skip to main content
extended-abstract

Distributed Link Anomaly Detection via Partial Network Tomography

Published:20 March 2018Publication History
Skip Abstract Section

Abstract

We consider the problem of detecting link loss anomalies from end-to-end measurements using network tomography. Network tomography provides an alternative to traditional means of network monitoring by inferring link-level performance characteristics from end-to-end measurements. Existing network tomography solutions, however, insist on characterizing the performance of all the links, which introduces unnecessary delays for anomaly detection due to the need of collecting all the measurements at a central location. We address this problem by developing a distributed detection scheme that integrates detection into the measurement fusion process by testing anomalies at the level of minimal identifiable link sequences (MILSs). We develop efficient methods to configure the proposed detection scheme such that its false alarm probability satisfies a given bound. Meanwhile, we provide analytical bounds on the detection probability and the detection delay. We then extend our solution to further improve the detection performance by designing the probing and fusion process. Our evaluations on real topologies verify that the proposed scheme significantly outperforms both centralized detection based on link parameters inferred by traditional network tomography and distributed detection based on raw end-to-end measurements.

References

  1. S. Ahuja, S. Ramasubramanian, and M. Krunz. SRLG failure localization in optical networks. IEEE/ACM Transations on Networking, 19(4):989-999, Auguest 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Y. Bejerano and R. Rastogi. Robust monitoring of link delays and faults in IP networks. In IEEE INFOCOM, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  3. G. Casella and R. L. Berger. Statistical Inference. Duxbury, 2002.Google ScholarGoogle Scholar
  4. R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography: recent developments. Statistical Science, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Chen, J. Cao, and T. Bu. Network tomography: Identifiability and Fourier domain estimation. In IEEE INFOCOM, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Chen, D. Bindel, and R. H. Katz. An algebraic approach to practical and scalable overlay network monitoring. In ACM SIGCOMM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Casella and R. L. Berger. Statistical Inference. Duxbury, 2002.Google ScholarGoogle Scholar
  8. M. Coates, A. O. Hero, R. Nowak, and B. Yu. Internet tomography. IEEE Signal Processing Magzine, 19:47-65, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  9. N. Duffield. Simple network performance tomography. In ACM SIGCOMM conference on Internet measurement, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N. Duffield. Network tomography of binary network performance characteristics. IEEE Transactions on Information Theory, 52(12):5373-5388, December 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. D. Esary, F. Proschan, and D. W. Walkup. Association of random variables with applications. The Annals of Mathematical Statistics, 38(5), October 1967.Google ScholarGoogle ScholarCross RefCross Ref
  13. G. H. Golub and C. F. Van-Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore and London, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Gopalan and S. Ramasubramanian. On identifying additive link metrics using linearly independent cycles and paths. IEEE/ACM Transactions on Networking, 20(3), June 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Gu, G. Jiang, V. Singh, and Y. Zhang. Optimal probing for unicast network delay tomography. In IEEE INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O. Gurewitz and M. Sidi. Estimating one-way delays from cyclic-path delay measurements. In IEEE INFOCOM, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  17. T. He, C. Liu, A. Swami, D. Towsley, T. Salonidis, A. Bejan, and P. Yu. Fisher information-based experiment design for network tomography. In ACM SIGMETRICS, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. D. Horton and A. Lpez-Ortiz. On the number of distributed measurement points for network tomography. In ACM SIGCOMM conference on Internet measurement, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Kompella, J. Yates, A. G. Greenberg, and A. C. Snoeren. Detection and localization of network black holes. In IEEE INFOCOM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley. Identifiability of link metrics based on end-to-end path measurements. In ACM IMC, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley. Inferring link metrics from end-to-end path measurements: Identifiability and monitor placement. IEEE/ACM Transactions on Networking, 22(4):1351-1368, June 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Ma, T. He, K. K. Leung, D. Towsley, and A. Swami. Efficient identification of additive link metrics via network tomography. In IEEE ICDCS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Ma, T. He, A. Swami, D. Towsley, and K. Leung. On optimal monitor placement for localizing node failures via network tomography. Elsevier Performance Evaluation, 91:16-37, September 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. Ma, T. He, A. Swami, D. Towsley, K. Leung, and J. Lowe. Node failure localization via network tomography. In ACM IMC, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot. Characterization of failures in an IP backbone. In IEEE INFOCOM, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. X. Nguyen and P. Thiran. The boolean solution to the congested IP link location problem: Theory and practice. In IEEE INFOCOM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. N. Padmanabhan, L. Qiu, and H. Wang. Server-based inference of internet link lossiness. In IEEE INFOCOM, April 2003.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  29. N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel. In ACM SIGCOMM, August 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Tan and C. Drossos. Invariance properties of maximum likelihood estimators. Mathematics Magazine, 48(1), January 1975.Google ScholarGoogle ScholarCross RefCross Ref
  31. H. L. V. Trees. Detection, estimation, and modulation theory. JohnWiley&Sons, 2004.Google ScholarGoogle Scholar
  32. G. Casella and R. L. Berger. Statistical Inference. Duxbury, 2002.Google ScholarGoogle Scholar
  33. B. Xi, G. Michailidis, and V. Nair. Estimating network loss rates using active tomography. Journal of the American Statistical Association, 101(476):1430-1448, December 2006.Google ScholarGoogle ScholarCross RefCross Ref
  34. H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test packet generation. In ACM CoNEXT, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end network diagnosis. In ACM SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Distributed Link Anomaly Detection via Partial Network Tomography

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader