
Straggler Mitigation by Delayed Relaunch of Tasks

Mehmet Fatih Aktaş
mehmet.aktas@rutgers.edu

Pei Peng
pei.peng@rutgers.edu

Emina Soljanin
emina.soljanin@rutgers.edu

Department of Electrical and Computer Engineering, Rutgers University

ABSTRACT
Redundancy for straggler mitigation, originally in data down-
load and more recently in distributed computing context,
has been shown to be effective both in theory and practice.
Analysis of systems with redundancy has drawn significant
attention and numerous papers have studied pain and gain
of redundancy under various service models and assump-
tions on the straggler characteristics. We here present a
cost (pain) vs. latency (gain) analysis of using simple repli-
cation or erasure coding for straggler mitigation in execut-
ing jobs with many tasks. We quantify the effect of the tail
of task execution times and discuss tail heaviness as a deci-
sive parameter for the cost and latency of using redundancy.
Specifically, we find that coded redundancy achieves better
cost vs. latency tradeoff than simple replication and can
yield reduction in both cost and latency under less heavy
tailed execution times. We show that delaying redundancy
is not effective in reducing cost and that delayed relaunch
of stragglers can yield significant reduction in cost and la-
tency. We validate these observations by comparing with
the simulations that use empirical distributions extracted
from Google cluster data.

1. INTRODUCTION AND MODEL
Motivation: Distributed (computing) systems aim to at-
tain scalability through parallel execution of multiple tasks
constituting a job. Each task is run on a separate node,
and the job is completed only when the slowest task is fin-
ished. It has been observed that task execution times have
significant variability, e.g., because of multiple job resource
sharing, power management [6]. The slowest tasks that de-
termine the job execution time are known as ”stragglers”.

Two common performance metrics for distributed job ex-
ecution are 1) Latency, measuring the execution time, and
2) Cost, measuring the resource usage. Job execution is de-
sired to be fast and with low cost, but these are conflicting
objectives. Replicating tasks and running the replicas over
separate nodes has been shown to be effective in mitigating
the effect of stragglers on latency [2], and is used in practice
[7]. Recent research proposes to delay replication in order to
reduce the cost [14], and clone only the tasks that at some
point appear to be straggling.

Erasure coding is a more general form of redundancy than
simple replication, and it has been considered for straggler
mitigation in both data download [10] and, more recently,

IFIP WG 7.3 Performance 2017. Nov. 14-16, 2017, New York, NY USA
Copyright is held by author/owner(s).

Replicated redundancy

Job
start

task 1

Xtask 2

task 3 X
task 4 X

∆

replica of 1 X

replica of 3

Job
completion

Coded redundancy

Job
start

task 1

Xtask 2

task 3 X
task 4 X

∆

parity 1 Xparity 2

Job
completion

Figure 1: A job with four tasks is executed with delayed redun-
dancy. Check marks represents task completion and crosses rep-
resents task cancellation. (With replication, exact clones of the
straggler tasks are introduced, while with coding parity tasks can
be used as a “clone” for any task, therefore, stragglers do not
have to be tracked down.)

in distributed computing context [8, 9]. We took this line of
work further by analyzing the effect of coding and replica-
tion on the tradeoff between cost and latency as in [11]. We
examined whether the redundancy should be simple replica-
tion or coding, and when it should be introduced. We here
extend the cost and latency analysis in [11] for systems that
use redundancy together with task relaunch.

System Model: In our system, a job is split into k tasks.
Job execution starts with launching all its k tasks, and the
redundancy is introduced only if the job is not completed
by some time ∆. Note that we don’t consider queueing of
jobs or tasks; all tasks start service together.

In replicated-redundancy (k, c,∆)-system, if the job still
runs at time ∆, then c replicas for each remaining task
are launched. In coded-redundancy (k, n,∆)-system, if the
job still runs at time ∆, n − k redundant parity tasks are
launched where completion of any k of all launched tasks
results in total job completion (see Fig. 1). Note that this
assumption does not impose severe restrictions. Any linear
computing algorithm can be implemented with this k-out-
of-n structure simply by using linear erasure codes. Par-
ticular examples can be found in e.g., [8, 9] and references
therein. If system implements task relaunch, then tasks that
remain running at time ∆ are canceled, and fresh copies are
launched in their place immediately together with the re-
dundant tasks.

We assume that task execution times are iid and follow
one of the two canonical distributions: 1) shifted exponen-
tial SExp(D,µ) modeling tasks that take some positive min-
imum time D and have an exponential tail with decaying
rate µ modeling the randomness inherent in the system and
2) Pareto(λ, α) with positive minimum value λ and a power
law tail index α. Pareto is a canonical heavy tailed distri-
bution that is observed to fit task execution times in real

ar
X

iv
:1

71
0.

00
41

4v
1

 [
cs

.P
F]

 1
 O

ct
 2

01
7

Figure 2: Empirical tail distribution of task completion times for Google cluster jobs with number of tasks k = 15, 400, 1050.

computing systems [6, 12].
Fig. 2 plots the empirical tail distribution of task com-

pletion times1 for jobs with 15, 400, and 1050 tasks in the
Google Trace data [13]. Note that the x and y axes are in
log scale, and thus an exponential tail would have appeared
as a curve decaying exponentially while a true power law
tail (e.g., Pareto) would have pronounced a linear decay at
a constant rate. Empirical tail distributions in the figure ex-
hibit exponential decay at small values and a trend similar
to linear decay at larger values. Note that the steep decay at
the far right edge is due to bounded support of the distribu-
tions. Even though we cannot conclude that these empirical
distributions are distributed as Pareto, they clearly exhibit
more variability and have heavier tail than an Exponential.

