyms in compound
words of Web documents, a training process is also applied to the
algorithm to improve the recognition rate for such words. With all
these techniques working together, an average of about 90%
recognition rate is obtained, which is high enough to justify its
practical applicability and potentials.

References

VI

PI

t31

[41

PI

@I

[71

Keh-Jiann Chen and Shing-Huan Liu, “Word Identification
for Mandarin Chinese Sentences,” Proceedings of COLING-
92, 1992, pp. 101-107.
Charng-Kang Fan and Wen-Hsiang Tsai, “Automatic Word
Identification in Chinese Sentences by the Relaxation
Techniques,” Computer Processing of Chinese & Oriental
Languages, Vol. 4, No. 1, Nov 1998
Hypertext Transfer Protocol - HTTP/ 1 .O
http://www.ics.uci.edu/pub/ietflhttp/rfc1945.html.
Richard Sproat and Chilin Shih, “A Statistical Method for
Finding Word Boundaries in Chinese Text,” Computer
Processing of Chinese & Oriental Languages, Vol. 4, No. 4,
March 1990, pp. 336-349.
M. S. Sun, T. B. Y. Lai, S. C. Lun, and C. F. Sun, “Some
Issues on the Statistical Approach to Chinese Word
Identification,” Proceedings of the 1992 International
Conference on Chinese lnformarion Processing, Vol. 1,
1992, pp. 246-253.
Ching-Long Yeh and His-Jian Lee, “Rule-based Word
Identification for Mandarin Chinese Sentences - A
Unification Approach,” Computer Processing of Chinese &
Oriental Languages, Vol. 5, No. 2, March 1991.
Zimin Wu and Gwyneth Tseng, “Chinese Text Segmentation
for Text Retrieval: Achievements and Problems,” Journal of
the American Society for Information Science, 44(9), 1993,
pp. 532-542.

465

