
An Automated Approach for Retrieving Hierarchical Data from HTML Tables

Seung- Jin Lim
Yiu-Kai Ng

Computer Science Department
Brigham Young University
Provo, Utah 84602, U.S.A.

Email: (ng,sjlim}@cs.byu.edu

Abstract

Among the HTML elements, HTML tables [RHJ98] encap-
sulate hierarchically structured data (hierarchical data in
short) in a tabular structure. HTML tables do not come
with a rigid schema and almost any forms of two-dimensional
tables are acceptable according to the HTML grammar.
This relaxation complicates the process of retrieving hier-
archical data from HTML tables. In this paper, we propose
an automated approach for retrieving hierarchical data from
HTML tables. The proposed approach constructs the con-
tent tree of an HTML table, which captures the intended
hierarchy of the data content of the table, without requiring
the internal structure of the table to be known beforehand.
Also, the user of the content tree does not deal with HTML
tags while retrieving the desired data from the content tree.
Our approach can be employed by (i) a query language writ-
ten for retrieving hierarchically structured data, extracted
from either the contents of HTML tables or other sources,
(ii) a processor for converting HTML tables to XML docu-
ments, and (iii) a data warehousing repository for collecting
hierarchical data from HTML tables and storing material-
ized views of the tables. The time complexity of the pro-
posed retrieval approach is proportional to the number of
HTML elements in an HTML table.

1 Introduction

We are interested in automated data retrieval tools and
are particularly interested in retrieving textual data that
are hierarchically structured in HTML documents [RHJ98].
Among the information that we deal with on a daily basis,
we realize that there are vast amounts of data that are hi-
erarchically related. Examples of data in this category are
“the average height of males of merged cells,” “homes listed
between $150,000 and $180,000, having at least 3 bedrooms,
and located in North Orem, Utah” and so forth. This type
of information usually can be inferred from hierarchically
structured data.

Although the primary purpose of HTML is to define ap-
pearance of data in a browser, we notice that the creator of
an HTML document often imposes, either intentionally or
unintentionally, certain hierarchies among the data contents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 11199 Kansas City. MO, USA

0 1999 ACM l-56113.146.1/99/0010...$5.00

A test table wath merged cells

I Average lRed i
,.. .--.- “.“-” ~_ _-_.. i
:hei&t:&i&t ieyes ’

~ -....I- -.._. ,-~~.A-. +-.--” : ._.-.___ j
f Males $9 :0.003 :400/o ! ,... _
‘Females i 1.7

)

:.
10.002 :43% /

. : ,,.,.,.. _. .

(a) Rendered table in Netscape

(b) The source code of the table in Figure l(a)

Figure 1: A sample HTML table

in the document by using block markups. We consider two
types of data hierarchies, the syntactic hierarchy and the
intended hierarchy, in HTML documents. The syntactic hi-
erarchy of an HTML document H, which can be recognized
by using the HTML grammar, captures the hierarchy of tags
and data contents in H as defined by HTML. For example,
consider the HTML table 2’ appeared in [RHJ98] and its
source code as shown in Figure l(b). The syntactic hierar-
chy of T is shown in Figure 2, which will be further discussed
in detail in Section 2. The intended hierarchy, as we call it,
is the hierarchy of data contents in an HTML document
with the exclusion of all the tags in the document. Consider
Figure l(a) for an illustration of the intended hierarchy. It
is clear that the number ‘1.9’ in the table is the average
height of males. Furthermore, we can infer the following
information: the average height of males of merged cells
is 1.9, the average height of females of merged cells is

466

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319950.320052&domain=pdf&date_stamp=1999-11-01

Figure 2: The syntactic hierarchy of the HTML table in
Figure 1

‘Average
height’

1.9 0 0.003 0 40% 0 1.7 0 0.002 0 43% cj

Figure 3: The intended hierarchy of the data contents of the
HTML table in Figure 1

1. T the average veight of males of merged cells is 0.003;
and so forth. Figure 3 shows the intended hierarchy of the
table cells by transforming ‘A of B’ in any of the inferred
information listed above to ‘B is the parent node of A’ in
the hierarchy.

We now compare the two types of hierarchies using the
HTML table in Figure 1. It is easy to see that the hierar-
chical relationships among the data components average
height, males, and merged cells are not precisely pre-
served in the syntactic hierarchy (as shown in Figure 2). It
is difficult to determine the relationships among these data
components without considering the meaning of their ances-
tors (such as TR, TH, TD, and TABLE) in the hierarchy. Exist-
ing approaches [AMM97, HGMC+97, AM981 for extracting
hierarchical data are based on syntactic hierarchies. In these
approaches, the source documents must be analyzed before
hierarchical data are extracted [AMM97] and/or HTML tags
in the documents are extensibly used [HGMC+97, AM981 to
determine their data hierarchies. In contrast, the intended
hierarchy of an HTML document H (e.g., the document in
which the table in Figure 1 is embedded) preserves the hi-
erarchical relationships of the data contents in H such that
the hierarchy of the data contents is determined by the as-
sociated edges without using tags in H.

In this paper, we present an approach to determine the
intended hierarchy of the data contents in an HTML table’
that contains heading (TH) and cell data elements (TD).
Table-related HTML elements are often chosen by document
creators for encapsulating hierarchical data and are increas-
ingly being used. Our recent survey shows that 52% of the
sampled HTML documents include some tables. In the sur-
vey, we chose a number of Web sites of common interest and
fetched more than 30,000 documents which were linked from
the initial HTML documents within 4 hops, where the num-
ber of hops is the number of hyperlinks between an initial
document and a linked document.