We define the cost of job execution as the sum of the life-
times of all tasks (including redundant ones) involved in the
job execution. This definition reflects “pay for resources”
pricing, which is the most commonly used model in cloud
services offered by Amazon, Google App Engine, Windows
Azure [1]. There are two main setups that define cost: 1)
Cost with task cancellation Cc; remaining outstanding tasks
are canceled upon the job completion, which is a viable op-
tion for distributed computing with redundancy, 2) Cost
without task cancellation C; tasks remaining after job com-
pletion run until they complete, which for instance is the
only option for data transmission over multi-path network
with redundancy.

In this paper, we analyze the effect of replicated and coded
redundancy on cost and latency tradeoff. Specifically, we
present exact expressions for expected latency and cost for
redundancy with and without task relaunch. Using these
expressions, we show the correlation of pain and gain of re-
dundancy with the tail heaviness of the task execution times.

Summary of Observations: Coding allows us to increase
degree of redundancy with finer steps than replication, which
translates into greater achievable cost vs. latency region.
Delaying redundancy is not effective in trading off latency
for cost. Therefore, primarily the degree of redundancy
should be tuned for the desired cost and latency values.
Coding is shown to outperform replication in terms of cost
and latency together. When the task execution times are
heavy tailed, redundancy can reduce cost and latency si-
multaneously, where the reduction depends on the tail heavi-
ness. For heavy tailed tasks, we show that relaunching tasks,
even without any redundancy, is sufficient to return signifi-
cant reduction in cost and latency.

Notation: T and C denote latency and cost of job execu-

1Task lifetimes are calculated as the difference between
timestamps for SCHEDULE and FINISH events in [13].

tion. Hn is the nth harmonic number defined as
∑n
i=1

1
i

for n ∈ Z+ or equivalently as
∫ 1

0
1−xn
1−x dx for n ∈ R. Hn2

denotes the generalized harmonic number of order n of two
defined as

∑n
i=1

1
i2

. Incomplete Beta function B(q;m,n) is

defined for q ∈ [0, 1], m,n ∈ R+ as
∫ q

0
um−1(1 − u)n−1du,

and Beta function as B(m,n) = B(1;m,n). Gamma func-
tion Γ(x) is defined as

∫∞
0
ux−1e−udu for x ∈ R and as

(x− 1)! for x ∈ Z+.

2. LATENCY AND COST ANALYSIS
In a previous work [11], we concluded that delaying repli-

cated or coded redundancy is not effective to reduce cost.
This conclusion is based on the observation that delaying
redundancy can bring reduction in cost (gain) only after
significant increase (pain) in latency, at which point one can
achieve less latency for the same cost by simply reducing
the level of redundancy. This section gives cost vs. latency
analysis of zero-delay redundancy systems, where cost and
latency are expressed in terms of level of redundancy c or n
and parameters of task execution time distribution.

Thm. 1 gives exact expressions for the expected cost and
latency under zero-delay redundancy, and Fig. 3 shows com-
parison between replication and coding for varying level of
redundancy. Under both SExp and Pareto task execution
times, coding always achieves better expected cost and la-
tency than replication.

Theorem 1. Let expected latency and cost with task can-
cellation be T(k,c), C(k,c) for zero-delay replicated redundancy,
and T(k,n), C(k,n) for zero-delay coded redundancy. Under

task execution time X ∼ SExp(D
k
, µ), we have

E[T(k,c)] =
D

k
+

Hk
(c+ 1)µ

, E[C(k,c)] = (c+ 1)D +
k

µ
,

E[T(k,n)] =
D

k
+

1

µ
(Hn −Hn−k), E[C(k,n)] =

nD

k
+
k

µ
.

Under task execution time X ∼ Pareto(λ, α), we have

E[T(k,c)] = λk!
Γ(1− ((c+ 1)α)−1)

Γ(k + 1− ((c+ 1)α)−1)
,

E[C(k,c)] = λk(c+ 1)
(c+ 1)α

(c+ 1)α− 1
,

E[T(k,n)] = λ
n!

(n− k)!

Γ(n− k + 1− α−1)

Γ(n+ 1− α−1)
,

E[C(k,n)] = λ
n

α− 1

[
α− Γ(n)

Γ(n− k)

Γ(n− k + 1− α−1)

Γ(n+ 1− α−1)

]
.

