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ABSTRACT
The α-fair resource allocation problem has received remark-
able attention and has been studied in numerous application
fields. Several algorithms have been proposed in the context
of α-fair resource sharing to distributively compute its value.
However, little work has been done on its structural proper-
ties. In this work, we present a lower bound for the optimal
solution of the weighted α-fair resource allocation problem
and compare it with existing propositions in the literature.
Our derivations rely on a localization property verified by
optimization problems with separable objective that permit
one to better exploit their local structures. We give a local
version of the well-known midpoint domination axiom used
to axiomatically build the Nash Bargaining Solution (or pro-
portionally fair resource allocation problem). Moreover, we
show how our lower bound can improve the performances
of a distributed algorithm based on the Alternating Direc-
tions Method of Multipliers (ADMM). The evaluation of the
algorithm shows that our lower bound can considerably re-
duce its convergence time up to two orders of magnitude
compared to when the bound is not used at all or is simply
looser.

Keywords
Weighted α-fairness; Resource allocation; Network utility
maximization; Proportional fairness; Max-min fairness; Al-
ternating Directions Method of Multipliers.

1. INTRODUCTION
The α-fair resource sharing model, first studied in [Mo

and Walrand], has already been investigated in numerous
application domains, as well as its weighted variants. The
weighted (w, α)-fair resource allocation problem is to find a
vector x∗ ∈Rn

+ such that 1) the utility

fα(w,x) = {
∑
n
i=1wi

x1−αi
1−α , α ≠ 1,

∑
n
i=1wi log(xi), α = 1

is maximized at x = x∗, and 2) x∗ lies in a feasible set de-
fined by linear constraints of the form Ax ⩽ c where c ∈Rp

+
is a capacity vector for a number p of resources and A is the
binary user-resource incidence (p,n)-constraint matrix, for
a number n of users, weighted by a positive vector w ∈Rn

+ .
The family of (w, α)-fair metrics is general and includes
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popular fairness concepts such as max-throughput (α = 0),
proportional fairness, also called Nash Bargaining Solution
(α = 1), min-delay (α = 2) and arbitrarily close approxima-
tions of max-min fairness (α→∞).
In this paper, we study the general weighted (w, α)-fair

resource allocation problem under linear constraints and we
propose a novel lower bound on its optimal solution. A lower
bound is a positive vector d ∈Rn

+ respecting feasibility (that
is, Ad ⩽ c) and such that x∗ ⩾ d. Finding a lower bound
in the context of fair resource sharing is of great interest
– it permits one to automatically define a minimal share
that is attributable to each resource user as initialization
of any exact computation that could take time, and may
be helpful in the phase of design of a system. We seek to
derive user-centric formulas in the sense that their value for
a specific user would depend only on the resources within a
localized problem (and not on the global topology) and only
on the users that compete over the same resources. We then
evaluate the formulas under different instance regimes and
compare them to the literature in order to appreciate the
improvements they provide.
Remarkably, we also show how our lower bound can en-

hance the performance of a distributed algorithm based on
the Alternating Directions Method of Multipliers (ADMM)
(see [Boyd et al.]) that can be invoked to solve optimally
the α-fair resource allocation problem. The ADMM is well-
known for its fast convergence properties to modest accu-
racy; however, its performance is highly conditioned by the
initialization of its so-called penalty parameter that can,
when badly tuned, induce an extremely poor convergence
rate. Thus, tuning correctly the penalty parameter is a task
that one should not neglect when using the ADMM. In light
of recent studies (in particular, we exploit the results proven
in [Deng and Yin]), we demonstrate how our lower bound
permits one to accomplish this task for our particular prob-
lem.
A well known lower bound of the proportionally fair (α =

1) resource allocation was brought in as a building block
of the axiomatization of the Nash Bargaining Solution and
is commonly referred to as the midpoint domination axiom
[de Clippel]. It states that each user i is given at least a
fraction wi