Given an HTML table T as input, our retrieval approach
generates a tree, called the content tree (CT), of T as out-
put. CT captures the intended hierarchy of the data con-
tents in T and is generated without requiring the inter-
nal structure of T to be known beforehand at the source

‘An approach for determining the hierarchy of the data contained
in generic HTML elements, other than tables, can be found in [LNSI).

code level (such as which HTML markups are used and
how they are used) or at the conceptual level (such as how
many columns and rows are declared in T, whether head-
ings and the caption of T exist, etc.). Determining the
data hierarchy of an HTML table has not been addressed
in the literature, and CT is distinct from other approaches
[KS95, ACC+97, MM97, AMM97, AM981 that are based on
the syntactic hierarchy for extracting hierarchical data from
HTML documents. Existing data collection methods, such
as wrappers and integrators for data warehousing systems,
which frequently access a large number of HTML tables
for extracting structured data, such as stock price quotes,
weather information, medical data, law suites, etc., can ben-
efit from our automated approach of data acquisition. Fur-
thermore, the content tree of an HTML table can be used
for converting the HTML table to an XML document. We
demonstrate how to obtain an XML document using a con-
tent tree in Section 4.2.

We proceed to present our results as follows. In Section 2,
we introduce a data model for representing hierarchical data
in HTML documents. In Section 3, we present our approach
for constructing the content tree of an HTML table and
provide the complexity analysis of the process. In Section 4,
we discuss a few applications of content trees which include
using hierarchy-based queries for retrieving hierarchical data
of interest from an HTML table, conversion of HTML tables
to XML documents, and the design of a data warehouse
using content trees. In Section 5, we give the conclusions.

2 The data model: semistructured data tree

Since HTML documents do not come with a rigid structure,
they are semistructured in nature. Any data can be con-
ceived as semistructured data if they do not have a rigid
structure or schema, nor unstructured. If a Web document
D conforms to the HTML specification, we call D a valid
HTML document. A valid HTML document consists of a
number of HTML elements. A typical HTML element is
delimited by its start-tag and end-tag, and contains con-
tent that appears between its start-tag and end-tag. For
some HTML elements, their end-tags are implicit and/or
their contents do not exist. An HTML element may contain
other tags (i.e., an HTML element can be nested) or data
characters. We call the latter data content.

Our semistructured data model is called semistructured
data tree (SDT), which is a tree-like, conceptual represen-
tation (view) of the underlying semistructured data. The
core constructs of an SDT are (i) objects, which are defined
over the set of all possible strings, denoted by C’, and (ii)
dependency constraints among the objects.

Definition 1 An object o in an HTML document D is a
3-tuple (name, attribute list, identifier), which is either a
start-tag (called a tag object) or data content (called a data
object) in D, where

0 name2 E C’ is a meaningful textual representation of
o in D. If o is a tag object, the name of o is the name
of the corresponding HTML tag. If o is a data object,
the name of o is the corresponding data characters.

l attribute list C C’ is a finite (possibly empty) list of
attributes, each of which is of the form attribute-name
= value.

l identifier E C’ is a non-empty string which uniquely
identifies o in D. 0

‘A name may include spaces and dots. Any name including spaces
and/or dots is enclosed by single quotes.

467

Definition 2 Given an HTML document D, an object or
directly depends on another object 02, denoted or t or, if
01 immediately contains 02, i.e., 02 is an immediate content
of 01. 0

Example 1 Consider the content of the HTML table in
Figure I(b). <TABLE>, <CAPTION>, and <TR> with names
TABLE, CAPTION, and TR, respectively, are tag objects.
‘A test table with merged cells’ is the data content of
the tags and , and is a data object. Since
<TABLE> contains <CAPTIDN>, TABLE c CAPTION. Fur-
thermore, TABLE t CAPTION t EM t ‘A test table with
merged cells’. 0

Semistructured data, in its simplest notion, is a set of
objects with associated dependency constraints, and so are
HTML documents. Note that the syntactic and intended hi-
erarchies shown in Figures 2 and 3, respectively, are the tree
representations of their respective objects and associated de-
pendency constraints. The notion of long names defined
below represents a chain of objects with their dependency
constraints lexically.

Definition 3 Given 01 t 02 t . . t on, the long name of
on, denoted L:,, , is the concatenation of the names of objects
01, 02, ., o,, in the form 01 .~a.. . ..o,,. (The dot ‘.’ notation
between two object names is called the dot operator which
is used as a separator of two names.) The path expression
of objects 0; and oj (1 < i < j 5 n), denoted by pe(o;,oj),
is a substring of C,, of the form oi.. . ..oj. 0

By using the notion of long names, semistructured data
D can be expressed as an ordered list of long names of ob-
jects in D. In conjunction with long names, we adopt the
notation A.(B, C) for an ordered list (A.B, A.C).

3 An approach for constructing the intended hierarchy

In this section, we present our approach for constructing the
intended hierarchy of the data contents in a given HTML
table. Prior to presenting our approach, we first discuss
table-specific HTML elements.

3.1 Table-specific elements

Among the table-specific elements, TR determines the num-
ber of rows, whereas TH and TD determine the number of
columns in an HTML table (table in short). A TH element is
used for declaring one or more headings, whereas a TD ele-
ment is used for asserting data of a table cell. The data con-
tents of TD elements are called table data since they are the
data instances in their respective cells in an HTML table. In
contrast, the data contents of TH elements are headings, i.e.,
column headings or row headings that are not considered
as table data. However, the data content of either element
renders the content of its respective cell by a visual HTML
user agent, such as a Web browser. (A visual HTML user
agent, however, may not explicitly indicate that one cell is a
heading cell while another is a data cell.) Besides TH and TD,
THEAD (resp. TBODY) can be used for implicitly designating
certain rows as headings (resp. data cells).