Proof Sketch. For replicated redundancy, lifetime of
each task isXc+1:1 ∼ Pareto(λ, (c+1)α). Then the expected

4 5 6 7 8 9
Expected Latency E[T] (s)

60

80

100

120

140

160

180

200
Ex

pe
ct

ed
 C

os
t w

/ c
an

ce
l E

[C
c]

(s
)

c= 1

c= 2

c= 3

c= 4

c= 5

n= 11n= 12

n= 20

n= 30

n= 40

n= 50

n= 60

No redundancy
 c= 0, n= 10

X∼ SExp(D= 30/k, μ= 0.5), k= 10
Replication
Coding

5 10 15 20 25 30 35
Expected Latency E[T] (s)

80

100

120

140

160

180

200

Ex
pe

ct
ed

 C
os

t w
/ c

an
ce

l E
[C

c]
(s

)

c= 1

c= 2

c= 3

c= 4

c= 5

n= 11n= 12

n= 20

n= 30

n= 40

n= 50

n= 60

No redundancy
 c= 0, n= 10

X∼ Pareto(λ= 3, α= 1.5), k= 10
Replication
Coding

0 20 40 60 80 100 120
Expected Latency E[T] (s)

80

100

120

140

160

180

200

Ex
pe

ct
ed

 C
os

t w
/ c

an
ce

l E
[C

c]
(s

)

c= 1

c= 2

c= 3

c= 4

c= 5

n= 11
n= 12

n= 20

n= 30

n= 40

n= 50

n= 60

No redundancy
 c= 0, n= 10

X∼ Pareto(λ= 3, α= 1.2), k= 10

Replication
Coding

Figure 3: Expected cost vs. latency for zero-delay redundancy where redundancy levels c and n vary along the curves. Tail heaviness
increases from left to right. The heavier the tail is, the higher the maximum reduction in expected cost and latency is.

values of latency (Xc+1:1)k:k and cost
∑k
i=1(Xc+1:1)k:i follow

from first principles of order statistics. Same calculations
apply for expectation of latency Xn:k and cost

∑k
i=1 Xn:i +

(n− k)Xn:k of execution with coded redundancy.

Under exponential tail, adding redundancy reduces la-
tency but increases cost. In [14], replicated redundancy is
demonstrated to reduce both cost and latency under heavy
tailed task execution time. Fig. 3 plots latency and cost
reduction for exponential and heavy tailed task execution
times using the expressions given in Thm. 1. It illustrates
the intuitive conclusion that redundancy can yield greater
reduction in cost and latency under heavier tailed task exe-
cution times.

It is worth to discuss how and why cost reduction matters.
Cost, as is defined here, reflects the amount of resource time
used to execute a job. Reduction in cost then means running
the same job by occupying less area in the space of overall
system capacity, which then allows fitting more jobs per
area, and hence higher system throughput. To illustrate
with a simple example, consider a First-Come First-Served
queue with single server under heavy traffic, that is, server
never goes idle since there always exists a job to be served.
Then, average throughput is the reciprocal of average job
service time. In this case, cost of serving a job is simply its
service time and system throughput increases with reduced
average cost. In the case of systems with many servers that
serve jobs with multiple tasks, same principles apply and
cost reduction opens up space to execute more jobs per time
unit.

Although exact expressions are formidable to derive, sec-
ond moments of latency and cost can be computed as de-
scribed in Thm. 2. Second moments enable us to compute
the standard deviation of latency and cost. Fig. 4 plots ex-
pected cost and latency with error bars of width equal to
the standard deviation in respective dimensions. Standard
deviation, hence the variability of cost and latency decreases
with increasing level of redundancy as expected. Reduction
in variability for the same level of redundancy is greater with
coding compared to using replication.

Theorem 2. For X ∼ Exp(µ) and j ≥ i

E[Xn:iXn:j] =
1

µ2
[Hn2−H(n−i)2+(Hn−Hn−i)(Hn−Hn−j)].

Then, under task execution time X ∼ SExp(D/k, µ), second
moments of latency and cost for zero-delay replicated and

coded redundancy systems can be computed as

E[T 2
(k,c)] =

(
D

k
+

Hk
(c+ 1)µ

)2

+
Hk2

(c+ 1)2µ2
,

E[C2
(k,c)] = ((c+ 1)D)2 + 2D(c+ 1)

k

µ

+ (c+ 1)2
k∑

i,j=1

E[Yn:iYn:j]

E[T 2
(k,n)] =

Hn2 −H(n−k)2

µ2
+

(
D

k
+
Hn −Hn−k

µ

)2

,

E[C2
(k,n)] =

(
n
D

k

)2

+ 2n
D

µ
+ (n− k)2E[X2

n:k]

+ 2(n− k)

k∑
i=1

E[Xn:iXn:k] +

k∑
i,j=1

E[Xn:iXn:j].

where Y ∼ Exp((c+ 1)µ).

For X ∼ Pareto(λ, α), given α > max{2(n−i+1)−1, (n−
j + 1)−1} and j ≥ i

E[Xn:iXn:j] =λ2 n!

Γ(n+ 1− 2/α)

× Γ(n− i+ 1− 2/α)

Γ(n− i+ 1− 1/α)

Γ(n− j + 1− 2/α)

Γ(n− j + 1)
.

Then, under task execution time X ∼ Pareto(λ, α), second
moments of latency and cost for zero-delay replicated and
coded redundancy systems can be computed as

E[T 2
(k,c)] = E[Y 2

k:k],

E[C2
(k,c)] = (c+ 1)2

k∑
i,j=1

E[Yk:iYk:j],

E[T 2
(k,n)] = E[X2

n:k]

E[C2
(k,n)] = (n− k)2E[X2

n:k] + 2(n− k)
k∑
i=1

E[Xn:iXn:k]

+

k∑
i,j=1

E[Xn:iXn:j].

where Y ∼ Pareto(λ, (c+ 1)α).

