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ABSTRACT

This paper presents a set of new results on wireless chan-
nel capacity by exploring its special characteristics. An ap-
pealing discovery is that the instantaneous and cumulative
capacity distributions of typical fading channels are light-
tailed. An implication of this property is that these dis-
tributions and subsequently the distributions of delay and
backlog for constant arrivals can be upper-bounded by some
exponential functions, which is often assumed but not justi-
fied in the literature of wireless network performance analy-
sis. In addition, three representative dependence structures
of the capacity process are studied, namely comonotonicity,
independence, and Markovian, and bounds are derived for
the cumulative capacity distribution and delay-constrained
capacity. To help gain insights in the performance of a wire-
less channel whose capacity process may be too complex or
detailed dependence information is lacking, stochastic or-
ders are introduced to the capacity process, based on which,
comparison results of delay and delay-constrained capacity
are obtained. Moreover, the impact of self-interference in
communication, which is an open problem in stochastic net-
work calculus (SNC), is investigated and original results are
derived. These results complement the SNC literature, eas-
ing its application to wireless networks and its extension
towards a calculus for wireless networks.
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1. INTRODUCTION

The wireless communication system is entering a new gen-
eration, namely 5G. 5G is transformative, since it will ad-
vance mobile communication technology from largely a set
of technologies, connecting people to people and people to
information, to a unified connectivity fabric connecting peo-
ple to everything [24], i.e., 5G will thrust mobile technol-
ogy into the exclusive realm of general purpose technologies,
e.g., electricity and automobile. The profound effects arising
from these innovations range widely from the positive im-
pacts on human and machine productivity to ultimately el-
evating the living standards of people around the world [24].
On the other hand, there will be a continuing wireless data
explosion and an increasing requirement of higher data rate

IFIP WG 7.3 Performance 2017. Nov. 14-16, 2017, New York, NY USA
Copyright is held by author/owner(s).

and less latency. It has been depicted that the amount of IP
data handled by wireless networks will exceed 500 exabytes
by 2020, the aggregate data rate and edge rate will increase
respectively by 1000x and 100x from 4G to 5G, and the
round-trip latency needs to be less than 1ms in 5G [1]. The
capacity demand and supply is a paradox, and the poten-
tial digital traffic jams threaten to throttle the information-
technology revolution [22]. Evidently, it becomes more and
more crucial to explore the ultimate capacity that a wire-
less channel can provide under stringent delay constraints
and to analyze what delay limit may be achieved in specific
wireless channel situations.

In this paper, we ask and answer three questions on the
statistical properties of wireless channel capacity that is
treated as a stochastic process, and the obtained results are
supposed to provide some insights to cope with the above
challenges.

1. What is the fundamental property of this stochastic
process?

We discover that the tail distribution of wireless chan-
nel capacity is light-tailed. A simple explanation is
that the capacity is a logarithm function of some ran-
dom variables, so long as these random variables are as
light as fat tails, the capacity is light-tailed. Though
intuitive, it has been taken for granted without being
taken fully advantage of. Moreover, this property is
fundamental as it holds for all typical wireless chan-
nel models. This property has been extended from
flat-fading to frequency-selective fading, from instan-
taneous to cumulative time regime, and from single-
hop to multiple-hop scenarios.

2. What is the hidden resource to be utilized in wireless
channels?

As a stochastic process, the wireless channel capacity is
dependent over time, we classify the dependence struc-
ture into three categories, i.e., positive dependence,
independence, and negative dependence, and we show
that the negative dependence greatly improves the chan-
nel performance even with a smaller capacity mean
with respect to independence, while the positive de-
pendence has an opposite effect. It is worth noting
that the dependence control can be implemented in
practice, e.g., the negative dependence in power con-
trol will bring its impact into capacity. On the other
hand, the negative dependence in environment can be
taken advantage of, e.g., fading.



3. What is the impact of self-interference on ad hoc net-
work scalability?

It is well known that the self-interference has a huge
impact on the end-to-end throughput, and we prove
it mathematically that the impact of self-interference
can be localized. Specifically, when a common channel
is shared among a group of nodes, the end-to-end net-
work can be seen as a single-hop system. This result
can be used to reduce the complexity of network topol-
ogy in analysis. In addition, the wireless channel with
self-interference is a feedback system, which is diffi-
cult for analysis and is regarded as an open problem
in stochastic network calculus, a methodology suit-
able for end-to-end network performance analysis in
feedforward networks. The solution here indicates the
potential of extending stochastic network calculus to
non-feedforward networks.

To date, wireless channel capacity has mostly been an-
alyzed for its average rate in the asymptotic regime, i.e.,
ergodic capacity, or at one time instant/short time slot, i.e.,
instantaneous capacity. For instance, the first and second
order statistical properties of instantaneous capacity have
been extensively investigated, e.g., [38, 42]. However, the
previous works focus on deriving explicit expressions of con-
sidered statistics in specific channel models without exploit-
ing the general capacity property of different channels, e.g.,
[38, 23, 41, 39], or rely on the assumption that the distri-
bution of the service process is exponential without math-
ematical justification, e.g., [31]. In [20], the capacity of ad
hoc networks is studied based on constant transmission rate,
while we focus on the stochastic process of wireless channel
capacity. In [32], the self-interference in ad hoc networks is
investigated in the protocol layer and it is shown that the
average distance between source and destination must be
small for network scalability, in contrast, we focus on the
physical layer capacity and provide a mathematical proof of
the localization property.

The remainder of this paper is structured as follows. Sec.
2 focuses on the basic concepts and fundamental property of
wireless channel capacity. First, concepts of ergodic capac-
ity, instantaneous capacity, cumulative capacity, and tran-
sient capacity are introduced; second, the fundamental prop-
erty that the tail distribution of the capacity process is
light-tailed irrelevant to temporal dependence, is proved;
third, it is shown how specific dependence structures can
be taken advantage of for result improvement. Sec. 3 is
dedicated to applications of the light-tail property of wire-
less channel capacity. First, the wireless channel is modeled
as a queueing system following a general queuing principle,
delay-constrained capacity is defined as a complementary to
the classical capacity concepts with a focus on delay per-
formance, and Lundberg’s inequality is invoked for explicit
results in view of the light-tailed distribution; second, for de-
pendence scenarios where explicit results are not tractable,
the influence of dependence is manifested by stochastic or-
dering, again, the results are based on the light-tail property;
last, the performance analysis is extended from feedforward
to non-feedforward systems and from single-hop to multi-
hop systems, with application to self-interference modeling
in and scalability investigation of ad hoc networks. Finally,
the paper is concluded in Sec. 4.