The experimental survey, as mentioned in Section 1, also
revealed the following regarding the use of table-specific el-
ements in HTML documents: (i) A typical HTML table has
at least one heading row at the top of the table and at least
one heading column on the left, such as the table shown in
Figure l(a). We call this type of tables column-row-wise. (ii)

(a) An HTML table with-
out heading

(b) An HTML table with a first-row heading

Figure 4: Two other prominent types of HTML tables

Another typical table contains at least one heading row at
the top of the table, such as the table shown in Figure 4(b)
in [RHJ98]. We call this type of tables column-wise. In
a column-wise table, the heading rows yield the schema of
the table. (iii) Other than these two types of tables, we
notice that a large number of tables do not make use of
table-specific elements other than TABLE and TD, as the one
rendered in Figure 4(a). In such a table, every cell is in
fact a data cell (according to the HTML grammar), and the
intended hierarchy of the data cells is very difficult, if not
impossible, to be determined by an automaton at the source
code level using the HTML grammar alone. We draw from
our survey and analysis a conclusion that the creator of this
type of tables often implicitly designates the first row as a
heading. Hence, we treat this type of tables as column-wise.

Among the table-specific elements, two attributes of TH
and TD, namely ROWSPAN and COLSPAN, play significant roles
in determinating the data hierarchy of an HTML table. To
better understand the roles of these attributes, consider Fig-
ure 2. The table, as graphically captured in the figure, has
four rows (i.e., four TRs) as rendered in Figure l(a). Note
that the first TR contains three TH elements, implying that
the row is a heading which includes three cells (i.e., three
columns). The second row, on the other hand, contains
two TH elements, implying that there are two heading cells,
whereas each of the last two TRs contains one TH and three
TDs, implying that there are one heading cell on the left and
three data cells in each row underneath the heading rows.
Apparently, the numbers of columns of the first two rows are
not equal, nor with that of the last two rows either. It is not
clear which cell in one row belongs to the same column with
a cell in another row unless we consider the attributes of the
corresponding objects (for the definition on attributes of an
object, see Definition 1). ROWSPAN and COLSPAN are the at-
tributes that remedy the mismatch of the number of columns
among different rows in a table. When a TH or TD includes

468

ROWSPAN= “n” (COLSPAN= “n,” respectively), the associated
cell is supposed to span n rows downward (n columns to the
right, respectively). These attributes are taken into consid-
eration in the construction process of the content tree of a
given HTML table. In this paper we assume that data are
presented in an HTML table from left to right.

3.2 Content trees

In order to create the content tree (CT), which is an en-
hancement of the syntactic tree, of any HTML table T,
we first determine the hierarchical dependencies among the
data contents in T (instead of the hierarchy of the data con-
tents and tags in T). Once the hierarchical dependencies
among the data contents in T are determined, we retain
only data objects in CT and exclude all the tag objects.
This is because tags are markups for defining the rendered
appearance of data in a visual HTML user agent and are
invisible to the user, and hence they are excluded from CT.

A content tree is defined on top of the notion of pseudo-
table since the properties of a pseudo-table are easy to un-
derstand. A pseudo-table can be considered as a special
type of HTML tables that can be used for expressing either
a column-row-wise table or a column-wise table. Our strat-
egy in constructing the content tree of an HTML table T is
to first map T to a pseudo-table and then obtain the content
tree of 2’ from the pseudo-table. Prior to defining content
tree, we first introduce pseudo-tables.

Definition 4 A pseudo-table T = {(al,~, . ., al,,,), (az,l,
. ‘> qn), ., (am,l, ., a,,,)} with column headings Ci,
. . .> C,, and caption C, is a two-dimensional table, where
each column heading C; (1 5 i _< n) or table data oi,j
(1 5 i < m, 1 5 j 5 n) may be null. If a column heading or
table data o is null, then the name of the object representing
o is the empty string. Also, data values of row i and row j
of the first column in T are different if i # j. Cl

Note that dependency constraints of HTML objects in a
syntactic hierarchy are determined by the container-content
relationships of tags and data contents according to the
HTML grammar, as illustrated in Example 1 and Figure 2.
We define the notion of dependency for pseudo-tables from
a different perspective since there are no tags in a pseudo-
table. Dependency constraints on pseudo-tables are defined
over the caption, column headings and table data, and de-
pendency constraints among these objects are given in the
following definition. Since column headings and table data
may be null in a pseudo-table, we consider a special case of
dependency constraints: given a dependency constraint 01
t oz t 03, where oi (1 < i 5 3) is either a column heading
or table data, the dependency constraint is reduced to 01 t
03 if the name of 02 is the empty string.