Proof Sketch. Derivations follow from latency and cost
expressions given in the proof of Thm. 1. Expressions of
E[Xn:iXn:j] can be found for X ∼ Exp in Pg. 73 of [4], and
for X ∼ Pareto in Pg. 62 of [3].

Under heavy tail, it is possible to reduce latency by adding
redundancy and still pay for the baseline cost of running
with no redundancy. Corollary 1 gives expressions for the

101

E[T]

50

100

150

200

250

300

E[
C]

No redundancy
 c= 0, n= 15

c= 1

c= 2

c= 3

c= 4

c= 5

n= 30

n= 45

n= 60

n= 75

n= 90

X∼ Pareto(λ= 3, α= 2.5), k= 15
Replication
Coding

Figure 4: Expected cost vs. latency for zero-delay redundancy
systems. Widths of horizontal error bars are equal to standard
deviation of latency and widths of vertical bars are equal to stan-
dard deviation of cost.

minimum achievable expected latency E[Tmin] without ex-
ceeding the baseline cost of running with no redundancy.

Corollary 1. Under task execution time X ∼ Pareto(λ, α)
in zero-delay replicated redundancy system, minimum la-
tency E[Tmin] that can be achieved without exceeding the
baseline cost is,

E[Tmin] = λk!
Γ(1− (α(cmax + 1))−1)

Γ(k + 1− (α(cmax + 1))−1)
. (1)

where cmax = max{
⌊

1
α−1

⌋
− 1, 0} and any reduction in la-

tency without exceeding the baseline cost is possible only if
α < 1.5. For coded redundancy system,

E[Tmin] = E[T (nmax)]. (2)

where

nmax = max{n|E[T (nmax)]− E[T (k)]

(nmax − k)
− α ≤ 0},

E[T (n)] = λ
n!

(n− k)!

Γ(n− k + 1− α−1)

Γ(n+ 1− α−1)
.

(3)

or an upper bound on E[Tmin] is

E[Tmin] < λα+ λk!
Γ(1− α−1)

Γ(k + 1− α−1)
. (4)

Proof. First consider replicated redundancy (k, c)-system.
Latency is a decreasing function of c, while cost may de-
crease up to cmax beyond which it increases with c. We
would like to find cmax such that E[Cc=cmax] < E[Cc=0] <
E[Cc=cmax+1], then E[Tmin] is simply E[Tc=cmax]. We next
obtain the range of c for which E[Cc] < E[Cc=0].

E[Cc] < E[Cc=0] = λk(
(c+ 1)2α

(c+ 1)α− 1
− α

α− 1
) < 0.

which holds only when c < 1
α−1
− 1, and since c is a non-

negative integer, cmax = max{
⌊

1
α−1

⌋
−1, 0}, from which (1)

follows.
Next consider a coded redundancy (k, n)-system. Expres-

sions for the expected cost in this case do not allow to find
nmax such that E[Cn=nmax] < E[Cn=k] < E[Cn=nmax+1].
Instead we can express E[C] as a function of E[T] as E[C] =
λ n
α−1

(α − n−k
nλ

E[T]). We can then find an approximation

for E[Tmin] directly by relating E[Cnmax] to E[Cn=k].

E[Cnmax] < E[Cn=k] holds only if E[Tnmax] < λα+ E[Tn=k]
nmax−k ,

from which (2) follows. Upper bound (4) follows from this
by setting nmax = k + 1.

Fig. 5 illustrates that the maximum percentage reduction

in latency (i.e., E[T0]−E[Tmin]
E[T0]

; E[Tmin] is latency without

exceeding the baseline cost, E[T0] is the latency with no re-
dundancy) depends on the tail of task execution time. As
stated in Corollary 1, this reduction is possible under repli-
cated redundancy only when the tail index is less than 1.5,
in other words when the tail is quite heavy, while coding
relaxes this constraint. Moreover, the threshold on α under
replication is independent of the number of tasks k, while
threshold increases with k under coding, meaning that jobs
with larger number of tasks can get reduction in latency at
no cost even for lighter tailed task execution times.

1.0 1.5 2.0 2.5 3.0 3.5
Tail index α

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 p
er

ce
ta

ng
e

re
du

ct
io

n
in

 E
[T

]
at

 no
 ad

de
d c

os
t

X ∼ Pareto(λ = 3, α)
Replicated,k = 10
Replicated,k = 50
Coded,k = 10
Coded,k = 50

Figure 5: Maximum percentage reduction in expected latency
without exceeding the baseline cost of running with no redun-
dancy depends on the tail of task execution time. Latency re-
duction at no cost is possible for replicated redundancy only if
the tail index is below 1.5 while this constraint is relaxed under
coding.

Demonstration using Google traces: We simulated ex-
pected cost and latency of redundancy systems by using
the empirical task execution time distributions that we con-
structed using Google Trace data [13]. Fig. 6 plots cost and
latency curves using the three empirical distributions plot-
ted in Fig. 2 for jobs with k = 15, 400, 1050 tasks.

For all three distributions, coding is doing better than
replication in cost vs. latency tradeoff. Cost and latency can
be reduced together with redundancy for all distributions
because they pronounce a tail heavier than Exponential at
large values. Note that although replication cannot reduce
cost below the baseline cost of running with no redundancy,
coding can achieve this for k = 15, 1050. Also for k = 400,
although replication seems to achieve less cost and latency
for low redundancy levels, coding outperforms replication
beyond a certain level of redundancy.

