
Formal Semantics for Time in Databases 

JAMES CLIFFORD and DAVID S. WARREN 

State University of New York at Stony Brook 

The concept of a historical database is introduced as a tool for modeling the dynamic nature of some 
part of the real world. Just as fust-order logic has been shown to be a useful formalism for expressing 
and understanding the underlying semantics of the relational database model, intensional logic is 
presented as an analogous formalism for expressing and understanding the temporal semantics 
involved in a historical database. The various components of the relational model, as extended to 
include historical relations, are discussed in terms of the model theory for the logic IL,, a variation of 
the logic IL formulated by Richard Montague. The modal concepts of intensional and extensional 
data constraints and queries are introduced and contrasted. Finally, the potential application of these 
ideas to the problem of natural language database querying is discussed. 
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1. INTRODUCTION 

The relational database model proposed in [13] views a database as a collection 
of “time-varying relations of assorted degrees” [B]. However, the model itself 
incorporates neither the concept of time nor any theory of temporal semantics. 
This paper suggests that the concept of time can be of interest in real-world 
databases and presents a technique for incorporating a semantics of time into a 
database model. The relational model is used as the formal database framework 
within which the work is cast, but it is not an essential ingredient in the work 
discussed. 

A great deal of attention has been given lately to the role that formal logic can 
play in providing a formal mathematical theory to unify the theory and semantics 
of database concepts and operations (cf. [17]). We believe that this is a healthy 
trend that can only serve to clarify and make precise otherwise vague ideas and 
theories. Moreover, a great deal of the metatheory of formal logic can be applied 
directly to the understanding and the proof of many notions in database theory. 
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In this paper we propose the concept of a historical database as a to?1 for 
modeling the changing states of information about some part of the real world. 
Most conventional databases are static, representing a snapshot view of the world 
at a given moment in time; changes in the real world generally are reflected in 
the database by changes to its data, thereby “forgetting,” as it were, the old data. 
By contrast, a historical database is a model of the dynamically changing real 
world. Changes in the real world are reflected in such a database by establishing 
a new -state description; no data are ever “forgotten.” As such, the historical 
database can be viewed intuitively as a collection of static databases organized in 
a coherent fashion. This paper provides a detailed description of such an organi- 
zation and a discussion of the usefulness of the historical database concept for 
modeling the real world (or some “possible world”) more closely than is possible 
with a static database. A good overview of the issues involved in incorporating a 
temporal dimension in databases is provided in [5]. 

We believe that providing a formal semantics for a database model is of 
paramount importance to its usefulness. The concept of time is crucial to all 
databases, but is only treated implicitly in the existing database models. Data- 
bases exist in time and model changes that occur temporally in the world via 
database state changes. In order to have a proper understanding of how an 
explicit representation of time interacts with all of the data in the database, it is 
not enough simply to allow users to utilize “time attributes” where they seem 
appropriate. By incorporating a general temporal semantics directly within the 
database model, not only do we spare the user the task of defining such a 
semantics, but we also can ensure that time is treated in a uniform and consistent 
manner. Moreover, if the temporal semantics is built into the model, implemen- 
tations of a historical database can take advantage of this standard semantics to 
increase the efficiency of database operations. The basis which we suggest for the 
semantics of a historical database model is the formulation of an intensional logic 
IL,, a modification of the language IL of Richard Montague [35], whose work has 
profoundly influenced current research in linguistics and the philosophy of 
language. 

major reason for preferring a Montaae-tvne logic over other formulations 
of temparaLnrintensi0na.l logics (as in [42]) & the framework he provides 1351 for 
defining a formal syntax and semantics of English using IL. The development of -..” -:-‘~-.: .._. .---.--- .-..I_._ -- .I _-__ _. 
the hlstorlcal database model is part of our research into the larger area of natural 
language database querying (NLQ). Our approach is motivated by the desire to 
develop a framework for NLQ that is founded squarely on a fully formalized 
syntax and semantics in the sense of Montague [35]. In [ll] we discuss the 
translation of English database queries into the logic IL,, and provide a general 
schema for defining an English query language specific to a given database 
domain. In this paper we show how the model theory of the logic IL, influences 
our view of the objects in the historical database. In particular, database attributes 
are viewed in our historical database model as functions from moments in time 
to values (in the appropriate domain), and IL, gives us the power to speak directly 
about these “higher order” objects and to incorporate them into a general 
temporal semantics for the database. We can therefore express both static and 
dynamic constraints (as discussed in [38]) in the same language, by quantifying 
over variables of the appropriate types. 
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It should perhaps be noted that a historical database, as we define it, is a 
theoretical object, and a rather large one at that; no remarks in this paper should 
be construed as referring to any techniques for implementing this object. Ob- 
viously a direct implementation would be prohibitively costly for any real data- 
base. Reasonable implementations that eliminate much of the inherent data 
redundancy of the formal model are not difficult to imagine. We are currently in 
the process of developing a number of different implementations and algorithms 
for a historical database (HDB). 