2. THEORY
2.1 Concepts

Basic concepts of wireless channel capacity, including er-
godic capacity, instantaneous capacity, cumulative capacity,
and transient capacity, are introduced in this part.

The maximum mutual information over input distribution
at t, denoted as C(t) throughout this paper, is defined as
instantaneous capacity [9]:

C(t) = max [ (X: Y [A(1). (1)

where h(t) is a stochastic process describing wireless channel
fading, X and Y are input and output random variables
with alphabets X and ), and the maximum is taken over
all possible input distributions p(z) = P{X =z}, z € X.

Consider a discrete-time flat fading channel with input
z(t), output y(t), and stationary fading process h(t), the
complex baseband representation is as follows,

y(t) = h(t)x(t) +n(t), )

where n(t) is an additive white Gaussian noise (AWGN)
process CN'(0, No). Conditional on a realization of h(t), the
mutual information is expressed as [47]

I(X;Y () = )]

zeX ,yey

P(z,ylh:)
P 108 Bt Pyl
3)
Particularly, for a single input single output channel, if
the channel side information is only known at the receiver,
solving the right hand side of (1) with (3), the instantaneous
capacity is obtained [48], i.e.,

C(t) = Wlogy (1 +|A()]*), (4)

where |h(t)| denotes the envelope of h(t), v = P/NoW de-
notes the average received SNR per complex degree of free-
dom, P denotes the average transmission power per complex
symbol, No/2 denotes the power spectral density of AWGN,
and W denotes the channel bandwidth. For multiple input
and multiple output channels, a generalized form of (4) is
available in [47, 17].

Averaging the instantaneous capacity over the probability

space of channel gain, the mean is defined as ergodic capacity
[47]:

C = E[C(1)]. (5)

The definition implies that the ergodic capacity is a con-
stant and is a concept for infinite code length in infinite
time regime, i.e., it defines the maximum transmission rate
of the channel with asymptotically small error probability
for the code with sufficiently long length that the received
codewords is affected by all fading states [19].

To account for finite time regimes, the sum of instanta-
neous capacity over a time period (s, t], denoted as S(s,t),
is defined as cumulative capacity:

t

S(s,t) = Y C(i). (6)

i=s+1

For S(0,t), we use S(t) as simplification. The time aver-
age of the cumulative capacity through (0,t] is defined as
transient capacity [48]:

at) === (7



Note that the transient capacity is random, which essen-
tially defines the achievable capacity for a code with finite
length that the received codewords only experience partial
fading states. The probabilistic average of the transient ca-
pacity in a stationary process is expressed as

E[C®t)]=C, (8)

where C is the ergodic capacity of the channel. According to
the law of large numbers, the transient capacity converges
to the ergodic capacity when time goes to infinity, i.e.,

lim C C

lim C@) = C, )
for independent and identically distributed instantaneous
capacity. However, the dependence in capacity may be un-
known, and a more general result for the transient capacity
on finite time horizon is expressed by the Chebyshev in-
equality [37],

P{C() - T > 2} < YICO]

)
ZI'Q

(10)

which is a basic result of concentration [5]. It indicates that,
in view of temporal behavior, statistical properties of the
cumulative process should be taken into account besides the
instantaneous capacity.

2.2 Light-tail Behavior

A distribution is said to be light-tailed, if the tail F(x) =
1 — F(z) is exponentially bounded, i.e.,

F(z) = 0(e™), (11)

for some 0 > 0; equivalently, it means the moment generat-
ing function F[6] is finite for some § > 0. Otherwise, the
distribution is said to be heavy-tailed [3, 43], specifically, if
F(z) = O (z7?), it is said to be fat-tailed.

The following theorem gives the condition for the wireless
channel capacity distribution to be light-tailed.

THEOREM 1. For flat fading, the instantaneous capacity
is expressed as the logarithm transform of the instantaneous
channel gain, i.e., C(t) = Wlog,(1 + vyh(t)?), Vt. If the
distribution of the fading process is not heavier than fat tail,
the distribution of the instantaneous capacity is light-tailed.

ProOOF. For convenience, we omit the time index ¢ and
write C = Wlog,(1 + vh?). Correspondingly, the tail of
the instantaneous capacity is a function of the tail of the
channel gain, i.e.,

Fo(z)=Fp [/ — |. (12)

Let r = \/@, for some 6 > 0, Fo(z) = O(e™?*) entails
Fun(r)=0 (7‘79) , (13)
which completes the proof. []

The following corollary shows that the capacity distribu-
tions of the typical wireless fading channels are light-tailed.

COROLLARY 1. If a wireless channel is Rayleigh, Rice,
Nakagami-m, Weibull, or lognormal fading channel, its in-
stantaneous capacity distribution is light-tailed.

Proor. For Weibull fading channel, the tail of fading is
expressed as

— k
Fp(r)y=e", (14)
where ¢ > 0 and £ > 0 are constants. Applying Taylor’s
k
theorem to expend e | it is easily shown that, for some 6

satisfying k > 0 > 0

_ .k
cr 7,8

_rlingo1+crk+..._0' (15)
This limit shows that though the Weibull distribution is
heavy-tailed for 0 < k < 1, it is lighter than the fat tail.
Hence from Theorem 1, the instantaneous capacity under
Weibull fading is light-tailed.

Rayleigh fading is a special case of Weibull fading with
k = 2. The distribution of its instantaneous capacity is
expressed as [23]

lim
r—o0 T

=

1—2

Flz)y=1—¢ 7 . (16)

It is trivial to show that the tail is exponentially bounded
F(z) < 6%6791, 17

for 0 <0 < WLW2@ log 2. Hence, the instantaneous capac-
ity under Rayleigh fading is light-tailed.