3. STRAGGLER RELAUNCH
There are two properties of heavy tailed distributions (e.g.,

Pareto) that greatly affect the latency of distributed job
computation [5]. First, if task execution times are heavy
tailed, the longer a task has taken to execute, the longer
its residual lifetime is expected to be. Second, majority
of the mass in a set of sample observations drawn from a
heavy tailed distribution is contributed by only a few sam-
ples. This suggests that among many heavy tailed tasks,
very few of them are expected to be stragglers with very
long completion time compared to the non-stragglers.

When task execution times are heavy tailed, after non-
straggler tasks finish, we are expected to wait even longer
for job completion since the remaining straggler tasks are

0.05 0.10 0.15 0.20 0.25
E[T]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
E[
C]

No redundancy
 c= 0, n= 15

c= 1

c= 2

c= 3

c= 4

c= 5

n= 30

n= 45

n= 60

n= 75

n= 90

X∼ Google, k= 15
Simulation, replication
Simulation, coding

0.0 0.5 1.0 1.5 2.0
E[T]

40

50

60

70

80

E[
C] No redundancy

 c= 0, n= 400

c= 1

c= 2

c= 3

c= 4

c= 5

n= 800

n= 1200

n= 1600

n= 2000

n= 2400
X∼ Google, k= 400

Simulation, replication
Simulation, coding

0.0 0.2 0.4 0.6 0.8 1.0 1.2
E[T]

140

160

180

200

220

240

260

280

300

E[
C]

No redundancy
 c= 0, n= 1050

c= 1

c= 2

c= 3

c= 4

c= 5

n= 2100

n= 3150

n= 4200

n= 5250

n= 6300
X∼ Google, k= 1050

Simulation, replication
Simulation, coding

Figure 6: Expected cost vs. latency in zero-delay redundancy systems using empirical task execution time distribution for jobs with
number of tasks k = 15, 400, 1050 from Google Trace data.

expected to take at least as much more time as the non-
stragglers have. This suggests that killing straggler tasks
and launching fresh replacements can reduce the job com-
pletion time.

In this section, we study relaunching remaining tasks af-
ter some delay, and show that it can yield significant re-
duction in cost and latency when the tail of task execution
time is heavy enough. We discuss about the level of tail
heaviness required for relaunching to be useful. In the sys-
tem we study, selection of tasks to relaunch is decided by
the time relaunching is performed. Untimely relaunch may
cause reduction in gain or even pain by either late relaunch
and delayed cancellation of stragglers or early relaunch and
killing non-stragglers. We present an approximate optimal
relaunch time given the distribution of task execution times.
Lastly, cost and latency of adding redundancy together with
task relaunch is discussed.

No redundancy with relaunch: Thm. 3 gives exact ex-
pressions for expected latency and cost in no-redundancy
systems, in which tasks that did not complete by time ∆ are
relaunched without introducing any redundancy. Note that
we assume that relaunching takes place instantly upon can-
cellation and thus, it does not incur additional delay or cost.
Fig. 7a compares the latency with and without relaunch in a
no-redundancy system. Relaunching tasks before the mini-
mum task completion time λ causes work loss and increases
latency, while relaunching at the right time gives significant
reduction in job completion time. Since cost is a direct func-
tion of latency in the absence of redundancy, reduction in
latency will certainly reduce cost, as plotted in Fig. 7b. No-
tice that relaunching all tasks at the beginning (∆ = 0) or
not relaunching at all (∆ → ∞) implements the identical
behavior and gives the identical cost and latency.

Theorem 3. Under task execution time X ∼ Pareto(λ, α)
in a no-redundancy system (i.e., c = 0 or n = k) with re-
launch, the tail probability of a job completion time is

Pr{T > t} = 1−
{
1(t > λ)

[
1−

(λ
t

)α]}k
+
{
q + 1(t > ∆)

[
1−

(∆

t

)α]
(1− q)

}k
(5)

+
{
q + 1(t > ∆ + λ)

[
1−

(λ

t−∆

)α]
(1− q)

}k
.

The expected job completion time is

E[T] =


∆ + g(k, α) ∆ ≤ λ,
∆(1− qk)+

g(k, α)
[(λ

∆
− 1)I(1− q; 1− α−1, k

)
+ 1
] o.w.

(6)

The expected cost with (E[Cc]) and without (E[C]) task
cancellation is

E[C] =

{
k∆ + kλ

1−α−1 ∆ ≤ λ,
α
α−1

[kλ(2− q)]− k∆(1−q)
α−1

o.w.

E[Cc] =

{
k∆ + 1

α−1
[kλα− g(k, α)] ∆ ≤ λ,

α
α−1

[k(1− q)(λ−∆) + kλ] + k(1− q)∆ o.w.

(7)

where q = 1(∆ > λ)(1−(λ
∆

)α) and g(k, α) = λk! Γ(1−α−1)

Γ(k+1−α−1)
,

which is the expected job completion time without relaunch.

Proof Sketch. Defining random variable R as the num-
ber of tasks completed before ∆, R ∼ Binomial(k, q) where
q = 1(∆ > λ)(1 − (λ

∆
)α). Derivation of the tail, and ex-

pected latency and cost follows from the law of total prob-
ability or expectation by conditioning on R.