After a brief introduction to our notation in Section 2 and a discussion in 
Section 3 of the motivation behind the historical database concept, we provide in 
Section 4 a stepwise development of a historical relational database for a simplistic 
database consisting of a single “entity” relation. Section 5 introduces the inten- 
sional logic and model theory that we use to describe the semantics of this model. 
In Section 6 we discuss in detail the relationship between a historical database 
and its representation in a model for intensional logic. We adopt the entity- 
relationship view of data semantics, modified slightly to incorporate a semantics 
for time; as a working example in this section we use a historical version of the 
entity-relationship department-store database described by Chang [8], of which 
the example in Section 4 was a part. Finally in Section 7 we discuss a variety of 
issues that this research raises in the area of database semantics. 

2. DEFINITIONS AND NOTATION 

This section introduces some of the standard definitions from the relational 
database model (mostly from [29]), along with a few remarks about our notation. 

A relation scheme R = (A, K) is an ordered pair consisting of a finite set of 
attributes A = {Al, AZ, . . . , An} and a finite set of key attributes K = {Kl, Kz, 
. . . , K,}, where K c A. To say that K = (Kl, Kz, . . . , K,} is a Key of scheme R 
is to say that any valid relation r on R has the property that for any distinct 
tuples tl and t2 in r, tl(K) # tz(K), and no proper subset of K has this property. 
We generally underline the key attributes and write such a relation scheme as 
R &42 . - - A,, Am+1 . . . A,); in this case, it is to be understood that A = {AI, 
. . . ) A,} andx = {Al,. . . , A,}. We will occasionally refer to such an R as an n- 
ary relation scheme. The attributes A,+l, . . . , A, are referred to as role attributes. 

The values for the attributes come from a set D of domains, D = (01~02, . . . , 
Dl}, each Di being any nonempty set. We let UD denote the union of these 
domains, that is, UD = D1 U DZ U . . . U DI. 

In order to relate the attributes with their domain, we assume that U is the set 
of all the attributes in the database, and that there is a function DOM: U + D 
which maps each attribute onto its corresponding domain, that is, DOM(AJ is 
the domain of the attribute Ai. 

Finally, we say that a relation r on relation scheme R = (A, K) is a finite set 
of mappings {tl, t2, . . . , tn}, where each ti is a function from A to UD such that 
ti(Aj) E DOM(Aj) for all ti E r and all Aj E A, and for any distinct tuples ti and tj 
in r, tl(K) # k?(K). 

For a relation r on R = (A, K), if X c A and t E r, by t(X) we mean the 
restriction of t to X. We sometimes use the notation t(R) to mean t(A), that is, 
we use the name of the scheme, R, to stand for the set, A, of all of its attributes. 
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If r is a relation on scheme R = (A, K), A; E A and a E DOM(Ai), the usual 
relational operations are defined. Select Ai equal to a in relation r, written 
u+=(r), is the relation r’ on scheme R, such that 

r’ = { t : t E r and t(AJ = a}, 

that is, that subset of the tuples of r which have the value a for the attribute Ai. 
If X c A, the projection ofr onto X, written l&(r), is the relation r’ on X, such 
that 

r’ = {t(X) : t E r}, 

obtained by deleting all the columns corresponding to the attributes in A - X, 
and then removing any duplicate tuples that remain. 

An entity relation is a relation r on a scheme R of the form (Xi AI - - - A,), 
where X1 is the key and any k-value for & uniquely determinesthe values for 
each of the other attributes. (This essentially means that each entity relation is 
in Boyce-Codd Normal Form (BCNF); see [48] for a discussion.) Intuitively, a 
K1-value k uniquely identifies some entity of interest to the database, and each 
Ai-value associated with k gives one of the attributes of k. We use the notation tk 
to denote the tuple whose key value is k. 