∑nj=1wj
of their dictatorial allocation, that is, the re-

source they would receive if the other users accept to receive
0. We refer to the bound given by the midpoint domination
axiom as the midpoint allocation. One can imagine that the
midpoint allocation becomes arbitrarily poor as the total
number of users becomes large, and its utility as a first es-
timation of the optimum allocation, negligible. Indeed, the
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formula includes the weights of the whole set of users and is
independent of the problem’s local structure. Similarly, the
general lower bound found in [Marasevic et al.] may suffer
from these dependencies.
Concerning proportional fairness (α = 1), we give a more

precise midpoint domination axiom, and provide a lower
bound that we call local midpoint. Our lower bound on
the proportionally fair allocation can be interpreted as a
particular case of the midpoint domination axiom to local-
ity – now, each user i is proportionally fairly attributable
at least a fraction wi

∑j∈Si wj
of their dictatorial allocation,

where Si is not the total set of users, but the set of users
in competition with the user i for some resource. Few works
attempted at providing lower bounds for the general (w, α)-
fair resource allocation. In fact, the most recent available
bound is shown by [Marasevic et al.], and used by the au-
thors for an initialization of their α-fair heuristic. To the
best of our knowledge, this is the best bound that could
be found in the literature for the α-fair resource allocation
problem and we refer to it as the State-of-the-Art (SoA).
The remainder of the paper is organized as follows: Sec-

tion 2 is dedicated to the model definition and problem
statement. Our lower bound presentation is addressed in
Section 3. In Section 4, we broadly remind the key features
of the ADMM-based α-fair distributed algorithm used for
our illustration. The performance of the latter is shown in
Section 5 and finally, Section 6 concludes the paper.

2. MODEL DEFINITION
Let us start by formalizing the weighted α-fair resource

allocation problem. In this work, we adopt the terminology
of rate control in fixed communication networks. Thus, a
resource will be referred to as a link and a user will be called
a connection request (or shortly, request) from a source node
to a destination node over a route formed of several links.
Let J be the set of network links, each link j having a

capacity cj ∈R+. Let R be the set of requests. Each request
r has a predefined route that identifies with a subset Jr ⊂
J of links of the network. In turn, for each link j ∈ J ,
Rj ∶= {r ∈ R; j ∈ Jr} is the set of all requests having a route
that contains the link j. We define the link-route incidence
∣J ∣ × ∣R∣-matrix A as:

Ajr = {
1 if j ∈ Jr
0 otherwise

For each request r, xr denotes the bandwidth allocated to
r along its route Jr. We say that an allocation x = (xr)r∈R
belongs to the feasibility set C (or is feasible) if it satisfies
the capacity constraint (1) below:

x ∈ C⇔Ax ⩽ c, x ⩾ 0 (1)

where c = (cj)j∈J . Each request r is associated with a weight
wr ∈ R+. The weight vector w = (wr)r∈R accounts for a
degree of relative importance of each request that can be
defined at the discretion of the network. Weighted α-fairness
is formalized as in Definition 1 below.

Definition 1 ((w, α)-fairness). Let C ⊂ R
∣R∣
+ be a

feasibility set defined as in (1), being a strict superset of
{0}. Let w ∈R

∣R∣
+ and x∗ ∈ C. We say that x∗ is (w, α)-fair

(or simply α-fair when there is no confusion on w) if the

following holds:

∀r ∈ R, x∗r > 0 and ∀x ∈ C, ∑

r∈R
wr
xr − x

∗
r

x∗αr
⩽ 0.

Equivalently, x∗ is (w, α)-fair if, and only if x∗ maximizes
the α-fair utility function fα defined over C − {0}:

max
x∈C

fα(w,x) = ∑

r∈R
fαr (wr, xr), (Pα)

where

fαr (wr, xr) = {
wr

x1−αr
1−α , α ≠ 1,

wr log(xr), α = 1.

3. ALPHA-FAIRNESS – A LOWER BOUND
In this section, we derive an explicit lower bound on the

general (w, α)-fair resource allocation problem. Our lower
bound only depends on the weight vector w, the capacity
vector c and the link-route incidence matrix A. Moreover,
the bound exploits the local structure of the problem, which
prevents it from deteriorating systematically with the prob-
lem size. We compare it to the SoA bound that one can
formulate as follows:

Proposition 1 ([Marasevic et al.]). Let the vector
x∗ be the optimal solution to the α-fair resource allocation
problem. Then, for all r ∈ R:

● if 0 < α ⩽ 1, x∗r ⩾mr(α) ∶= (
wr

wmaxM
min
j∈Jr

cj
∣Rj ∣

)

1/α
c
1−1/α
max

● if α > 1, x∗r ⩾mr(α) ∶= (
wr

wmaxM
)

1/α
min
j∈Jr

cj
∣Rj ∣

(
cmin

cmax
)

1−1/α

where wmax = maxwr, M = min{∣R∣, ∣J ∣}, cmin = min cj and
cmax =max cj.