An approximation for the optimal relaunch delay ∆∗ that
achieves the lowest latency and cost is given in Corollary
2. Convergence of this approximation to the true optimal
is at a rate exponential with increasing k. Approximate
∆∗ is very close to true optimal for k = 100 as shown in
Fig. 7. The optimal relaunch delay is an increasing function
of minimum task execution time λ and number of tasks,
which intuitively makes sense. Also, it is a decreasing func-
tion of α, meaning that it is better to relaunch earlier when
the tail of task execution times is lighter, while for heavy
tail, delaying relaunch further helps to identify stragglers
and performs better in terms of cost and latency. This is
because relaunching is a choice of canceling work that is
already completed to get possibly lucky and execute fresh
copies much faster than the canceled stragglers. Expected
gain from relaunching under light tail is less than that un-
der heavier tail since heavier tailed stragglers are expected
to take much longer. Therefore, when the tail is light, it is
better to try our chance with relaunch earlier and decrease
amount of work loss with task cancellation.

Corollary 2. Under task execution time Pareto(λ, α)
in a no-redundancy system, a sufficient condition on α, which
guarantees that expected cost and latency can be reduced by
relaunching tasks at some time ∆ is

α <
ln(k + 1)

ln(4)
. (8)

Optimal relaunch time to achieve minimum cost and latency
is approximated as

∆∗ ≈ λ

√
k!Γ(1− α−1)

Γ(k + 1− α−1)
(9)

which implies that optimal fraction of tasks to relaunch on
average can be approximated as

p∗ ≈ Γ(1− α−1)−α/2√
k + 1

. (10)

Upper bound on α, and approximations for ∆∗ and p∗ get
tighter as the number of tasks k increases.

Proof. Approximation for ∆∗ follows from approxima-
tion I(1− q, 1−α−1, k) ≈ 1 for large k and then minimizing
expected latency given in eq. (6) by taking derivative with
respect to ∆.

Approximation for p∗ follows by observing that number
of tasks completed before ∆∗ is R ∼ Binomial(k, q∗) where
q∗ = 1 − (λ

∆∗)α. Then, average fraction of tasks that are

relaunched is p∗ = 1 − q∗ = (λ
∆∗)α in which we can use

approximation ∆∗ ≈ λ
√

Γ(1− α−1)(k + 1)α−1 for large k.
Secondly, we show the sufficient condition on α to be able

to reduce E[T] with relaunch. Let Tnorel be job comple-
tion time in no-redundancy system with no relaunch, then

E[Tnorel] = g(k, α) where g(k, α) = λ k!Γ(1−α−1)

Γ(k+1−α−1)
.

E[T − Tnorel] = ∆(1− qk)

− (1− λ

∆
)g(k, α)I(1− q; 1− α−1, k)

≈ ∆− (1− λ

∆
)g(k, α).

(11)

This difference is smallest when ∆ = ∆∗ for which we will
use the approximate discussed above. We are interested in
the maximum value of α that would allow maximum possible
difference E[T − Tnorel] to be negative as

∆∗ − (1− λ

∆∗
)g(k, α) < 0

2
√
λg(k, α)− g(k, α) < 0

Γ(k + 1)Γ(1− α−1)

Γ(k + 1− α−1)
> 4

ln(
Γ(k + 1)

Γ(k + 1− α−1)
) + ln(Γ(1− α−1)) > 4

ln(k + 1)

α
+ ln(Γ(1− α−1))

(a)
> ln(4).

where (a) is by using the approximation Γ(k+1)

Γ(k+1−α−1)
≈ (k+

1)1/α for large k. For α ≥ 1, which is what we assume
since it is a requirement for finite expected latency, ln(Γ(1−
α−1)) > 0 holds, and so sufficient condition given in eq. (8)
follows.

Expression for optimal delay ∆∗ tells us that it is better to
relaunch earlier when task execution times have lighter tail.
However, relaunching earlier does not mean that more tasks
will be relaunched. Fraction of tasks p∗ that are relaunched
after optimal delay ∆∗ monotonically decreases with α 2,
i.e., as the tail gets lighter. Notice that p∗ decreases with k,
which means for jobs with larger number of tasks, optimal
strategy dictates relaunching smaller fraction of the tasks.
For instance, suppose α = 2 and k = 100, then p∗ ≈ 0.06,
in other words, only 6% of the tasks would need to be re-
launched on average for optimal latency and cost.

2p∗ is a monotonically decreasing function of α. For very
heavy tail i.e., limα→1 Γ(1−α−1)−α/2 = 1, for very light tail

i.e., limα→∞ Γ(1− α−1)−α/2 ≈ 0.749.

Note that we assume relaunching takes place instantly and
does not introduce any cost. Adding relaunch cost into the
analysis, which we leave as a future work, could make the
analysis more realistic and also give more insight in search-
ing for optimal relaunch strategy in practice.

0 10 20 30 40 50 60
Relaunch delay Δ (s)

25

30

35

40

45

50

55

Ex
pe

ct
ed

 la
te

nc
y
E[
T]

 (s
)

X∼ Pareto(λ= 3, α= 2), k= 100

Approx optimal
With relaunch
No relaunch

25 30 35 40 45 50 55
Expected Latency E[T] (s)

550

600

650

700

750

800

850

900

Ex
pe

ct
ed

 C
os

t E
[C

c]
(s

)
Δ = 0

Δ → ∞Δ = 12.64

X∼ Pareto(λ= 3, α= 2), k= 100
No redundancy with relaunch
Approx optimal

Figure 7: (Top) Expected latency in no-redundancy system with
and without relaunch in terms of relaunch delay ∆. (Bottom)
Expected cost vs. latency curve for no-redundancy system with
relaunch, along which the value of delay ∆ is varied.