A relationship relation is a relation r on scheme R of the form (Xl . . . K,, A1 
a. a A,), where (X1, . . . , K,} is the key and determines the valuesof thether 
attributes. Intuitively, a (X1, . . . , Q-value (kl, . . . , k,) represents an wary 
relationship among the n entities kl, . . . , k,, and each Ai-value associated with 
(h . . . , k,) gives an attribute of that relationship. 

3. MOTIVATION 

Consider a static database with the relation scheme EMP-REL(EMP MGR 
SAL DEPT) and a relation emp-real on EMP-REL. A typical query to such 
a relation, of the sort that has been treated in the literature, might be, “What is 
employee John’s salary?” In the relational algebra this would be expressed as 
&AL (UEMP=John(emp -rel)). A first-order language would express this same query 
as something like {z ] 33t 3y emp- rel(John, r, y, z)}, where n, y, and z are 
individual variables, and John is an individual constant. In order to answer such 
a query, a data manipulation language (DML) simply accesses the relation 
instance emp-rel on EMP-REL, such as the one in Figure 1. In recent 
database literature (e.g., [B, 33,41]), such a relation instance has been termed the 
extension of the relation scheme EMP-REL, a term borrowed from logic. 

One could imagine other sorts of queries that casual users might want to ask 
about the employees in this company, for example: 

“Has John’s salary risen?” 
“When was Peter rehired?” 
“Did Rachel work for the toy department last year?” 
“Has John ever earned the same salary as Peter?” 
“Will the average salary in the linen department surpass $3O,OOO within the next 
five years?” 

Time-dependent questions of this sort are not handled by existing static database 
models or systems, and have not received adequate attention within the database 
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EMP-REL EMP MGR DEPT SAL 

John John Linen 25K 
Mike John Linen 17K 
Elsie Elsie TOY 26K 
Liz Liz Hardware 30K 
Rachel Liz Hardware 29K 
Peter Liz Hardware 29K 

Fig. 1. Relation emp_rel. 

literature (although the need for a temporal semantics in databases is discussed, 
for example, in [5, 7, 26, 28,38,44]). Real database administrators faced with the 
need to process particular instances of queries of this sort have undoubtedly used 
some version of the technique that we present here of incorporating a time 
attribute into the database and providing this attribute with a special significance. 
We are interested in developing a unified and formal theory of database semantics 
that includes time. In other words, given the need for maintaining a historical 
record of changing data, and a language (English) that makes (explicit or implicit) 
reference to the concept of time, we would like a theory that provides a database 
semantics capable of interpreting sentences in the language correctly, that is, in 
a way that corresponds with our intuitive understanding of the relation of time 
to the semantics of the real world. 

Let us consider more closely the query, “Has John’s salary risen?” Even with 
time represented explicitly in the database, there is no apparent simple relational 
algebraic formulation for this query. With the first-order representation for John’s 
salary given above, as a first guess we might imagine that RISE ({z 1 3x 3y 
emprel (John, X, y, 2))) would represent this new query, where RISE is a 
predicate symbol. However, even with an FD that ensured that John had only 
one salary, say, $25,000 (25K), it clearly makes no sense to ask whether 25K 
“rises.” In order to answer this question, more data are needed than the current 
extension of John’s salary: The values of John’s salary for some other point(s) in 
time (in this instance, in the past) are needed. In the model that we present, we 
identify such things as SALaries, not with individual dollar amounts, but with 
dollar amounts in the role of an EMPloyee’s salary. 

It is not difficult to see that if we need to keep track of when the facts we 
record in our database are to be considered “true,” then we need to “time-stamp” 
these facts in some way. Exactly how we propose to do this, and how this proposal 
will extend the concept of and intuition about relations, are the subjects of the 
remaining sections of this paper. For the moment we take a simplified look at 
this suggestion and discuss some of the issues involved. A first point to notice is 
that the expression {z 1 3x 3y emprel (John, x, y, z)} has, in these two queries, 
two very different meanings. The simple query {z 1 3x 3y emprel (John, x, y, 
z)} denotes the extensional value 25K, the salary that John is making now. The 
second query, however, RISE ({z 1 3x 3y emp-rel (John, X, y, z)} ), is not to be 
interpreted as asking RISE (25K). Some other meaning, involving more than the 
current extension of John’s salary, must be given to John’s salary in order to 
determine whether the predicate RISE is true of it. This other meaning for John’s 
salary, we shall see, is what is called (in intensional logic) its intension. (The 
terms “extension” and “intension” are given formal definitions in intensional 
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1977 ---f John- 
1978 --) John 
1979 + John 
1980 + John 
1981+ John- 