We seek to improve the above bound by removing the
global dependencies on wmax, ∣Rj ∣, and M , cmin and cmax,
those parameters being the major degradation factor when
the size or congestion of the problems increase.
For each request r ∈ R, let br ∶= minj∈Jr cj . The so-called

utopia point b ∶= (br)r∈R is the (infeasible when the problem
is non trivial) allocation representing the value each request
would receive if they were alone in the network, that is, its
dictatorial allocation. Our bound for the (w, α)-fair alloca-
tion only depends on the utopia point (hence on the capacity
vector c), the matrix A and on the weight vector w. For
r ∈ R, let Rr ∶= {s ∈ R;Jr ∩ Js ≠ ∅}, i.e., the set of requests
sharing at least one resource with r and Rr ∶= R −Rr.
First of all, we use the separability of the objective func-

tion of Problem (Pα) to better estimate our lower bound
on a restricted problem. Specifically, we prove a restriction
lemma (see Lemma 1) that permits one to avoid unnecessary
dependencies between requests that do not share resources
together. Then, we prove our general lower bound on the
corresponding restricted problems. Thanks to Lemma 1, the
bound remains unchanged in the original problem.

3.1 A restriction lemma
In this paragraph, we show that instead of evaluating our

bound on Problem (Pα), one can use a smaller request-
centric problem. Specifically, let x∗ denote the optimal solu-
tion of Problem (Pα) and let r0 ∈ R be an arbitrary request.
We define the restricted problem at r0, as the following:



min ∑

r∈Rr0
−fαr (wr, xr) (P̃r0)

s.t. ∑

r∈Rj∩Rr0
xr ⩽ c̃j ∶= cj ∀j ∈ Jr0

and ∑

r∈Rj∩Rr0
xr ⩽ c̃j ∶= cj − ∑

r∈Rj∩Rr0
x∗r ∀j ∈ J − Jr0 .

Intuitively, Problem (P̃r0) arises when the allocations of all
the requests that do not share any link with r0 are fixed to
their optimal α-fair value (that is, following the vector x∗),
and one needs to compute the α-fair allocation of the re-
maining requests, that is, the requests within Rr0 that share
at least one resource with r0. The capacity constraints are
thus updated taking into account the amounts of resources
that are already allocated, as shows the second line of the
constraints. Note in passing that all the links in J − Jr0
that do not serve any of the requests within Rr0 form trivial
constraints in (P̃r0) and can hence be removed without any
loss.
We then have the following result:

Lemma 1. The restriction to (P̃r0) does not change the
optimal allocation of the remaining requests: if x is the opti-
mal solution of the Problem (P̃r0), then, xs = x

∗
s , for s ∈ Rr0 .

Proof. Consider the problem:

min∑
r∈R

−fαr (wr, xr) (2)

s.t. Ax ⩽ c

xr ⩾ x
∗
r ∀r ∈ Rr0 .

It suffices to show that the problems (2) and (P̃r0) are equiv-
alent. Then, the unicity of the solutions permits one to con-
clude.
We know that the problem (2) is feasible, as x∗ is a fea-

sible point. Denote its optimal solution by x̃. We remark
that both x∗ and x̃ are feasible for both problems (Pα) and
(2). Hence, by optimality, we necessarily have fα(w, x̃) =

fα(w,x∗). Moreover, for instance, problem (Pα) has a
unique optimal solution. Thus,

x∗ = x̃.

Particularly for r ∈ Rr0 , x∗r = x̃r. Thus, we can fix the values
xr = x

∗
r for r ∈ Rr0 without changing the optimum. Thus,

Problem (2) is equivalent to the restricted problem (P̃r0).