For Rice fading channel, the tail of the instantaneous ca-
pacity is expressed as [41]

— 5 A/28/W —1/~ss
F(z) = S e Al 18
(.’E) Ql <0_07 0_02 ) ( )
where W is the bandwidth, s the amplitude of the LOS
(light of sight) component, g¢? the variance of the underly-
ing Gaussian process, and 7, the average SNR. According
to the exponential bound of the Marcum Q-function [46],

—log F
ar = limsup,_, 70%1: (z) (19)
2
) 1 [A/25/W —1/ves s
> lims — = 2
imsup, 5 ( — 2] o
= o0, (21)

which means that the instantaneous capacity of a Rice fad-
ing channel is light-tailed [43].

For Nakagami-m fading channel [39], since the square of
the Nakagami-m random variable follows a gamma distribu-
tion, which is light-tailed [3], the distribution of its instan-
taneous capacity is thus light-tailed.

For lognormal fading channel [40], since the lognormal
distribution has all the moments, which means that it has
a lighter tail than the fat-tailed distribution [21], the distri-
bution of its instantaneous capacity is light-tailed. [

The rest of this subsection shows that the light-tailed
property is extended from flat-fading to frequency-selective
fading, from instantaneous to cumulative time regime, and
from single-hop to multiple-hop scenarios.

COROLLARY 2. For frequency-selective fading modeled by
L parallel independent channels with the instantaneous ca-
pacity C = Zszl Welog, (1 + vh3), if the distribution of the
instantaneous capacity of each sub-channel Co = Wy log,(1+
'yhf) is light-tailed, so is the instantaneous capacity distri-
bution of the frequency-selective fading channel.



Proor. For this frequency-selective fading channel, its
instantaneous capacity is by definition related to the instan-
taneous capacity of each sub-channel as

C = i Cy. (22)
£=1

The tail of the distribution of the instantaneous capacity
can then be expressed by [26]

Fe(x) = 1-Fo,®...® Fc, (2) (23)
< Fcl ®...0Fc,(z), (24)
where f ® g(z S (z — y)dg(y) is the Stieltjes convo-

lution and f (—Dg( ) = lnf()gsgt{f( )+ g(t — s)} is the uni-
variate min-plus convolution [4] or infimal convolution [44].
The first step results from sum of independent random vari-
ables, and the second step results from that the distribution
of sum of independent random variables is upper bounded
by the distribution of such a sum without dependence con-
sideration [26]. As is illustrated in the proof of the next
theorem, the latter is light-tailed. []

COROLLARY 3. Consider a wireless channel, if the dis-
tribution of its instantaneous capacity at any time is light-
tailed, the distribution of the cumulative capacity is light-
tailed, and the distribution of the cumulative capacity of a
concatenation of such wireless channels is light-tailed.

Proor. Without considering any dependence constraint,

the tail of the cumulative capacity, S(t) = C(1) +-- -+ C(¢),
is bounded by [26]
Fsuy(z) < Foy®... @ Foy(e), (25)

which is exactly the infimal convolution of the Fréchet upper
bound [44]. If the instantaneous capacity is light tailed, i.e.,

Fe(z) < ae ™, (26)

applying a distribution bound for the sum of exponentially
bounded random variables [26], the tail of the cumulative
capacity is exponentially bounded, i.e.,

t
FS(t) H akbkw bkw 87, (27)
k=1

¢
where w = > _, i.

For a concatenation of wireless channels, each with a cu-
mulative capacity S;(s,t), the cumulative capacity process
is essentially the service process of the channel, and the cu-
mulative capacity of the concatenation channel is expressed

s [26, 16]
S(S,t)=51®...®SN(S7t), (28)

where f ® g(z) = info<y<z{f(y) + g(y, )} is the bivariate
min-plus convolution [6]. Then, the tail is expressed as

Fsy(z) =P{$1®...QSn(t) =z} (29)
N
= P{ inf Si(ui-1,u:) = 30
N
< inf P Si(wi—1,u:) = 31
< i 0%y Si(uimrw)| | 0w
< uelg{l(fx)E[e ] e, (32)
where U(z) = {u = (uo,u1,...,un) : up = 0,uy = ¢,0 <

ur < ... <un-1 < t}, for some 6 > 0. [J

2.3 Dependence Refinement

In general, the capacity is dependent over time, which re-
sults from the temporal dependence in the environment or
in the controllable parameters of the system. Specifically for
the cumulative capacity, the influence of stochastic depen-
dence is characterized by the Fréchet bounds [44]

Fs()(z) < Fs (@) < Fsg (), (33)

where

+ +
Fs(z) = [Sup Zch (ui) — (t—l)] . (34)

ueld(z) ;4

with U(z) = {u = (u1,...,u) : D ui = :r} The Fréchet
bounds hold in general, making use of specific dependence
information among C(1),C(2),..., the bounds can be im-
proved. To this aim, three representative capacity processes
are investigated in this subsection, which are comonotonic
process, additive process, and Markov additive process.

2.3.1 Comonotonic Process

The upper Fréchet bound expresses the extremal positive
dependence indicating the largest sum with respect to con-
vex order, and the dependence structure is represented by
the comonotonic copula [12, 13, 14], i.e.,

Flei,...,e) = 12}215 Fey(c); (36)
equivalently [12], for U ~ U(0,1),

(CQW),ee s CW) £ (Faly (U)o Foly @), (37)

which implicates that comonotonic random variables are in-
creasing functions of a common random variable [13].

If the increment of the cumulative capacity has comono-
tonicity, the cumulative capacity is defined as a comono-
tonic process in this paper (which is different from a similar
concept regarding the comonotonicity between different pro-
cesses [27]). The distribution results of cumulative capacity
and transient capacity are as follows.

THEOREM 2. For a stationary capacity process, the dis-
tributions of the cumulative capacity and transient capacity
with comonotonicity are expressed as

Fseo(x) Fo (%) , (38)
Fow (@) = Fo(o). (39)

PRrROOF. In the special case that all marginal distribution
functions are identical F(;) ~ Fc, comonotonicity of C(i)
is equivalent to saying that C(1) = C(2),...,= C(t) holds
almost surely [12]. In other words, the sample function of
the capacity process is stationary and depends only on the
initial value of the capacity in each realization. [

2.3.2 Additive Process

The independence structure of an additive process is ex-
pressed by a product copula

Flci,...,ct) = HFC(i)(Ci)7 (40)



and the distribution of the cumulative capacity is expressed
via Stieltjes convolution as

Fswy(z) = Feq) ®...® Fow) (). (41)

The cumulative capacity with independent increment is
modeled as an additive process [25]. The distribution bounds
of cumulative capacity and transient capacity are as follows.