1977 -9 linen’ 1977 ---f 25K 
1978 + linen 1978 + 25K 
1979 + linen 
1980 + shoe 
1981-+ shoe. L 1 

1979 -+ 27K 
1980 + 27K 
1981+ 30K 

(a) 04 (4 

Fig. 2. (a) Intension of “John”; (b) intension of 
“Department-of-John”; (c) intension of “Salary-of-John.” 
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logic, and will be defined formally here. They should not be confused with their 
usage in some database papers, for example, [41], in which the term “intension” 
is used to refer to axioms which constrain the set of possible models for the 
database.) It is helpful to think of them in terms of roles, which at any moment 
of time might be filled by any appropriate individual. 

The concept of intension dates back to Frege [16] and his distinction between 
the sense and denotation of an expression in a language. A full discussion of the 
history of these concepts in logic is beyond the scope of this paper. (Carnap [6] 
and Dowty [14], among others, provide a useful introduction to these issues.) 
Roughly speaking, the extension of a linguistic expression is some “object” or 
element of the appropriate kind in the model for that language. The extension of 
a name is some individual in the model; the extension of a formula is one of the 
objects “True” or “False”; the extension of a set is some collection of individuals, 
and so on. The concept of intension, on the other hand, is meant to capture the 
notion of the “sense” or “idea” or “meaning” of an expression. This somewhat 
vague idea is formalized in Montague’s IL by defining the intension of any 
expression as a function from a set of points of reference (variously called 
“possible worlds” or indices) to extensions. Thus the intension of a name, called 
an individual concept (IQ, is a function which, given any index, picks out some 
individual as the referent of that name at that index. Similarly, the intension of 
a set, called a property, picks out some collection of individuals which is the 
referent of the set-name at each index, and the intension of a formula, called a 
proposition, is that function which, for any index, tells whether the formula is 
true or false at that index. 

For example, suppose that we are interested in maintaining a yearly record of 
the emp -rel relation, say for the period of the last five years. If we define a set 
of times, say, S = {1977,1978,1979,1980, 1981}, as the complete set of indices or 
points of reference of interest to us, then the intension of a name in our language 
will be a function from this set S to individuals in the model. Thus, considering 
the employee John, we might have the intensions depicted in Figure 2 for the 
names “John,” “ Department-of-John,” and “Salary-of-John” (assuming for the 
moment some linguistic mechanism for constructing these names). The function 
that is the intension of “Department-of-John,” for instance, represents the role 
of John’s department and tells what department “fills” that role in each state. 
We can now imagine a DML that could examine such a database and provide an 
affirmative answer to our query, “Has John’s salary risen?” In the remaining 
sections we present a formalization of these ideas in terms of the relational 
database model using the intensional logic IL,. We also discuss the application of 
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EMP MGR DEF’T SAL 

John John Linen 23K 
Mike John Linen 17K 
Elsie Elsie TOY 26K 

Peter Liz Hardware 29K 

(a) 

Fig. 3. (a) emp-rell; (b) relation emp_rels; 
(c) relation emp_rela. 

(b) 

this logic to database querying in natural language, and to the unified expression 
of various kinds of data constraints. 

4. HISTORICAL DATABASES 

We imagine that an enterprise wishes to maintain a historical database, that is, 
one that models the dynamic nature of that part of the real world that is its 
concern. To simplify the discussion, we again consider only our entity relation 
scheme EMP-REL as representing the entire database; in Section 6, we present 
a more formal view, and include both entity and relationship relations. We 
suppose that we are given three static relation instances, emp-reh, emp-relz, 
and emp-reb (Figure 3), that is, instances which each repr’esent a single state of 
the world as modeled in the relational database. 