Thanks to Lemma 1, we are now ready to present our
lower bound on the α-fair allocation based on the structure
of the restricted problems.

3.2 Lower bound
We now show the main result of this paper. We define the

local midpoint p as the following:

∀r ∈ R pr ∶=
wr

∑

s∈Rr
ws
br.

Theorem 1. Let x∗ denote the optimal solution of prob-
lem (Pα). Let r0 ∶= argmins∈Rps. Then, x∗ can be lower
bounded as follows:

● if α ⩾ 1, ∀r ∈ R x∗r ⩾ dr(α) ∶= p
1−1/α
r0 p1/αr

● if 0 < α ⩽ 1, ∀r ∈ R x∗r ⩾ dr(α) ∶=
⎛

⎜
⎜

⎝

wrbr

∑

s∈Rr
wsb

1−α
s

⎞

⎟
⎟

⎠

1/α

.

Proof. We first prove the proposition for α ⩾ 1. Let us
define the request rmin as the request with the least optimal
allocation: rmin = argmins∈Rx

∗
s . By definition of r0, we have:

prmin ⩾ pr0 (3)

Let r ∈ Rr. By Lemma 1, it suffices to show the inequality in
the restricted problem (P̃r) associated to r. Let Cr denote
its feasible set. Thus, for all (xs)s∈Rr ∈ Cr we have:

∑

s∈Rr
ws
xs − x

∗
s

x∗αs
⩽ 0,

This inequality holds for all feasible (xs)s∈Rr ∈ Cr. Thus,
we evaluate it at the dictatorial allocation of r, that is, at
the point x defined as xr = b̃r and xs = 0 for all s ∈ Rr −{r}.
Let us note in passing that b̃r = minj∈Jr c̃j = minj∈Jr cj = br.
Thus,

wr b̃r = wrbr ⩽ x
∗α
r ∑

s∈Rr
wsx

∗1−α
s ⩽ ( ∑

s∈Rr
ws)x

∗1−α
rmin

x∗αr ,

where we remind that rmin = argmins∈Rx
∗
s and 1 − α ⩽ 0.

Rearranging the terms, one gets:

wrbr

∑

s∈Rr
ws
x∗α−1rmin

⩽ x∗αr ,

which yields:

p1/αr x∗1−1/αrmin
⩽ x∗r (4)

In particular, applying equation (4) to r = rmin, we get:

x∗rmin
⩾ prmin ⩾ pr0 (5)

Finally, we plug equation (5) in equation (4) to obtain the
desired lower bound on x∗r (because 1 − 1/α ⩾ 0).
Next, we show the bound for 0 < α < 1. In the same

fashion, we look at the restricted problem. Let r ∈ R and
consider its restricted problem. Then, one has:

wrbr
x∗αr

⩽ ∑

s∈Rr
wsx

∗1−α
s ⩽ ∑

s∈Rr
wsb̃

1−α
s ⩽ ∑

s∈Rr
wsb

1−α
s .

Rearranging the terms finally provides the desired bound.
For any value of α, one can remark that the bound (dr(α))r∈R
only depends on the capacity vector c, the weight vector w,
and the link-route incidence matrix A.

3.3 Illustration
To conclude this section, we illustrate a comparison of the

two presented lower bounds m and d introduced in Proposi-
tion 1 and Theorem 1, respectively, under different regimes.
Given the formulas, one can remark that the sensitivity of
the bound to arbitrary problem sizes should be lessened as
now more focused on local structures. For α ⩽ 1, we obtain
request-centric formulas. For general α > 1, this elimina-
tion came with the dependency on the global minimum local



Figure 1: A comparison of the two bounds. The scores, and the minimum, average and maximum bound improvements are illustrated
in the cases of (a)-(b) a constant δw for different values of δc, and of (c)-(d) a constant δc for different values of δw. Figures (b) and (d)
show the bound improvements in the two extreme situations δc (resp. δw) = 0.01 (resp. 1) in dashed lines (resp. solid lines).