THEOREM 3. For a stationary capacity process, the dis-
tribution of the cumulative capacity with independence is ex-
pressed as, for some 6 > 0,

1 etn((-))—@z < FS(t) (Z‘) < etn(—6)+917 (42)

0C ()

where k(0) = log E [e ] is the cumulant generating func-

tion of the instantaneous capacity, and the distribution of the
transient capacity is expressed as

1—e " < P{CO(t)<c*}<e ¥, (43)

where c¢* = %, with y* = yu for 0% < 0 for the
upper bound, and y* = y; for 6% > 0 for the lower bound.

PRrROOF. In the special case that all marginal distribution
functions are identical Fiz(;y ~ Fe, a likelihood ratio process
of the cumulative capacity is formulated and expressed as
2]

L(t) _ eGS(t)ftlﬂ(Q)7 (44)

where L(t) is a mean-one martingale and () is the cumu-
lant generating function, i.e.,

k(0) =log E [690(1')] = logfeezF(dx), (45)

where § € © = {6 e R: k(0) < o0}.
According to Markov inequality, for any p > 0,
1 1
P{L(t) = p} < ;E[L(t)] = (46)

Letting p = e~ @+ for § < 0, the cumulative distribu-
tion function is bounded by

P{S(t) < x} < (OO, (47)
while for 6§ > 0, the complementary cumulative distribution
function is expressed as

P{S(t) = x} < (OO, (48)

which shows that the distribution has a light tail. Letting
—y* = tk(9) — 9z < 0, the distribution of the transient
capacity is bounded by

l—e " < P{C(t)<c*}<e¥, (49)
where ¢* = %, with y* = gy, for § < 0 for the upper

bound, and y* = y; for # > 0 for the lower bound. [J

REMARK 1. The upper and lower bound of Fsu)(x) do
not hold simultaneously, the upper bound is useful for r <
S(t), the lower bound is useful for x > S(t), and both bounds
are worthless for x = S(t) [18]. Considering Fs)(z) =
1 — Fs(t), which means that the upper and lower bound
can not decrease or increase simultaneously, this property
holds in general. An indication of this property is that, for
a fized violation probability, the obtained bounds on S(t) or
C(t) based on the upper and lower distribution bounds are
lower and upper bounds of S(t) or C(t) with respect to their
mean. It is illustrated in Fig. 1.

\ - = upper
097 \‘ —-=- lower ||

Transient capacity

Time slot

(a) Additive process.

o

o

Transient capacity
o o

Time slot

(b) Markov additive process.

Figure 1: Transient capacity of additive and Markov ad-
ditive Rayleigh channel. According to the strong law of
large numbers for the additive process and extended to the
Markov additive process, the transient capacity converges
to the mean as time goes to infinity, i.e., the convergence
of sample paths. The large deviation results are upper
bound and lower bound with respect to the mean. Re-
sults are normalized, with violation probability ¢ = 1072,
W = 20kHz, SNR = €%® for the additive process, SNR =
[ 0.9¢°5;0.8¢°° 0.7¢%%] and P = [0.3 0.7;0.1 0.9] for
the Markov additive process with initial distribution w =
[0.5 0.5], and 1000 sample paths.

2.3.3 Markov Additive Process

The Markov property is solely a dependence property that
can be modeled exclusively in terms of copulas. As a con-
sequence, starting with a Markov process, a multitude of
other Markov processes can be constructed by just modify-
ing the marginal distributions [10, 30, 36]. It is worth noting
that the Markov property indicates both positive and neg-
ative dependence, which is determined by the underlying
copula. For a Markov chain, the selection of the copula and
the marginal distribution is coupled [10], the transition ma-
trix can be expressed in terms of the copula and marginal
distribution and vice versa. Particularly for an idempotent
copula, the process is conditionally independently and iden-
tically distributed given the initial state [30].



Specifically, if the dependence in capacity follows a Markov
process and the instantaneous capacity has a corresponding
distribution with respect to a state transition, then the cu-
mulative capacity is a Markov additive process, which is a
bivariate process with strong Markov property and the in-
crement process is conditionally independent given a realiza-
tion of the underlying Markov process. A formal definition
of Markov additive process is in Appendix.

THEOREM 4. For a Markov additive process, conditional
on initial state Jo, the distribution of the cumulative capacity
is expressed as, for some 6 > 0,

h(9) (Jo)etn(9)79z
~ min(A@(J;))
JjEE

h(fo) (Jo)etn<70>+0z
min(h0 (7))
JEE
(50)
and the distribution of the transient capacity is expressed as
h,(g)(Jo)e*yl

W 9(Jo)e _ )
! min(h(%) (J;)) SP{C(t) <} <
J

< Fspy(z) <

h(=9) (Jo)evu
min(h(=9(J;))’
JjEE

(51)

where c¢* = %, with y* = y, for 0% < 0 for the
upper bound, and y* = y; for 6% > 0 for the lower bound.

ProoF. Like the independent case, a likelihood ratio pro-
cess is formulated with an exponential change of measure [2],

RO os(ty-tno)

2O = 3@ (o) ’

(52)
which is a mean-one martingale. x(6) and h® are respec-
tively the logarithm of the Perron-Frobenius eigenvalue and
the corresponding right eigenvector of the kernel for the
Markov additive process C(t), i.e., F[6]. In order to pro-
vide exponential upper bound for the distribution of the
cumulative capacity, define [18]

~ mingen(h'?(J))) as)—tx(o)

where L(t) < L(t), i.e., E[L(t)] < 1. Apply Markov inequal-
ity to L(t) and get, for any u > 0,

PIL(t) > u} < ~BIL(®)] < —. (54)
1 I
i o min e (hO (1
Choose y = e tr(0)+0 7%%()}2‘10)(7]))’ for 6 <0,
hO (Jo) tn(6)—
P t < < — K(0)—0z
{S(t) < =} minjeE(h<0>(Jj))e ) (55)
while for 8 > 0,
(0)
P{S@H) > a) < — ) eno)-0 (56)

= minjep (R (J;))

which indicates that the distribution has a light tail. Letting
—y* = tk(0) — 6z < 0, the distribution of the transient
capacity is bounded by

Ko (JO)E_yl R (Jo)e_yu

- 2V pIO() < cFY g ——2YE (57

mnho () < TCO <t < a7
JjeE JeEE

where ¢* = %, with y* = gy, for § < 0 for the upper

bound, and y* =y, for > 0 for the lower bound. [

REMARK 2. The Markov additive process can be seen as a
non-stationary additive process defined on a Markov process.
If the Markov process has only one state, then it reduces to
a stationary additive process [7]. In addition, the strong law
of large numbers applies to the Markov additive process [35],
and the mean of transient capacity exists [3], i.e.,

EreslSO] _ 1. (58)

lim
t—00

It is demonstrated in Fig. 1.