We will proceed to develop the concept of a historical database in stages in 
order to provide some intuition for the more formal treatment given in the next 
sections. We will use the EMP-REL entity relation scheme as our running 
example. The first step is to incorporate a method for time-stamping the tuples 
(“facts”) in our database. To do this we add a new attribute, STATE, to the 
relation scheme, creating the scheme EMP- REL’GSTATE EMP MGR DEPT 
SAL). Each tuple t in an instance emp -reli is extendedaccordingly, by adding 
the value S; for the attribute STATE. The extended relations emp-rel: are 
shown in Figure 4. Formally, 

emp-rel: = {t: t (EMP-REL) E emp-reli and t (STATE) = Si}. 
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STATE EMP MGR DEPT SAL - - 

s, John John Linen 23K 
SI Mike John Linen 17K 
St Elsie Elsie TOY 26K 
2% Liz Liz Hardware 30K 
Sl Rachel Liz Hardware 29K 
Sl Peter Liz Hardware 29K 

(a) 

~~ y~;;~ e?p-rel;; (b) relation emp-relz; (c) relation 

b) 

STATE EMP MGR DEPT SAL - - 

S3 Beth Beth Linen 23K 
S3 Elsie Elsie TOY 2’IK 

S3 Rachel Peter Hardware 28K 
S3 Sharon Peter Hardware 25K 
S3 Peter Peter Hardware 33K 

(4 

We thus adopt an obvious notational convenience that a relation instance ri is to 
be associated with state Si. 

We would like to view these new relation instances emp-relI as providing 
historical information about the changing values of the attributes of the objects 
denoted by values of the key, in this instance about EMPloyees. In order to 
visualize more clearly what is going on, we propose the picture of a historical 
relation as a “three-dimensional relation,” each plane of which is a “static” or 
planar relation instance on EMP-REL for a given state of the world Si. Time 
adds the third dimension to the normal flat-table view of relations. In a tabular 
relation, we understand that a row or tuple corresponds to the information about 
a particular object, and a column corresponds to the active domain of a particular 
attribute. We now propose to view each non-key attribute, such as SAL, as a set 
of roles related to the objects given by the key values, for example, John’s 
SALary, Mike’s SALary, and so on. In order to see more easily exactly what 
individuals fill these roles in each state, we want to “line up” the entities in the 
cube (sort on the key attribute). Figure 5 illustrates such a cube for the emp-rel 
relation. 

Figure 5 also illustrates a problem that we must solve, namely, that some 
EMPloyees are not represented in every state. For example, John is not an 
EMPloyee in state &, and therefore there is no tuple for John in the plane for S3 
in this cube. Given the query, “What is John’s salary in Ss?” we would want our 
model to give us the power to say not that there is no such employee, but rather 
that John does not work for us in S3. 
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John 

John 
Mike John Linen 
Elsie 
Liz 
Rachel Liz 
Peter 

STATE EMP MGR DEPT SAL - - 

Fig. 5. Relation emp_rel. 

In order to provide a framework in which these issues can be examined, we 
introduce the concept of a completed relation. Later this notion will be incorpo- 
rated into a more formal definition of a number of assumptions on the interpre- 
tation of a historical database, assumptions with the same flavor as the Closed 
World Assumption of Reiter [41] but expanded to incorporate the temporal 
dimension. In order to indicate which entities are of interest in any state, we will 
use a special Boolean-valued attribute EXISTS?. In those states in which an 
entity does not exist as an EMPloyee, EXISTS? will be 0 for that EMP, and all 
of the other attributes will be given the value I, a distinguished entity whose 
meaning is that no individual fills the role of that attribute, that is, the attribute 
does not apply. A completed relation will have a tuple in each state for every 
entity that is an EMPloyee in any state in the entire database. In this way, we 
will be able to follow objects and their attributes throughout all of the states of 
the database. To do this, we determine all of the objects (key values) that are 
represented in any relation instance, and we extend with a null tuple each 
instance that does not represent information about this object. 

We formalize these ideas as follows. Given a relation scheme R’( STATE KA1 
. . . A,) and an instance rf on R’, we define the active key domain=) of rl 
on R’ to be the set of all key values (entities) in the relation instance r:, that is, 

AKD(rl) = l-I&l). 

We then extend this definition to a set of instances I = {r’l, . . . , rk} on R’ by 
defining the complete active key domain (CAKD) of a set of instances as 

CAKD(1) = UAKD(rl) for all r: E I. 

CAKD(I) is exactly the set we need-it represents all of the EMP entities about 
which any information is stored in the database. 

We then extend each relation instance rl so that it has a tuple for each entity 
in CAKD(I), the set of all “possible” EMPloyees that are “actual” in some state. 
Now by construction the projection of each expanded instance r” onto the 
attribute K will correspond to all of the entities, that is, 

II&-F) = CAKD(1). 