Relaunching allows reducing the average number of strag-
glers by replacing tasks that appear to be straggling with
fresh copies. For relaunching to be effective, loss incurred
by starting fresh copies from scratch should be compensated
by avoiding very long execution times of stragglers. In other
words, for relaunching to be able to reduce latency and cost,
task execution times must be heavy tailed beyond a thresh-
old. If the tail is lighter than this threshold, relaunching
actually hurts and increases cost and latency (e.g., relaunch-
ing always hurts when task execution times are light tailed).
Corollary 2 gives a sufficient condition on tail index α such

1 2 3 4 5 6 7 8
α

0.0

0.2

0.4

0.6

0.8

M
ax

im
um

 p
er

ce
ta

ng
e

re
du

ct
io

n
in

 E
[T

]
by

 ta
sk

 re
lau

nc
h

X ∼ P a r e t o (λ = 3, α)
k = 10
α u , k = 10
k = 100
α u , k = 100
k = 1000
α u , k = 1000
k = 10000
α u , k = 10000

Figure 8: Maximum percentage reduction in expected latency
by task relaunch depends on the tail of the task execution time.
αu is the upper bound on α given as the sufficient condition in
Corollary 2.

20 30 40 50
Expected Latency E[T] (s)

550

600

650

700

750

800

850
Ex

pe
ct

ed
 C

os
t E

[C
c]

(s
)

Δ = 0 Δ = 0 Δ → ∞

X ∼ Pareto(λ = 3, α = 2), k = 100
n = 102
n = 101

10 20 30 40 50
Expected Latency E[T] (s)

550

600

650

700

750

800

850

900

Ex
pe

ct
ed

 C
os

t E
[C

c]
(s

)

Δ → ∞

X ∼ Pareto(λ = 3, α = 2), k = 100
n = 110
n = 120
n = 130
Δ = 0

10 20 30 40
Expected Latency E[T] (s)

600

800

1000

1200

1400

1600

Ex
pe

ct
ed

 C
os

t E
[C

c]
(s

)

Δ → ∞

X ∼ Pareto(λ = 3, α = 2), k = 100
c = 1
c = 2
c = 3
Δ = 0

Figure 9: Expected cost vs. latency for coding (k, n,∆) and replication (k, c,∆) systems with relaunch. Each curve is plotted by
interpolating between incremental steps of ∆. Delaying redundancy is effective to reduce cost under low level of coded redundancy (Left)
while it is not effective under higher level of coded redundancy (Middle) and not effective in replicated redundancy at all times (Right).

that for any α less than ln(k+1)
ln(4)

, relaunching helps to re-

duce cost and latency. Note that this upper bound does
not depend on the minimum task completion time λ and is
only proportional to the logarithm of the number of tasks k,
which we also validated by numerically computing the exact
upper limit on α. This upper bound given as the sufficient
condition and the exact upper limit on α get closer as k
increases, which is illustrated in Fig. 8.

Redundancy with relaunch: Here we study the effect
of adding redundancy together with relaunching remaining
tasks at time ∆. We modify the previously studied redun-
dancy systems as the follows. In replication (k, c,∆)-system,
each remaining task at time ∆ is relaunched together with
c new replicas. In coding (k, n,∆)-system, each remaining
task at time ∆ is relaunched and overall n − k new parity
tasks are added.

Thm. 4 state exact expressions for the expected cost and
latency in respectively replicated and coded redundancy sys-
tems with relaunch. Fig. 9 plots cost vs. latency curves for
varying level of redundancy. When level of coded redun-
dancy is low (e.g., n− k = 1, 2), there is an optimum delay
∆ that gives the minimum cost and latency as observed
previously for no-redundancy system with relaunch. As the
level of coded redundancy increases (e.g., n − k ≥ 10), re-
dundancy becomes a greater effect on cost and latency than
relaunching stragglers, and delaying redundancy becomes
not effective in reducing cost as observed previously for re-
dundancy systems with no relaunch (see [11]). In replication
system, delaying redundancy is ineffective to reduce cost at
all times. This is because replicating each remaining task
even by one is enough to dominate relaunching stragglers in
terms of the effect on cost and latency.

Theorem 4. Suppose task execution time is Pareto(λ, α).
In replication (k, c,∆)-system with relaunch, expected job ex-
ecution time is

E[T] =



∆ + λk! Γ(1−α̃−1)

Γ(k+1−α̃−1)
∆ ≤ λ,

λ
Γ(1− α̃−1)

Γ(−α̃−1)
B(k − kq + 1,−α̃−1)

− λΓ(1− α−1)

Γ(−α−1)
B(k − kq + 1,−α−1)

+ E[Tno].

o.w.

where E[Tno] is the expected job completion time for no-
redundancy system with relaunch as given in eq. (6).

Expected cost with (Cc) and without (C) task cancellation

is

E[Cc] =


k∆ + kλ(c+ 1) α̃

α̃−1
∆ ≤ λ,

kα

(α− 1)
(λ−∆(1− q))

+ k(1− q)∆ + kλ(c+ 1)(1− q) α̃

α̃− 1

o.w.