3. APPLICATION

3.1 Performance Guarantee

In the regime of information theory, the focus is on the
asymptotic limit of the tradeoff between accuracy and rate of
communication ignoring the role of delay that may affect this
tradeoff [15]. Instead, we use queueing analysis and focus on
two performance metrics, i.e., delay and delay-constrained
capacity.

3.1.1 Queueing Principle

The wireless channel is essentially a queueing system with
cumulative service process S(t) and cumulative arrival pro-
¢

cess A(0,t) = >, a(s), where a(t) denotes the traffic input

to the channel at time t, and the temporal increment in the
system is expressed as

X(t) = a(t) — C(t). (59)

The queueing principle of the wireless channel is expressed
through the backlog in the system, which is a reflected pro-
cess of the temporal increment X (t) [2], i.e.,

B(t+1)=[B(t)+X®)]". (60)

Throughout this paper, B(0) = 0 is assumed, and the back-
log function is expressed as

B(t) = sup (A(s,t) — S(s,t)). (61)

0<s<t
For a lossless system, the output is the difference between

the input and backlog, A*(t) = A(t) — B(t), which is further
represented by

A*(t) = A® S(1), (62)

where f®g(s,t) = infs<r<t{f(s,7)+g(7,t)} is the bivariate
min-plus convolution [4, 6], and the delay is defined via the
input-output relationship [8], i.e.,

D(t)=inf{d>0:A(t—d) < A*(t)}, (63)

which is the virtual delay that a hypothetical arrival has
experienced on departure.

The delay-constrained capacity or throughput is defined as
the maximum rate of traffic with delay requirement that the
system can support without dropping [49], i.e.,

C(d,e) = sup E [@] . (64)
P(D(t)>d)<e,Vt t

To avoid nontrivial considerations, we assume that the input
is a constant fluid process, i.e.,

A(t) = M. (65)



Then, the delay-constrained capacity is expressed as

C(d,e) = sup A (66)
P(D(t)>d)<e,Vt
It is a folk law that the regularity of arrival or service pro-
cesses results in better performance measures, and it has
been proved that for some involved system the queue length
of a constant fluid input is the shortest for all types of in-
puts that have the same average traffic rate [34], thus the
minimal delay and maximal delay-constrained capacity.
For the constant fluid arrival, it is trivial to show that
the tail distributions of backlog and delay are respectively
expressed as,

P(B(t) > z) = P{ sup {\(t —s) — S(s,t)} > m} , (67)
0<s<t
and
P(D(t) > d) = P{ sup {A(t —s) — S(s,t)} > )\d} , (68)
0<s<t
in addition, their relationship is easily verified,
x
P(B(t) > ) = P (D(t) > X) . (69)

The requirement of the delay-constrained capacity on per-
formance analysis indicates that the cumulative process of
wireless channel capacity should be considered, in contrast
to the asymptotic or instantaneous behavior in Shannon ca-
pacity.

3.1.2  Metric Analysis
Performance of wireless channels with three representative

capacity processes are analyzed in this part.

THEOREM 5 (COMONOTONIC PROCESS). Consider a con-
stant arrival process A(t) = At, the delay on finite time hori-
zon is expressed as

P(D(t)>d) =P {0(1) <A— ?} : (70)

while the delay on infinite time horizon is expressed as

P(D > d;Vd > 0) = P{C(1) < A}. (71)

PROOF. For a constant arrival process A(t) = At, the
delay is expressed as

P(D(t) > d) = P{ sup (A(s) — S(s)) > /\d} (72)

0<s<t
=P{C(l)</\—¥}. (73)

Letting time go to infinity gives
P(D > d;V¥d > 0) = P{C(1) < A}. (74)

This completes the proof. [

It indicates that, for a comonotonic capacity process, a
delay bound makes sense only on the finite time horizon,
and on the infinite time horizon, whenever there is deep
fade, there will be infinite delay, which is relevant to the
outage probability for slow fading [48].

THEOREM 6  (ADDITIVE PROCESS). Consider a constant
arrival process A(t) = At, the delay at the wireless channel
is bounded by

C_e ™ < P(D>d) < Cre (75)

Letting P(D = d) = ¢, the delay-constrained capacity is
expressed by

—log & —log &/

=~ <A< s
0d A 0d (76)

where
. B(x)

c. = f =——), 7
zE%&zo) Sf e?w—=) B(dy) (77)
Cy = sup B(z) (78)

ze[0,z0) S:O efw==) B(dy)’

and B is the distribution of A — C and xo = sup{z : B(z) <
1}.