Definition 5 Given an n-ary pseudo-table T = {(al,l, _ . .,
al,,), (a2.1, . ., a2J, . . ., (a, 1 , , “‘, a,,,)} with column
headings Cl, . . , C, and caption C, the content tree CT =
(V, E, g) of T, denoted by CTT, is a directed tree, where

l VR E V is the root node of CTT, labeled by C, and
each node v E V, other than VR, denotes a non-empty
oi,j (Cj, respectively) (1 2 i 5 m, 1 < j 5 n) of T,
and is labeled by oi,j (Cj, respectively).

l E is a finite set of directed edges.

l g: E + V x V is a function such that 212 t vi if
g(e) = (o~,oz), and VR t CI t ai,l t Cj t ai,j
(1 <_ i 5 m, 2 5 j 5 n) hold. 0

c
c c , . .
a . . _ a I L

l3a

. . . .

a . . . a

I
ai7c,Tk . . . a

Figure 5: A pseudo-table T and its corresponding content
tree CTT

Since the caption of a pseudo-table T provides a short
description on what the table is about, we choose the cap-
tion as the root node of the corresponding CTT to assert
the content of the table. In the definition of content tree,
CTT contains subtrees rooted at ai,i, .., a,,,,1 with the
constraints VR (C) +- Ci c a,,1 (1 5 i 5 m). This is be-
cause each row can be uniquely identified from the other
rows by the first column (i.e., oi,r) in T (see Definition 4).
Figure 5 shows a pseudo-table and its corresponding content
tree constructed according to Definition 5.

Definition 5 captures the process of constructing the con-
tent tree from a pseudo-table. As mentioned earlier, in or-
der to construct the content tree of an HTML table T, we
first obtain the corresponding pseudo-table from T and then
create the content tree from the pseudo-tree. In the follow-
ing sections, we discuss how to obtain each row, i.e., (ac,i,

ai,,) (1 5 i 5 m), and column, i.e., (or,j, . ., o,,j)
i;‘k j < n) from the corresponding HTML table, which is
either column-wise or column-row-wise. Note that by the
HTML specification, an HTML table contains at most one
CAPTION element. If it exists, it becomes the caption C of
the pseudo-table; otherwise, the string value “TABLE” is
the caption C.

3.2.1 Column-wise tables

Consider a given column-wise HTML table T = {(hr,i, . .,
hn), .’ ., @k,l, . . ., hk.n), (dk+l.l, . . ., dk+1.n), . . ., (d&+7%1,

. . ., dk+m,n)}, where each hi,j (1 5 i 5 k, 1 5 j < n) is the
data content of a TH element and each di,j (ktl <> 2 k+m,
1 < j < n) is the data content of a TD element. T, like a
pseudo-table, is a collection of rows such that each data row
contains the data instances corresponding to the respective
column headings, and hence we treat each data row (resp.
column) in T as a row (resp. a column) in a pseudo-table
by mapping dl,j to oi,j in a pseudo-table such that ai,j =
&,j, 1 < i 5 m, 1 < j 5 n, k + 1 5 1 5 k + m. In addition,
by the definition of a column-wise table, the first k rows
specify the column headings Cl,. , C, of a pseudo-table.
Since the first k rows in a column-wise HTML table are
headings, the first k rows of a particular column together
suggest the contents of the column. Hence, we concatenate
the first k rows of column j (1 < j 2 n) and assign the
concatenation to be the column heading C, such that Cj =
concat(. (concat(hl,j,h2,j), . .),hh,j), 1 3 j < n. Figure 6
illustrates how the data contents of THs and TDs in a column-
wise HTML table are mapped to Cjs and oi,js in a pseudo-
table, respectively.

3.2.2 Column-row-wise tables

Consider a given column-row-wise HTML table T = {(hhl,~,
. . .) hhl,,), -..I (hhk,l, hhk,,), (he+l,l, ., hVk+lJ,

dk+l,l+l, ., dk+l.lCn-l), (huk+m,lr . ..> h+m,l,

469

a,,1 = “’ am,” =

I ak+m,l I Ukfm,n
A single dot (.) is the dot operator as presented in Dejinition 3.

Figure 6: Mapping from a column-wise HTML table to a
pseudo-table

dk+m,l+l, . ., dk+m,t+n-l)}, where each hhi,j (1 5 i 5 k,
1 < j < n) and hw;,j (Ic + 1 < i 5 k + m, 1 5 j < 1) is the
data content of a TH element, and each &,j (lE+l 5 i 5 k+m,
I+ 1 5 j < 1+ n - 1) is the data content of a TD element.

Just like column-wise tables, we concatenate the first
L rows in a column-row-wise table column-by-column since
they are the headings of columns in the table, and as-
sign the jth concatenated heading to be the jth column
heading Cj in the corresponding pseudo-table such that
Cj = CO?MXt(. .(COnCat(hhl,j,hh*,j),. .),hhk,j), 1 2 j 2
n. In addition, the first 1 columns of each row, starting
from the (k + 1)th row, yield the headings of the rows
in this type of tables. Hence, we concatenate the first
1 columns of each row, starting from the (k + 1)th row,
and assign the ith concatenated heading to be the first
column of the ith data row, i.e., ai,i, such that ai,i =
concat(. . (concat(hwi,l, hwj,~), . .),hwj,~), k+l < i < k+m,

and oi,j = d;,r+j-1, k+l<i<k+m,Z<j<n. Fig-
ure 7 illustrates how the data contents of THs and TDs in a
column-row-wise HTML table are mapped to Cjs and ai,js
in a pseudo-table, respectively.

3.2.3 Colspan and rowspan

As mentioned in Section 3.1, an HTML table may not have
the same number of columns in each row, and COLSPANs and
ROWSPANs play an important role in mapping such an HTML
table to a pseudo-table. We now discuss how to manipulate
COLSPANs and ROWSPANs in THs or TDs.