midpoint value pr0 . Intuitively, one can remark that the two
bounds may react differently to a fluctuating asymmetry of
the weight vector w or the capacity vector c, namely, a vari-
ation of the two parameters δw ∶=

minwr
maxwr

and δc ∶= cmin
cmax

. For
a better vision, we illustrated this behavior in Figure 1.
The two bounds were compared on instances with 1000

requests over a same graph of type barabasi(100,4) (see [Al-
bert and Barabási]). The routes were generated at random
by taking the shortest path between pairs of sources and
destinations drawn uniformly at random. The weights (resp.
link capacities) were also drawn uniformly at random within
intervals I satisfying inf I/ sup I = δw (resp. δc). For each
instance, and each α, we define the score of d as the number
∣{r ∶ dr(α) > mr(α)}∣/∣R∣. The score represents the propor-
tion of requests for which our bound d(α) beats the SoA
bound m(α) for a particular α. In Figure 1(a), the param-
eter δw was fixed to 1 (which namely means w = 1) and
we plotted the score of d versus α for different values of δc.
Figure 1(c) shows the score in the other extreme situation
δc = 1 (which means all the link capacities are equal) for
different values of δw.
In order to appreciate the quality of the bound improve-

ment, if any, we plotted, in Figures 1(b) and 1(d), the corre-
sponding bound improvements, measured with the values of
the ratios dr(α)/mr(α). To preserve readability of the plots,
we represented only the extreme situations corresponding to
the values δc = 0.01 (dashed lines) and δc = 1 (solid lines)

for Figure 1(b) and to the values δw = 0.01 (dashed lines)
and δw = 1 (solid lines) for Figure 1(d). Figures 1(b) and
1(d) show the best, worst, and average improvements en-
countered in the same problem instance. All the points
represented in Figure 1 correspond to an average over 10 in-
stances generated under identical conditions. In Figures 1(a)
and 1(c), we also included the specific points as translucent
scattered markers.
According to Figure 1, our bound is an absolute improve-

ment for values of α in the interval [0,2] (thus including the
max-throughput, proportional fairness, and min-delay pop-
ular concepts) in all situations. Particularly for proportional
fairness, the simulations show that we improved the bound
m by two orders of magnitude in all situations. For min-
delay fairness, the bound is generally improved on average
by a multiplicative factor between 1 and several tens. For
greater values of α, it is interesting to see that either d or
m is more adapted to certain problem structures. For in-
stance, d will be of greater interest when the network link
capacities are more heterogeneous, δc ≪ 1 (which may cor-
respond to situations where the network is asymmetrically
congested), whereas m is more adapted to asymmetrically
weighted problems, δw ≪ 1. One can thus conclude that
the two available bounds complement each other for general
α ⩾ 1.
After presenting our bound, we now demonstrate how it

permits one to boost the performance of an algorithm that



solves the (w, α)-fair resource allocation problem.
The next section is dedicated to the presentation of the

algorithm, based on ADMM.

4. FAST AND DISTRIBUTED ADMM (FD-
ADMM)

Several approaches may be used to tackle the (w, α)-fair
resource allocation problem (e.g., see [Kelly et al.] and [Palo-
mar and Chiang] for a tutorial). One of them is the Alter-
nating Directions Method of Multipliers (ADMM) (see, e.g.,
[Boyd et al.]). The ADMM is well known for its distributiv-
ity properties that permit one to decouple constraints han-
dled in parallel then plugged in together by means of con-
sensus constraints. In [Allybokus et al.], these properties
are used to design a fully distributed algorithm that solves
optimally the problem in the context of traffic rate control
in distributed Software-Defined Networks. For a description
of the general ADMM framework, the reader may refer to
[Boyd et al.], and for a more detailed construction of the
presented algorithm, to [Allybokus et al.]. In this section,
we briefly describe the design of the distributed algorithm
used in the latter.

4.1 Algorithm overview
Assume the network links are split into a number P ⩾ 1

of domains. Each domain p corresponds to a subset Jp ⊂ J
of links forming a covering of the whole set J :

P

⋃

p=1
Jp = J.