PRrOOF. For a constant arrival process A(t) = At, the
delay is bounded by

P(Dzd)=P {?EE(A(LL) —-5@1) = )\d} (79)

<e (80)

where the last inequality follows the Lundberg’s inequality
[43, 3], if O(> 0) satisfies the Lundberg equation x(¢) = 0,
where

k(0) = logfee(kfc(t»F(dm). (81)

The approach to obtain the lower bound and to improve the
prefactors is available in [43, 3]. O

THEOREM 7 (MARKOV ADDITIVE PROCESS). Consider
a constant arrival process A(t) = At, the delay conditional
on the initial state Jo = i is bounded by

h(9) (Ji)679)\d h(g) (Ji)eie)\d

— T S L Z2a) S —— 5

maxh0 () S PP 2 DS o) (52
jeE jeB

and, giwen the initial state distribution m, the stationary de-
lay is thus bounded by

P(D>d) =) mPy(D > d). (83)
i€E
Letting P(D = d) = ¢, the delay-constrained capacity is
expressed as

€ - max h(? (J;) 1

L < )\ < 710
S mh@ () S 6 8

e -min b9 (J;)

_JeE

Yiep Tih @ (i)’
(84)

_—110
0d 8

PROOF. For a constant arrival process A(t) = A, the
delay conditional on initial state Jo = 4 is bounded by [50]

P(Dz=d) =P {sup()\(t) —-S() = )\d} (85)
K (i)

< ——— T M 86
minng h(g)(Jj)e ’ ( )

where the last inequality follows the Lundberg’s inequality, if
6(> 0) satisfies the Lundberg equation x(—0) = 0. x(0) and
h® are respectively the logarithm of the Perron-Frobenius
eigenvalue and the corresponding right eigenvector of the
kernel for the Markov additive process S(t) — A, i.e., f‘[@]
The lower delay bound is available in [50]. [



Specifically, if F;; is independent of j, the prefactor in the
Lundberg inequality can be improved and the doubly-sided
bound is expressed as

C_h(J1)e ™ < Pi(D = d) < C D (J)e™ ™, (87)

where
_ . 1 . EJ(Z')
@ = Braona
_ 1 . E](II))
Ty R Taw

and Bj is the distribution of the instantaneous capacity Cj
[3]-

3.2 Channel Comparison

For more involved dependence scenarios, explicit results
of performance measures are hard to derive or no more
tractable. As an alternative, we investigate the influence
trend of different dependence structures, by first defining
stochastic orders on cumulative capacity and then studying
their impact on delay. For convenience, we omit the time
index in this subsection.

3.2.1 Stochastic Ordering

The cumulative capacity Sx is said to be smaller than Sy
in stochastic order, i.e.,

Sx <t Sy, (90)

if the distribution functions Fs, and Fs, are compara-
ble in the sense that P(Sx < z) = P(Sy < z), Vz. In
particular, the pointwise comparison of Sx < Sy implies
the stochastic ordering Sx <s: Sy. An equivalent condi-
tion for stochastic ordering is that the expectation of all
increasing functions F is larger for Sy than for Sx, i.e.,
E[f(Sx)] < E[f(Sy)], Vf € F. Considering the convex-
ity of the functions, two other stochastic orders are defined.
The cumulative capacity Sx is said to be smaller than Sy in
convex order (respectively increasing convex order), written
as

Sx S SY7 (91)

(respectively Sx <ics Sy), if for all convex functions Feq
(respectively all increasing convex functions Fic. ), E[f(Sx)]
E[f(Sy)], Vf € Fex (respectively Vf € Fica).

Intuitively, positive dependence implies that large or small
values of random variables tend to occur together, while neg-
ative dependence implies that large values of one variable
tend to occur together with small values of others [11]. By
comparing to the probability measure of independence, pos-
itive dependence and negative dependence are defined under
stochastic orders. In particular, the cumulative capacity S
is said to have a positive dependence structure in the sense
of increasing convex order, if

SL Sica SP7 (92)
or a negative dependence structure in the sense of increasing
convex order, if

SN ica SJ., (93)
where S has an independence structure. Since the cumu-
lative capacity is an additive function, the relationship be-

tween convex order and increasing convex order is expressed
in the following Lemma.

LEMMA 1. For cumulative capacities Sy, S1 and Sp which
respectively have negative dependence, independence, and pos-
itive dependence structures, if their marginal distributions
are identical for all t, their conver ordering is equivalent to
their increasing convex ordering, i.e.,

SN <ica SJ_ Sica SP — SN <cz SJ_ <cz SP- (94)

PROOF. Since the mean of sum of random variables equals
the sum of means of individual random variables, i.e.,

E[SNn] = E[S1] = E[SpP], (95)

the proof follows directly from that the increasing convex or-
der is identical to the convex order under equal expectations

[28]. O
3.2.2 Ordering of Delay

The Chernoff bound provides a general way to calculate
the exponential bound of delay, i.e., for some 6 > 0,

P(D=>d) < i P{A(t) — 5(t) > A} (96)

o0
< E[fOt=S@)] . j—0xd. 97
Z E | e (97)

As the distribution of wireless channel capacity is light-
tailed, the asymptotic behavior of the bounding function
is still exponential for weak forms of dependence, while it
becomes heavy-tailed for stronger dependence [3]. Specifi-
cally, the decay rate of the tail distribution is reflected by
the adjustment coefficient, which gives a crude comparison
of the exponential bounds.

THEOREM 8. Consider two wireless channel capacity pro-
cesses, if the cumulative capacities are convexr ordered, then
the adjustment coefficients for the delay bounds are corre-
spondingly ordered, i.e.,

S(t) <ew S(t), Vte N =0 < 0. (98)
Proor. Consider the negative increment process, i.e.,
—X(t)=C(t) — a(t). (99)

If it is light-tailed, then the delay violation probability has
an exponential bound with adjustment coefficient 6 > 0 de-
fined by k(#) = 0, where [3, 33]
1 ¢ i
k() = lim - E [e“)ﬂ:lx(z)], (100)
t—ow t

By exploring the ordering of the cumulative increment pro-
cess,

i —X (i) <ex i —X(i), VneN, (101)

i=1

the adjustment coefficients are ordered as follows [3, 33|
0<0. (102)

Specifically, for constant arrival, the ordering of the cumu-
lative capacity results in the ordering of the cumulative neg-
ative increment process. []

The ordering of the adjustment coefficients gives an order-
ing of the asymptotic delay tail distribution, with some re-
strictions, the result can be applied to the delay-constrained
capacity.



COROLLARY 4. For delay bounding functions with the same

prefactor or are bounded by a same prefactor before the expo-
nential term, the ordering of the cumulative capacity SN <cs
S| <z Sp indicates the ordering of the delay, i.e.,

P(Dy 2 z) < P(DL > z) < P(Dp > x), (103)

and the ordering of the delay-constrained capacity for the
same prefactor, i.e.,

AN = AL = Ap. (104)

Since every multi-dimensional distribution functions y —
I(y < x) and multi-dimensional survival functions y —
I(y > x) are both supermodular functions [45], i.e., f(x) +
fly) < f(x Ay) + f(x vy), the supermodular ordering of
the instantaneous increment, i.e.,

—X <om —X, (105)

indicates that the marginal distributions of the instanta-
neous increments are identical, which can be used for com-
parison between scenarios of instantaneous increment with
identical marginal distributions and different dependence

structures. Specifically, if —X <gp, —)N(, then 37 | —X(4) <ca

> —X(i).