If a TH or TD element in an HTML table contains COLSPAN
= “n,” the particular cell of the TH or TD is supposed to be
expanded to n columns and occupy n cells, including the
current cell in the current row. Hence, at the current row,
we insert n-l cells to the right of the current cell and repli-
cate the data content of the current cell n-l times to the
new cells since the data content of the current cell is meant
to be the same over the next n-l cells in the same row.
ROWSPAN, however, is processed differently than COLSPAN. If
a TH element contains ROWSPAN = “n,” the particular cell
of the TH element is supposed to be expanded to the next
n-l rows, and occupy n cells, including the current cell
and the new n-l cells in the current column. For that we
insert n-l cells beneath the current TH cell in the current
column, and push the data content h of the current cell all
the way down to the (n-1)th new cell, rather than repli-
cating h to the underneath rows n-l times. As a result, h
appears at the (n-1)th new cell, and each of the cells above
the (n-1)th new cell in the same column is left as the empty
string. This is necessary for retaining the correct association
among the table data across all the rows in a column while
avoiding repetition of the same heading label. Recall that
the concatenated headings of a column in an HTML table
is mapped to a column heading in a pseudo-table. If the
data content, say d, of the cell is replicated in the next n-l

Cups of coffee consumed by each senator
Name cups Type of Coffee Sugar?
T. Sexton 10 Espresso No
J. Dinnen 5 Decaf Yes
A. Soria Not available Not available Not available

Figure 8: The pseudo-table of the HTML table in Fig-
ure 4(b)

cells vertically as we do horizontally for COLSPAN=“n,” the
identical heading label will repeatedly appear n times in its
corresponding column heading Ci of a pseudo-table, which
yields dd.. ..d, since the data content of these n cells are to
be concatenated, and subsequently, in the long name of the
node representing C; in the corresponding CT. However, if
ROWSPAN is contained in a TD, we insert n-l new cells under-
neath the current TD cell, and replicate the data content of
the TD to the inserted cells since each table data in different
rows of the same column is meant to represent a data entry
with the same content.

After COLSPANs and ROWSPANs are properly processed, the
given table conforms to the definition of pseudo-table as
given in Definition 5.

Example 2 Consider the column-wise table in Figure 4(b)
and suppose the cell at the ith row and the jth column is de-
noted by ceZZ(i,j). Note that “Not available” appears across
the last three column cells of the forth row of the table. This
is because in the source code (which is not included in this
paper due to page limit) COLSPAN=“3” is associated with
cell(4, Z), and the data content “Not available” of cell(4,Z)
is replicated to the next two inserted cells, i.e., ce11(4,3) and
ce11(4,4), in its corresponding pseudo-table. The resulting
table is as shown in Figure 8. 0

Example 3 Consider the source code in Figure l(b), where
the first TH contains null data, the second TH contains the
data content “Average,” and the third TN contains the data
content “Red eyes.” We demonstrate the process of con-
structing the content tree of the HTML table as shown
in Figure I(a). Since the first and third TH both contain
ROWSPAN=L‘2”, the null data of the first one is pushed down
to the next row in the corresponding pseudo-table T. At a
glance, it may look like that this action has no effect to the
table since the pushed-down value is a null data. Indeed,
with this action, the pushed-down null data is inserted into
cell(2,l) in T and subsequently the TH with height (weight,
respectively) is moved to the new location which is cell(2,Z)
(ce11(2,3), respectively) in T. This is desirable since the
correct association among “height ,” “weight,” and other ta-
ble data are now in place in T. In addition, the second
TH contains COLSPAN = “2” and subsequently its data con-
tent “Average” is replicated once to the right in the same
row in T, and “Red eyes,” which is originally in the third
TH, is moved to the forth column and then pushed onto the
forth column of the next row in T because of the attribute
ROWSPAN = “2.”

Note that there are two heading rows in T and each Ci
(1 5 i 5 4) is determined by the concatenation of the data
contents of the two rows in the ith column (see Definition 5
for the definition of Ci). As a result of concatenating the
first and second rows in T, Cl is the empty string, CZ =
Average.height, Cs = Average-weight, and Cq = ‘Red
eyes.) Furthermore, the caption of T is the caption of the
HTML table in Figure 1. The resulting pseudo-table T is as
shown in Figure 9.

We now map the resulting pseudo-table T to its corre-
sponding content tree CT. Since T contains the caption C

470

/IL table to a pseudo-table

hvk-tm,l . hvk+m,l &+m,i+l . . d k+m,l+n-1

L I I I I I f

A single dot (.) is the dot operator as presented in Defin

Figure 7: Mapping from a column-row-wise

&ion

HTR

A test table with merged cells
Average.height Average.weight Red eyes

Males 1.9 0.003 40%
Females 1.7 0.002 43%

1

I

I

I

1

*I 1 2 !
$..”

rc Z,” / % “_. ” .I , .” ,,. ” ,__ .“” ” .”

Figure 11: CT of the HTML table in Figure 4(b), rendered
in WebView, and a sample query

Figure 9: The pseudo-table of the HTML table in Fig-
ure l(b)

n

3.3 Complexity of the content tree approach

Our approach on constructing the content tree of a given
HTML table is a “one-pass” approach, meaning that the
approach processes the given source table in the left-to-right,
top-to-bottom, object-by-object manner, and never reads
the same object in the given table more than once. Upon
detecting an object in the source table, our approach takes
appropriate actions and process the next object until no
more object is found in the source table. Furthermore, no
preprocessing is required. Hence, the time complexity of the
proposed approach is proportional to the number of objects
in the given table.