For p = 1 . . . P , let Rp = {r ∈ R,Jp ∩ Jr ≠ ∅} be the set of
requests that traverse domain p, and Ir = {q ∈ [1, P ]; r ∈ Rp}
the set of domains the request r traverses. The problem (Pα)
can thus be rewritten as: :

min
x∈C ∑

r∈R
−fαr (wr, xr)

=min
x∈C

P

∑

p=1
∑

r∈Rp
−

1

∣Ir ∣
fαr (wr, xr)

=min
x

P

∑

p=1

⎧
⎪⎪
⎨
⎪⎪
⎩

ιp(x) + ∑

r∈Rp
−

1

∣Ir ∣
fαr (wr, xr)

⎫
⎪⎪
⎬
⎪⎪
⎭

∶=min
x

P

∑

p=1
ιp(x) + gp(w,x), (6)

where ιp is the indicator function of the capacity subset
associated to domain p:

ιp(x) = ∑

j∈Jp
ιj(x), ιj(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 if ∑

r∈Rj
xr ⩽ cj

∞ otherwise

Further, we separate artificially the problem by creating a
private variable xp ∈R∣Rp ∣ for each domain p, and by enforc-
ing the agreement upon their values between domains with
consensus constraints. Problem formulation (6) now reads:

min
P

∑

p=1
gp(w,xp) + ιp(xp)

s.t xpr = xqr ∀p, q ∈ Ir ∀r ∈ R (7)

xp ∈R
∣Rp ∣

∀p = 1 . . . P.

Algorithm 1 Fast Distributed ADMM (FD-ADMM)

1: procedure of Domain p
2: Receive z̃p = (z̃r)r∈Rp
3: Receive updated reciprocal penalty λ0 from

master
4: for j ∈ Jp do
5: ujr ← ujr + yjr − z̃pr ∀r ∈ Rj
6: yj ← P(j, z̃p −uj)
7: end for
8: for r ∈ Rp do
9: vpr ← vpr + xpr − z̃pr

10: xpr ← argminx {−f
α
r (wr, x) +

1
2λ0

∣∣x − (z̃pr − vpr)∣∣
2
}

11: end for
12: end procedure
13: procedure of Master
14: Compute lower bound d and λ0 using Eq. (10)
15: while termination condition not met do
16: λ0 ← λ updated using RB, by [He et al.]
17: for r ∈ R do
18:
19: z̃r ←

1
∣Jr ∣+∣Ir∣ (∑j∈Jr yjr +∑q∈Ir xqr)

20: end for
21: for p ∈ P do
22: Send z̃p = (z̃r)r∈Rp to domain p
23: end for
24: end while
25: end procedure

Finally, we decompose the problem by separating the pri-
vate objective of each domain. For each domain p, and each
j ∈ Jp, the vector yj defines a copy of the variable xp for
link j and is reserved for the component function ιj . We
can write Problem (7) in the following form:

min
P

∑

p=1
gp(w,xp) + ∑

j∈Jp
ιj(yj) ∶= ∑

p∈P
Gp(w,xp,yp)

s.t xpr = xqr ∀p, q ∈ Ir ∀r ∈ R (8)
xpr = yjr ∀j ∈ Jp ∀r ∈ Rj

xp ∈R
∣Rp ∣

∀p = 1 . . . P

yj ∈R
∣Rj ∣

∀j ∈ J

yp = (yj)j∈Jp ∀p ∈ P

Let χ denote the indicator function of the feasible set (8).
Then, the formulation takes the compact 2-block form:

min∑
p∈P

Gp(w,xp,yp) + χ((x
′
p)p∈P , (y

′
p)p∈P ) (9)

s.t. (xp,yp) = (x′p,y
′
p)

Applied to the last formulation (9), the distributed ADMM
is described in Algorithm 1. In lines 5 and 10, the variables
uj ∈R

∣Rj ∣ and vp ∈R
∣Rp ∣ are dual variables associated with

the constraints {yj = y′j} and {xp = x′p}, respectively in (9).
Also, P(j, ⋅) is the Euclidean projection onto the simplex
{yj ∈R

Rj s.t. yjr ⩾ dr and ∑r∈Rj yjr ⩽ cj}, λ > 0 is a scalar
reciprocal penalty parameter, and d ∈ RR is a lower bound
on the (w, α)-fair solution that will be computed with the
input parameters.