REMARK 3. The ordering results indicates that we can
use an alternative system model for tractable analysis , if the
dependence structure of the new model has a monotonic re-
lationship with the original one that is mathematically com-
plex. For instance, the results under independence assump-
tion can be treated as a conservative approximation for neg-
ative dependence cases. Particularly, the impact of negative
and positive dependence on delay in Markov additive capac-
ity process, and comparison with the additive capacity pro-
cess, are shown in Fig. 2.

3.3 Ad hoc Scalability

In an ad hoc network, nodes may communicate in a multi-
hop way and the output from the previous hop is exactly the
input to the next hop [20]. An instinct feature of such sys-
tems is self-interference, i.e., the total input to the channel
consists of both the output from the previous hop and the
output of itself [32]. A wireless channel with self-interference
is a queueing system with feedback, which is extremely dif-
ficult for end-to-end stochastic performance analysis and re-
garded as an open problem in stochastic network calculus
[26]. In this subsection, we give a solution to this problem.
Since the delay lower bound of systems without feedback
holds in general, we focus on the delay upper bound here.

3.3.1 Single-hop Case

Consider a wireless channel with capacity S(t), input A(¢),
and output A*(t), where the output A*(¢) is directly fed
back into the wireless channel, the total input A(t) to the
channel is

A(t) = A(t) + A* (). (106)

In the more general case, if the output A*(¢) passes through
a server with capacity process S(t) on the path of feedback,
the overall input to the channel becomes

At) = A(t) + A* @ S(t). (107)
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Figure 2: Delay tail distribution of Rayleigh channel. “-
’ and “+” depict respectively negative and positive de-
pendence in capacity, the lines depict the double-sided
bounds with the intervals depicted as the shaded areas.
A = 10kbits, W = 20kHz, SNR = % for the addi-
tive capacity process, SNR. = [¢*® 0.9¢%-%;0.8¢%% 0.7¢°%],
and P = [0.4125 0.5875;0.2518 0.7482] for XA — C(t)
indicating negative dependence in capacity and P =
[0.2875 0.7125;0.3054 0.6946] for A — C(¢) indicating pos-
itive dependence in capacity, for the Markov additive ca-
pacity process with initial distribution 7« = [0.5 0.5]. In
case Fj; is independent of j, similar phenomena appears.

For such a feedback system, we can treat it as a blackbox
providing service S(t) only to the input A(%), i.e.,

A*(t) = A® S(t). (108)

The following theorem establishes a relation between S(t),
S(t) and A(t).

THEOREM 9. The service process S(t) for the input A(t)
is lower bounded by

S(t) = S(t) — A(t), (109)
correspondingly, the delay is upper bounded by

HD>®<P%WM®+A@—ﬂm>AM&.Om)

t=0

PROOF. The service for the input A(t) is bounded by

St) = S(t)—A*@S(t) (111)
> S(t)— A*@) (112)
> S(t)— A(), (113)

where the first inequality follows the leftover service un-
der blind scheduling [26], the second inequality follows the
monotonicity of bivariate min-plus convolution [6], i.e., V¢,
[®g < gif flt) =0 or f@®g < [ if g(t,1) — 0, and
the last inequality takes advantage of system causality, i.e.,
A(t) = A*(t). By definition (63), the delay is bounded by

mp;@gp%@mm—wm—mmzAw}JHQ

t=0

where time reversibility is assumed. []



For additive and Markov additive capacity processes with
constant arrivals, explicit delay results directly follow.

COROLLARY 5  (ADDITIVE CASE). For the constant ar-
rival process A(t) = At, the delay is bounded by

P(D=d) < P {sup(?)\(t) —-5() = d)\} (115)

t=0

< et (116)

where the last inequality follows Lundberg’s inequality, if 0 >
0 satisfies the Lundberg equation x(0) = 0, where k(0) =
log { /A=) F(dz).

COROLLARY 6
stant arrival process A(t) = At, the delay conditional on ini-
tial state Jo = i is bounded by

P(D>=d) < P {sup(Q)\(t) —-S5() = d)\} (117)
RO (J;) —0dx

—_— 11
minjeE h(e)(J])e ’ ( 8)

where the last inequality follows Lundberg’s inequality, if 6 >
0 satisfies the Lundberg equation r(—0) = 0. k(0) and h(®)
are respectively the logarithmic Perron-Frobenius eigenvalue
and the corresponding right eigenvector of the kernel for the
Markov additive process S(t) — 2Xt, i.e., F[A]. Then the
delay is bounded by P(D > d) < }._p mPi(D > d).

3.3.2  Multiple-hop Case

A simple example of self-interference is neighbor inter-
ference, i.e., interference only exists in adjacent hops, the
end-to-end capacity is expressed as

(S1—AN)®...® (Sv — AX)(t) (119)
Z(S1-A)®...Q(Sy — A1)(t) (120)
= ellrllf ) (Si - Al)(ui—lyu’i)y (121)

where U(z) = {u = (uo,u1,...,un) : up = 0,uny = ¢,0 <
ur < ... < un-1 <t} A(t) = AT = ... = AN,
and the inequality holds because of the monotonicity of the
bivariate min-plus convolution [6], i.e., f ® g(s,t) < f® g,
V f< fandg<g.

The neighbor interference is the extremal scenario where
only output interference should be considered. For the generic
K hop interference, where K is independent of the net-
work size N in principle, both output and input interference
should be taken into account and the most severe interfer-
ence contains K output interference and K — 1 input inter-
ference. In contrast to output interference towards previous
hops, input interference is the interference to the next hops.
Under the same assumption for neighbor interference and
with the same approach for analysis, the service at each hop
is lower bounded by

Si(t) — K* A (1), (122)

where K* = min(2K — 1, N). It is worth noting that the
interference of the input is absolute while the interference of
the output is relative in that it exists only when the output
is fed back into the wireless channel.

Based on the above insight, the delay result is summarized
in the following theorem.