3.4 Implementation of the approach

The proposed approach for retrieving hierarchical data from
HTML tables has been implemented as a Java class and
tested on a Pent&m-based workstation using the JDK 1.1.7.
The Java class generates the content tree of a given HTML
table T in the lexical form whose representation is similar to
the lexical SDT of T. For rendering the content tree graph-
ically, WebView [LN99] can be used (see the left pane of
Figures 10 and 11). Since the proposed approach for con-
structing the content tree of an HTML table is implemented
as a Java class, which is portable across different platforms,
it is easy to integrate our content-tree construction approach

Figure 10: CT of the HTML table in Figure 1, rendered in
WebView, and a sample query

(i.e., *A test table with merged cells’), C forms the root node
of the resulting CT according to Definition 5. Next, con-
sider Cl. Since Cl is empty, we skip Cl in the hierarchy VR
c CI c ai,l t . and create two child nodes of the root
node C by using aI,1 (i.e., Males) and a2,1 (i.e., Females).
The rest of the cells a;,j (1 5 i 5 2, 2 5 j _< 4) in the
last two rows of T yield nodes and edges in CT as follows:
al,1 t Cz t al,a; al,1 t C3 t al,3; al,1 t C4 t al,r;

a2,1 + C2 + a2,2; az,l i- C3 +- a2,3; a,1 t C4 t a2,4.
We render the resulting CT in WebView (LN99], as shown
under the root node “[ROOT=E:\Table5.xml]” in the left
pane of Figure 10, where each node label is enclosed within
angle brackets except the leaf nodes. Note that the asso-
ciation of a table data D with another, i.e., the intended
hierarchy of D in the table, can be conceived by examin-
ing the long name of D. For instance, ‘A test table with
merged cells’.Males.Average.height.‘l.9’ captures the in-
tended hierarchy of “1.9”. Also, note that CT does not
contain any HTML tags, and hence CT has Less number of
nodes than the corresponding syntactic hierarchy as shown
in Figure 2. (The content tree of the table in Figure 4(b) is
as shown in the left pane of Figure 11.) 17

471

into an existing data acquisition tool, including wrappers for
data warehousing systems.

For some applications, it might be appropriate to apply
the proposed approach to HTML tables that are dynami-
cally generated via CGI or others. In such a case, a front-
end processor can easily be plugged into our approach to
fetch those dynamically generated tables. A demonstration
of fetching tables dynamically from an existing Web site can
be found at the beginning of Section 4.3.

4 Applications of content trees

4.1 Hierarchy-based queries

We have implemented a simple SQL-like query processor in
WebView that takes the advantages of data hierarchies in
HTML documents. (The detailed discussion on the syntax
and semantics of the WebView query language can be found
in [LN99].) A WebView query statement consists of a SE-
LECT clause followed by a FROM clause, with an optional
WHERE clause at the end of the query statement. An at-
tribute specified in a SELECT statement can be in the form
of a long name or path expression mixed with variables and
wild cards, which are special variables. In the FROM clause,
we specify a (subtree of a) content tree as the search domain
for the desired data specified in the SELECT clause.

The query tab on the right pane of Figure 10 shows a
simple query which retrieves the value of any height in the
content tree (as shown on the left pane) which is generated
from the HTML table in Figure 1 and is specified in the
FROM clause. Since there are two nodes in the content tree
whose names are height, both 1.9 and 1.7 are retrieved,
and their long names are returned by the WebView query
processor. Furthermore, Figure 11 illustrates how to query
senators whose Sugar? field has the value ‘Yes’ (using the
WHERE clause) from the HTML table in Figure 4(b) whose
content is captured in its respective content tree which is
displayed on the left pane of Figure 11. The long name of
the retrieved data of this query contains “J. Dinnen.”

4.2 HTML to XML

As shown in Figures 10 and 11, the content tree of an HTML
table captures the hierarchical relationships of the data, not
HTML tags, contained in the HTML table. Using the resul-
tant content tree T of an HTML table H, we can easily con-
vert H into an XML document. Consider the data hierarchy,
besides the root node, of T and the following algorithm:

Algorithm: HtmlTableSXml
Input: The content tree T of an HTML table H
Output: XML document X of H

1. Initialize the resulting XML document X by append-
ing the XML declaration <?xml version=“1 . O”?> to
X. /* This declaration is generic enough for any XML
documents. */

2. Append <!DOCTYPE root SYSTEM “extern.dtd”>, a
placeholder, for a document type declaration to X. /*
Since at this stage we are unable to determine a DTD
of X, we append a placeholder to X such that root
and extern will be replaced later by a real identity
when they become availabie. */

3. Traverse the content tree T from top to bottom and
from left to right. For each node u in T, DO:

(a) Replace string -s in the name of 2, by U and store
the resulting 2, to e, where I-’ is a sequence of
one or more spaces, s is an alphanumeric letter,

and U is the upper-cased s. This replacement is
necessary since no space is allowed in the name
of an XML element.

(b) Attach3 e to X while maintaining the hierarchy
of e to its immediate container element.

(c) Update a DTD4 of X.