4.2 Performance
The convergence of ADMM is provably known since the

1990s (see [Eckstein and Bertsekas]), and its convergence
rate has been widely studied. Today, the most general con-
vergence rate of ADMM is known to be O(1/T ) (T being
the iteration count), and linear convergence rates are prov-
ably obtained for strongly convex problems. Nevertheless,
the performance of the ADMM remains highly sensitive to
the initialization and the update of the penalty parameter.
In [Deng and Yin], the linear convergence rate of ADMM for
strongly convex problems is quantified and optimized with
regards to the penalty parameter, which yields an optimal
tuning of it. Its value depends on the (global) strong convex-
ity and the Lipschitz gradient moduli of the objective func-
tion, if those are finite. In [Allybokus et al.], this result is
applied to a central strongly convex equivalent formulation
of our problem to derive an approximate adaptive tuning
of the distributed version of the algorithm. The adaptive
penalty parameter is computed as the optimal parameter
of the centralized formulation, λ0, given according to the
formula

λ0 =
1

√

σL
, (10)

where σ is the strong convexity modulus of fα(w, ⋅) and L
is the Lipschitz modulus of its gradient. In fact, the fairness
functions have singular values near 0, which make the Lip-
schitz modulus not globally defined, unless the feasible set
is reduced from below by means of a positive lower bound d
of the optimal solution. Thus, Equation (10) is applied to
L = Ld where Ld is the Lipschitz modulus of the gradient
of the objective over the set of feasible points x verifying
x ⩾ d.
Adaptive penalty parameter schemes have been proposed

to tackle this issue and provably bring consistent improve-
ment of the convergence behavior of ADMM. One remark-
able adaptive scheme can be found in [He et al.], in which
the authors introduce the residual balancing (RB) principle
which consists of shrinking or expanding the penalty param-
eter whenever the primal and dual residuals are unbalanced.
For a definition of RB, we refer the interested reader to [He
et al.]. Although this scheme helps making the ADMM less
dependent from initialization, empirical behaviors of the al-
gorithm however suggest that there is still room and inter-
est for better initialization. To demonstrate this, we adopt
residual balancing as a default adaptive scheme of our penal-
ties in all the algorithms of the present paper.
In Section 3, we introduced the lower bound d (Theo-

rem 1) on the (w, α)-fair optimal allocation. Next, we
demonstrate how this bound permits one to enhance the
performance of the ADMM for the (w, α)-fair resource al-
location problem, and we compare it with the performance
brought by the SoA bound m (Proposition 1). Although
the lower bound permits one to adjust quickly a minimal
individual resource allocation that would never be violated
during the running time of the algorithm, the major feature
of its introduction is in that it permits one to define an ini-
tialization of the penalty parameter that could enhance the
algorithm performance. Indeed, the initialization can pro-
vide spectacular convergence acceleration, whereas reduc-
ing the feasible set at the projection line 6 of Algorithm 1
does not seem to matter, illustrating the fast convergence
of FD-ADMM to modest accuracy. These observations are
illustrated in the next section.

Figure 2: Iteration count versus the number of connection re-
quests in situation 1. For FD-ADMM-LB and FD-ADMM-MB,
the reciprocal penalty initialized value λ0 lies in [110-150] and in
[1, 6], respectively.

5. EXECUTION
In the present simulations, we dedicate our performance

evaluation to the proportionally fair resource allocation prob-
lems (α = 1). In this section, we demonstrate the gains
achievable with only tuning the initial penalty parameter of
the FD-ADMM by comparing several initialization schemes.
Indeed, the only difference between the different algorithms
that we compare is in that the initial penalty parameter λ0 is
chosen either arbitrarily – FD-ADMM(λ0 = λ), or according
to Equation (10) applied to the bound m (FD-ADMM-MB)
or d (FD-ADMM-LB).
The problem instances were generated under the same

conditions as in Section 3.3. As it appears the parameter δw
can deteriorate importantly the quality of our bound when
small, we execute the simulations under two different situa-
tions 1) wr ∈ [.9,1], and 2) wr ∈ [.1,1].