(MARKOV ADDITIVE CASE). For the con-

THEOREM 10. Consider a concatenation of wireless chan-
nels with cumulative capacity process Si(t), 1 < ¢ < N.
Then, for constant arrival Ai(t) = M, the end to end delay
is expressed as

o0
P(D > d) < 2 Z E [e—sz\;lS;k(ui,l,ui):I .eGA(t—d)7
t=0 ueld (x)

(123)
where SF (ui—1,u;) = (Si—K* A1) (ui—1,u;), K* = min(2K —
1,N), and U(z) = {u = (uo,u1,...,un) : up = 0,un =
t,0<wu; <...<un-—1 <t}

PROOF. Recall that the distribution function of the cu-

mulative capacity of a concatenation of wireless channels is
bounded by

Fs,(z) =P{S1®...® Sn(t) < z} (124)
< Z E [6—92£\L1 Si(ui—laui):l . 691’ (125)

O<suj<..<uny_1<t

where up = 0 and uy = t, for some 6 > 0.

Specifically, the network capacity with interference is bounded

by
St)=(S1 —AH®...® (Sy — A% (@) (126)
> (81— K*A)®...® (Sy — K*A1)(t), (127)

where K* = min(2K — 1, N). Thus the end to end delay is
bounded by

o0
P(D=d)< ) P{S(t) < A(t—d)} (128)
t=0
o0
< Z E[efezéilsﬁui_l,un] S D - (199)
t=0 ueld (x)

where S;"(ui_l,ui) = (Sl — K*A1)(ui_1,ui) and U(m)
{u = (uo,u1,...,un) : up = O,uy = ¢,0 < ug < ...
un—1 < t}, if the summation converges for some 6 > 0.

N

In the special case, where a common service process S(t)
is shared among each hop, which means that the service
process at each hop is interfered by all the output processes
synchronously, the end-to-end capacity is expressed as

(SiA?‘)@...@(S i A;“A1>(t) (130)

i=1 i=1,iAN—1

> (S—NAN®...® (5 — NA)(1) (131)
N

= ue]]];{lfz) izl(S*NAl)(ui_l,ui) (132)

> (5 - NAD(®), (133)

where the second inequality holds under the assumption that
S(t)— N Ai(t) is a subadditive process [29], e.g., a stationary
additive process. In addition, a corresponding upper bound
is available as (S — NA%)(t). The insight is summarized in
the following corollary.

COROLLARY 7. Consider a concatenation of wireless chan-
nels with self-interference and all hops share a common wire-
less channel S(t). If the transient network capacity éiv(t)
converges, it is asymptotically expressed as

— S—NA:)(t
lim C; (¢) = lim % (134)

t—0 t—0

which results from limy—o A1(t)/t = lime—oo A% (2)/1.



This result indicates that, if a common channel is shared
among a group of nodes, a multi-hop network can be mod-
eled as a single-hop system, and the impact of multiple hops
on the time-average network capacity is equivalent to the
impact of multiple identical inputs. On the other hand, for
different groups of nodes far apart sufficiently for channel
reuse, the impact of routing hops is localized in each group,
and the group with the most severe interference is the bot-
tleneck of the end-to-end routing. This localization prop-
erty provides a diversity to the network structure, which
increases the scalability of the ad hoc networks.

4. CONCLUSION

Future wireless communication calls for exploration of more
efficient use of wireless channel capacity to meet the increas-
ing demand on higher data rate and less latency. This mo-
tivates the analysis to maximally take into account the spe-
cial characteristics of the wireless channel capacity process,
which include the tail behavior, stochastic dependence, and
self-interference in wireless communication. To this aim,
a set of new results directly exploring these characteristics
have been presented in this paper. Among them, an appeal-
ing finding is that, for typical fading channels, their instan-
taneous capacity and cumulative capacity are both light-
tailed. It immediately implicates that the cumulative capac-
ity and subsequently the delay and backlog performance can
be upper-bounded by some exponential distributions, and
provides evident justification for the exponential distribu-
tion assumption used in the literature. Specifically, various
bounds have been derived for distributions of the cumula-
tive capacity and the delay-constrained capacity, considering
three representative dependence structures in the capacity
process, namely comonotonicity, independence, and Marko-
vian. To help gain insights in the performance of a general
wireless channel, stochastic orders are introduced to the cu-
mulative capacity process, based on which, results to com-
pare the delay and delay-constrained capacity performance
have been obtained. Moreover, the open SNC problem of
performance analysis of self-interference in wireless commu-
nication is tackled through a novel approach that models
the wireless channel as a feedback system, taking advantage
of system causality, original results have been derived. In
all, the set of results obtained in this paper provide funda-
mental contributions to linking the SNC theory to wireless
networks and hence contribute significantly to its extension
towards a calculus for wireless networks.

APPENDIX
Markov Additive Process

A Markov additive process is defined as a bivariate Markov
process {X:} = {(J¢, S(t))} where {J;} is a Markov process
with state space E and the increments of {S(t)} are governed
by {J:} in the sense that [3]

Ef(S(t+s) = S()g(Jess)|F2] = EJt,o[f(S(S))g(Js()l :

135

For finite state space and discrete time, a Markov additive

process is specified by the measure-valued matrix (kernel)

F(dz) whose ijth element is the defective probability distri-
bution

Fij (daz) = Pi’()(Jl = j, Y € d:c), (136)

where Y; = S(t) — S(t — 1). An alternative description is
in terms of the transition matrix P = (pi;)i jer (here p;j =
P;(J1 = 7)) and the probability measures

Fij(dz)

i

(137)
Consider the matrix Fy[0] = (Ei[e®S®;J, = j])ijem, it is
proved that [2]

Fo[0] = F[o]", (138)

where F[0] = F1[0] is a E x E matrix with ijth element

FUD[6] = pyy (e F0 (dz), and e © = {f e R: [ " F9)(dz) <

o0}. By Perron-Frobenius theory, e and h® = (hEG))iEE
are respectively the positive real eigenvalue with maximal
absolute value and the corresponding right eigenvector of
f‘[@], ie., f[@]h(g) = "On®  In addition, for the left
eigenvector v vOR® = 1 and wh® = 1, where w =
v(® i the stationary distribution and h® =e.
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