4. Replace root and extern in the document type decla-
ration by the name of the first XML element in X.

Example 4 Consider the content tree T as shown in the
left pane of Figure 10 and algorithm HtmlTableSXml. After
steps 1 and 2, X contains <?xml version=“l. O”?> < !DOC
TYPE root SYSTEM “extern.dtd”>. At step 3(a), the first
node <A test table with merged cells> in T yields <A
TestTableWithMergedCells>, which is appended to X by
step 3(b). Note that </ATestTableWith MergedCells> will
be appended to X after all other nodes in T are processed ac-
cording to the definition of attach. The next node <Males>
in T is appended to X immediately after <ATestTableWith
MergedCells> as an immediate content. Also, <Average>,
<height>, and 1.9 are appended to X in their respective
order. Hereafter, </height> is appended and <weight> is
processed. Eventually, </ATestTableWithMergedCells> is
appended to X. By step 4 root and extern in the document
type declaration are replaced by ATestTableWithMergedCells.
The resultant X is shown below:

<yxml version= “l.O”?>
<!DOCTYPE ATestTableWithMergedCells SYSTEM

“ATestTableWithMergedCells.dtd”>
<ATestTabIeWithMergedCelIs>

<Males>
<Average>

<height> 1.9 </height> <weight> 0.003 </weight>
</Average>
<RedEyes> 40% </RedEyes>

</Males>
<Females>

<Average>
<height> 1.7 </height> <weight> 0.002 <:/weight>

</Average>
<RedEyes> 43% </RedEyes>

</Females>
</ATestTableWithMergedCells> 0

4.3 Data warehousing

In this section, we demonstrate the construction of reposito-
ries for a data warehousing system by using the content trees
of HTML tables, which are the source of the repositories. To
demonstrate repository construction by using content trees,
we consider a stock quotations service available at Starting
Point(TM) through the URL http://fast.quote.com/fq/stpt/
quote?symbols = X, where X is a valid ticker symbol. Given
a valid ticker symbol, the service provides the open, high,
low, and last values, the change of the value, and the vol-
ume of the requested ticker symbol at the requested time
and date. The requested information is returned to the
browser as an HTML table. A sample resulting table with
X = novl is shown in Figure 12(a), and the content tree

3The operation attach(e) appends e to X as a start-tag when the
program thread enters in the scope of e and appends the end-tag of
e when the process exits from the scope of e.

4A detailed discussion on how to construct a DTD of an XML
document is excluded since the discussion is beyond the scope of this
paper.

472

(a) Returned quotations in an HTML table

0 ‘Stock Quotes’

(b) The content tree generated for
Figure 12(a)

Figure 12: Stock quotations service at Starting Point(TM)

of the resulting table is shown in Figure 12(b). Recall that
a data component in a content tree can be accessed by its
long name. For instance, the value of change (in price) of
NOVL on November 17, 1998 can be expressed as ‘Stock
Quotes’.Symbol.NOVL.Change.+1/2.

To demonstrate repository construction, we construct
two types of repositories, a semistructured repository, Which

is based on the semistructured data model, and a Telational
repository, which is based on the relational data model. By
constructing these two repositories, we demonstrate what
types of materialized views of the incoming data are main-
tained and served by the data warehousing system discussed
in this section.

In our data warehousing model, data acquisition from
the source is handled by the wrapper of the warehousing
system, and the proposed content-tree construction method
is integrated into the wrapper. We assume that the engine
for fetching the source HTML tables has already been built
in the wrapper (see WebView (LNSS]). The acquired data, in
the form of a content tree, is passed to two integrators, which
are responsible for maintaining the semistructured view and
the relational view of the data, respectively. In the design
of our sample warehousing system, the primary role of the
wrapper is to provide a uniform representation of data for
any ticker symbol on any particular date to each integrator.
The role of an integrator is to maintain a uniform view of the
data, which is either a semistructured data or a relational
table.

Note that the stock quotations service provides updated
information for a given ticker symbol every minute. Hence,
the wrapper can be fired as often as necessary depending
on the demand on the warehouse. We assume that storing

stock quotations on a daily basis is sufficient for our need
in this demonstration. By firing the wrapper for each ticker
symbol on a daily basis, we keep a daily snapshot of the
quotations and maintain the history of the stock price for
every ticker symbol. Note that a symbol, which represents a
ticker symbol, is required in a query in order to obtain the
desired stock quotation. A ticker symbol is specified in the
query string5 as part of an URL. For example, symbols =
novl specifies the ticker symbol NOVL, and the wrapper is
capable of acquiring stock quotation for any ticker symbol
by replacing novl with the respective ticker symbol.

4.3.1 Semistructured Repository

Figure 13 illustrates the data flow from the Internet data
source, which includes the stock quotations service in our
example, to the two repositories of the data warehouse. As
shown in the figure, the content tree of the fetched table
from the data source represents a snapshot of the quoted
stock price for a particular ticker symbol on a particular
date. As an example, since a content tree that is passed
from the wrapper contains the data of a particular ticker
symbol on a particular date and time, the semistructured
integrator makes an alteration on the content tree in order to
maintain the view of the data according to the order of ticker
symbols and dates. The alteration is made by adjusting the
dependency of the data objects in the tree so that the value
of Symbol (i.e., novl) becomes the root node of the tree
and Date is attached to the root node. Finally, this altered
content tree is attached to the root node of the repository
(i.e., ‘Stock Quotes ‘). With that the integrator is capable of
providing a uniform view of the data that are searchable by
using a ticker symbol and a date.

As illustrated in Figure 13, the long name of a data
component is altered by the semistructured integrator in
the repository. For instance, the value of change (in price)
of NOVL on November 17, 1998 is expressed as ‘Stock
DuotesJ.NOVL.Date.11/17/98.Change.+l/2. Usingasemi-
structured-data query language [AQMf97, LN99], a query
“What is the change in price of NOVL on November 17,
1998?” can be posted against the semistructured repository
as SELECT -. ‘Change’.X FROM ‘Stock Quotes’. (noul’. ‘Date’.
‘1 l/l 7,/98 ‘, where strings surrounded by single quotes itre
constants, X is a variable, and ‘-’ is the anonymous variable.
The FROM clause returns the subtree S rooted at ‘Stock
Quotes’.‘novl’.‘Date’. ‘11/17/98’ from the data stored
in the semistructured repository. The SELECT clause binds
the name of the child of Change to variable X. According
to the condition specified in this SELECT clause, the Change
node is a child of the node ‘11/17/98’ in S. The answer
to the query is +1/.2, since the anonymous variable in the
SELECT statement is bound to the root node of S, which is
‘11/17/98’.