Performance results
In Figures 2 and 3, we plotted the iteration count of the
algorithms under situations 1 and 2, respectively. The al-
gorithms stop when the primal and dual residuals of the
ADMM algorithm (see, e.g., [Boyd et al.]) fall below 10−2

(relatively modest accuracy). For each problem size in terms
of number of different requests, we generated 10 instances
of the corresponding size randomly and plotted the aver-
age performance. The specific points are also represented
with scattered translucent markers to account for the exact
performance of each algorithm. For each situation, we ob-
served the performances of FD-ADMM-LB, in particular, its
average initial reciprocal penalty parameter given by Equa-
tion (10) and chose several initialization values below and
above this average to account for the effect of this initializa-
tion on the algorithm’s performance.

Situation 1 (Figure 2). We observe a spectacular im-
provement of the FD-ADMM algorithm from the scheme
FD-ADMM-MB to the scheme FD-ADMM-LB, correspond-
ing to a reduction of the running iteration count of two or-
ders of magnitude. When λ0 is chosen larger than the one
for FD-ADMM-LB, although the performances seem satis-
factory, one can observe that FD-ADMM-LB still executes
faster on average.



Figure 3: Iteration count versus the number of connection re-
quests in situation 2. For FD-ADMM-LB and FD-ADMM-MB,
the reciprocal penalty initialized value λ0 lies in [500,1000] and
in [0.1, 2.5], respectively.

Situation 2 (Figure 3). The same improvement of
the performances, related to the introduction of our lower
bound, is observed. It seems that for lower initialization
value of λ0, the algorithms demonstrate poorer performances.
Nevertheless, one can observe that higher values of λ0 can
provide algorithms with, although not consistently, better
performances than FD-ADMM-LB on average. Although
this phenomenon can seem surprising after a look at situa-
tion 1, one can explain it with the fact that when the vector
w is highly unbalanced (as it is the case when its values
are uniformly drawn at random within [.1,1]) the objective
function fα(w, ⋅) obtains highly asymmetric structure. In-
deed, the computation of the strong convexity modulus of
fα in [Allybokus et al.] in order to obtain a desirable ini-
tialization λ0, shows that the factor σ in Equation (10) in
fact corresponds to the smaller strong convexity modulus of
the functions fαr (wr, ⋅), which is proportional to wr. Not
surprisingly then, this evaluation becomes poorer when the
vector w becomes unbalanced. Thus, it is worth considering
that an accurate penalty parameter tuning becomes more
difficult when the weighted fairness function symmetry is
poor. Nevertheless, our simulations suggest that initializing
the reciprocal penalty parameter according to Equation (10)
applied to our lower bound permits one to obtain a satisfac-
tory performance of the FD-ADMM. We believe this scheme
can be improved in order to tackle a potential performance
issue under highly asymmetric realizations of the (w, α)-
fair resource allocation problem characterized by a very low
value of δw.

6. CONCLUSION
We studied the structure of weighted (w, α)-fair alloca-

tion problems and proposed a lower bound that permits one
to better understand the problem’s features. The (w, α)-
fair allocation can be lower bounded individually and locally
(that is, each user, or request, has a minimal guarantied allo-
cation that depends on its individual weight and that of a lo-
cally reduced subset of users). We compared experimentally
our bound with the best bound available in the literature,
and showed that we can provide consistent improvement in
the case of high asymmetry of the capacity vector c (which

may describe congested networks situations) or in the case
of a suitable symmetry of the fairness measures (which may
cover situations where the requests have balanced relative
priorities). We believe that the bound derived in the present
paper for general fairness concepts (α > 1) can be further im-
proved, and intend to soften its dependencies on the global
minimum local midpoint value pr0 . Our intuition suggests
this would improve considerably the quality of our general
bound. To demonstrate the utility of our derivation, we
showed as an illustration how the introduction of this lower
bound can remarkably improve the performances of an iter-
ative distributed algorithm, the FD-ADMM, that solves the
problem optimally, by a simple initialization of a penalty
parameter. We also observed that the initialization scheme
allows a remarkably satisfactory tuning of the FD-ADMM,
and that this accuracy may impoverish as the asymmetry of
the weighted problem strengthens. In the future, we envision
to study this situation and strengthen our bound in order to
possibly empower the initialization scheme, providing more
robustness to the technique with respect to asymmetry.
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