E[C] =


k∆ + kλ(c+ 1) α

α−1
∆ ≤ λ,

kα

(α− 1)
(λ−∆(1− q)) + k(1− q)∆

+ kλ(c+ 1)(1− q) α

α− 1

o.w.

where α̃ = (c+ 1)α and q = 1(∆ > λ)(1− (λ
∆

)α). In coding
(k, n,∆)-system with relaunch, expected job execution time
is

E[T] =


∆ + λ n!

(n−k)!
Γ(n−k+1−α−1)

Γ(n+1−α−1)
∆ ≤ λ,

∆(1− qk) + λ(
B(n− kq + 1,−α−1)

B(n− k + 1,−α−1)
+ kB(q; k, 1− α−1)− qk)

o.w.

Expected cost with (Cc) and without (C) task cancellation
is

E[Cc] =



k∆ + λ n
α−1

(α− Γ(n)
Γ(n−k)

Γ(n−k+1−α−1)

Γ(n+1−α−1)
) ∆ ≤ λ,

α

α− 1
(k(1− q)(λ−∆) + nλ)

+ k(1− q)∆− λ(n− k)qk

− λ

α− 1
(n− k)

B(n− kq + 1,−α−1)

B(n− k + 1,−α−1)
.

o.w.

E[C] =


k∆ + nλ

1−α−1 ∆ ≤ λ,
α

α− 1
(kλ(1− q + qk) + nλ(1− qk))

− k∆(1− q)
α− 1

o.w.

(12)

where q = 1(∆ > λ)(1− (λ
∆

)α).

4. OPEN PROBLEMS
In the analysis given here, we assumed that execution time

of each task is iid and does not depend on resources they run
on. Main justification for this assumption is that computing
systems usually have large number of nodes and each task
can be placed on a separate node at random. In other words,
we assumed that the task execution time is decoupled from
resource scheduling. However, execution time of a task that
exclusively runs on a node would have different distribution
than a task that runs together with several others on the
same node. There are two challenges in the analysis of la-
tency and cost with resource scheduling in mind: 1) There is
not enough experimental evidence to accurately model exe-

cution time with respect to resource load, 2) Order statistics
of multiple distribution families are intractable.

Moreover, in reality, task execution times cannot be arbi-
trarily large, but modeling as SExp or Pareto does not imple-
ment this restriction. Another possible extension of the cost
and latency analysis would be considering right truncated
execution time models. Main challenge for this extension is
that truncation renders the order statistics analysis tedious
and often intractable.

5. REFERENCES
[1] Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., and

Ahmad, I. Cloud computing pricing models: a survey.
International Journal of Grid and Distributed
Computing 6, 5 (2013), 93–106.

[2] Ananthanarayanan, G., Ghodsi, A., Shenker, S.,
and Stoica, I. Effective straggler mitigation: Attack
of the clones. In NSDI (2013), vol. 13, pp. 185–198.

[3] Arnold, B. C. Pareto distribution. Wiley Online
Library, 2015.

[4] Arnold, B. C., Balakrishnan, N., and Nagaraja,
H. N. A first course in order statistics. SIAM, 2008.

[5] Crovella, M. E. Performance evaluation with heavy
tailed distributions. In Workshop on Job Scheduling
Strategies for Parallel Processing (2001), Springer,
pp. 1–10.

[6] Dean, J., and Barroso, L. A. The tail at scale.
Communications of the ACM 56, 2 (2013), 74–80.

[7] Dean, J., and Ghemawat, S. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM 51, 1 (2008), 107–113.

[8] Dutta, S., Cadambe, V., and Grover, P.
Short-dot: Computing large linear transforms
distributedly using coded short dot products. In
Advances In Neural Information Processing Systems
(2016), pp. 2092–2100.

[9] Halbawi, W., Azizan-Ruhi, N., Salehi, F., and
Hassibi, B. Improving distributed gradient descent
using reed-solomon codes. arXiv preprint
arXiv:1706.05436 (2017).

[10] Joshi, G., Soljanin, E., and Wornell, G. Queues
with redundancy: Latency-cost analysis. ACM
SIGMETRICS Performance Evaluation Review 43, 2
(2015), 54–56.

[11] Aktaş, M., Peng, P., Soljanin, E. Effective
straggler mitigation: Which clones should attack and
when? In MAMA Workshop SIGMETRICS (2017).

[12] Reiss, C., Tumanov, A., Ganger, G. R., Katz,
R. H., and Kozuch, M. A. Towards understanding
heterogeneous clouds at scale: Google trace analysis.
Intel Science and Technology Center for Cloud
Computing, Tech. Rep (2012), 84.

[13] Reiss, C., Wilkes, J., and Hellerstein, J. L.
Google cluster-usage traces: format+ schema. Google
Inc., White Paper (2011), 1–14.

[14] Wang, D., Joshi, G., and Wornell, G. Using
straggler replication to reduce latency in large-scale
parallel computing. ACM SIGMETRICS Performance
Evaluation Review 43, 3 (2015), 7–11.

http://arxiv.org/abs/1706.05436

	1 Introduction and Model
	2 Latency and Cost Analysis
	3 Straggler Relaunch
	4 Open Problems
	5 References