4.3.2 Relational repository

The architecture described in the previous section can easily
be adopted for building a relational repository since the pro-
posed content-tree construction method is capable of trans-
forming an HTML table to a pseudo-table, as discussed in
Section 3.2.

Data acquisition for the relational repository can be han-
dled by the same wrapper for the semistructured repository.
For the relational repository, the integrator integrates the

5A query string is the string following the first question mark (‘I?“)
in an URL.

473

Symbol
t

Date - NOVL -Volume

ISI/ 149%

,,: ,_ Integrator ., ,: -1 Pseudo-table St& wti
‘.!-,, ,,, “‘,. ,- ‘.

,” ; :)iA ,’ symbo1lDate IT-unclopm IHigh lLow lkut ~change~Volume

NOVL ~11117/98~14:21~147~~151/4~145/8~147/8~+1R ~S,OS%,SOO

Figure 13: The architecture of a sample data warehousing system

acquired data into relational tables by altering the pseudo-
tables passed from the wrapper in order to maintain and
provide a uniform, relational view of the data for any ticker
symbol. In our sample warehousing system, we create a
separate table for each ticker symbol such that the relation
scheme of the table is of the form R(Date, Time, Open,
High, Low, Lust, Change, Volume), where R is the cor-
responding ticker symbol and Date is the key attribute of
R. For an instance D of the pseudo-table for a particular
ticker symbol on a particular date, the relational integrator
first locates the destination table R such that R matches
the content of the Symbol cell of D and then inserts into R
a new record out of the data cells of D accordingly, with
the exception of the heading rows and the Symbol cell. The
query, “What is the change in price of NOVL on November
17, 1998?“, can be posted against the repository as SELECT
Change FROM NOVL WHERE Date = 11/17/98.

5 Concluding remarks

HTML tables become widely used in Web documents to
present data in a tabular structure. The content tree, as well
as its corresponding pseudo-table, construction approach
presented in this paper can construct the content tree of
the data contents in a given HTML table without requiring
the internal structure of the table to be known beforehand.
The content tree captures the intended hierarchy of the data
contents, i.e., the association of each data content with oth-
ers, in the table, in contrast to the syntactic hierarchy which
captures the hierarchy of tags as well as the data contents
in the table based on the HTML grammar. A content tree
is also more efficient than its corresponding syntactic tree in
terms of the cost of traversing the tree and space for storing
the tree. It suits better than its corresponding syntactic tree
for querying hierarchically structured table data since the
hierarchy of the objects involved in a query can be asserted
in a content tree without using tags. The time complexity
of the proposed content-tree construction approach is pro-
portional to the number of tags and data in the given table,
and our approach can be used by existing wrappers and in-
tegrators (in data warehousing systems), which frequently
access a large number of HTML tables for extracting hierar-
chically structured data, such as stock quotations, medical
data, etc., to automate the data acquisition process. We also
discover the advantages of using content trees in converting
their corresponding HTML tables to XML documents.

References

[ACC+97]

[AM981

[AMM97]

[AQM+97]

[HGMC+97]

[KS951

[LN98]

[LN99]

[MM971

[RHJ98]

S. Abiteboul, S. Cluet, V. Christophides,
T. Milo, G. Moerkotte, and J. Simeon. Query-
ing Documents in Object Databases. Journal
on Digital Libraries, 1(1):5-19, April 1997.

G.O. Arocena and A.O. Medelzon. We-
bOQL: Restructuring Documents, Databases
and Webs. In Proceedings of the 14th Intl.
Conf. on Data Eengineering, February 1998.

P. Atzeni, G. Mecca, and P. Merialdo. To
Weave the Web. In Proceedings of the 23rd
International Conference on Very Large Data
Bases, pages 206-215, August 1997.

S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. Wiener. The Lore1 Query Language
for Semistructured Data. Journal on Digital
Libraries, 1(1):68-88, 1997.

J. Hammer, H. Garcia-Molina, J. Cho,
R. Aranha, and A. Crespo. Extracting
Semistructured Information from the Web. In
Proceedings of the Workshop on Management
of Semistructured Data, May 1997.

D. Konopnicki and 0. Shmueli. W3QS: A
Query System for the World-Wide Web. In
Proceedings of the 21st Intl. Conf. on Very
Large Data Bases, pages 54-65, Sept. 1995.

S.-J. Lim and Y.-K. Ng. Constructing Hier-
archical Structures of Sub-Page Level HTML
Documents. In Proceedings of the 5th Inter-
national Conference on Foundations of Data
Organizations, pages 66-75, November 1998.

S.-J. Lim and Y.-K. Ng. WebView: A Tool for
Retrieving Internal Structures and Extracting
Information from HTML Documents. In Proc.
of the 6th I&l. Conf. on Database Systems for
Advanced Applications, pages 71-80, 1999.

A. Mendelzon and T. Milo. Formal Models of
Web Queries. In Proceedings of the 16th Znter-
national Symposium on Principles of Database
Systems, pages 134-143, 1997.

D. Raggett, A. Hors, and I. Jacobs. HTML
4.0 Specification - W3C Recommendation.
http://www.w3,org/TR/REC-htm140, 1998.

474