If the entity k is an actual entity in state Si, then in the expanded relation rf 
the tuple tZ will have tl(EXISTS?) = 1 and will agree with the tuple tlk in rI on 
every other attribute. On the other hand, if k is not an actual entity in state Si, 
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I- - STATE EMP EXISTS? MGR 

Sl 
Sl 
Sl 
Sl 
Sl 
Sl 
Sl 
S1 

John 1 
Mike 1 
Elsie 1 
Liz 1 
Rachel 1 
Peter 1 
Sharon 0 
Beth 0 

John 
Mike 
Elsie 
Liz 
Liz 
Liz 

I 
I 

DEPT SAL 

Linen 
Linen 

TOY 
Hardware 
Hardware 
Hardware 

I 
I 

23K 
17K 
26K 
30K 
29K 
29K 

I 
I 

EMP EXISTS? MGR 

John 
Mike 
Elsie 
Rachel 
Sharon 
Peter 
Beth 
Liz 

1 John 
1 Elsie 
1 Elsie 
1 Rachel 
1 Rachel 
0 I 
0 I 
0 .L 

DEPT 

Linen 

TOY 
TOY 
Hardware 
Hardware 

I 
I 
I 

SAL 

25K 
20K 
27K 
28K 
25K 

I 
I 
I 

(a) 

Fig. 6. (a) Rela- 
tion emp-rely; 
(b) relation 
emp-relk; (c) re- 
lation emp-relc. 

EMP 

Beth 
Elsie 
Rachel 
Sharon 
Peter 
John 
Liz 
Mike 

EXISTS? MGR DEPT SAL 

Beth 
Elsie 
Peter 
Peter 
Peter 

I 
I 
I 

Linen 

TOY 
Hardware 
Hardware 
Hardware 

I 
I 
I 

23K 
27K 
28K 
25K 
33K 

I 
I 
I 

(4 

then the tuple tE will have t{ (EXISTS?) = 0, but the distinguished value I for 
every other attribute other than STATE, indicating the inapplicability of this 
information for this entity, that is, that no individual fills the roles of these 
attributes for that entity. Formally, we define the completed relation as follows: 

r: = {t: t(R’, E r: & t(EXISTS?) = l} 
U {t: t(K) E CAKD(1) - AKD(r:) & 

t(STATE) = Si & t(EXISTS?) = 0 & 
t(A) = I for all A E {AI, . . . , A,}}. 

The three completed EMPloyee relation instances are shown in Figure 6, arranged 
in a consistent (but arbitrarily chosen) order on key values, 

The three-dimensional cube representation of the completed relation, such that 
the ith plane of the cube is r:‘, is shown in Figure 7. 

The concept of a completed relation, combined with the EXISTS? attribute --- 
and the distinguished value 1, allows us to refer in any state to anv &&&,&lP _-... -- _-- -.- -.__. .-- __-_ ,__-.-.I ) 
that is actual at any time,jn.thed~can follow the changes _ ___._ 
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Figure 7 
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Hardware 
Hardware 
Linen 
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33K 
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inlh a three-dimensional row of the cube. - ---__ 
In subsequent sections, we will introduce enough of the theory of IL, to show 
how it can be applied to a historical database to provide a comprehensive 
database semantics capable of treating time-dependent queries and constraints. 

At times we will want to consider all of these relation instances as comprising 
a single relation on the scheme EMP-REL. We can easily combine them into 
one large relation by taking their union. Accordingly, we define a historical 
relation rh on a relation scheme R”(STATE K EXISTS? Al - - - A,) for a set of 
instances I = {rl, r2, . . . , r,} as the xofthe completed relations r:’ that we 
have just constructed (Figure 8). There are no tuples lost in taking this union 
(i.e., there were no duplicates) because of the manner in which we have con- 
structed each instance. Moreover, we now that {STATE, K} is a key of rh. 

Finally, for each Si E S the corresponding completed relation r-7 is embedded in 
rh, since 

rl = OSTATE=S,(~~). 

We shall use the term historical relation in the rest of this paper indiscriminately 
to refer either to this single relation or to the three-dimensional organization of 
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STATE EMP EXISTS? MGR 

S1 John 1 John 
S1 Mike 1 John 
S1 Elsie 1 Elsie 
S1 Liz 1 Liz 

S1 Rachel 1 Liz 
S1 Peter 1 Liz 
S1 Sharon 0 I 
S1 Beth 0 I 
SZ John 1 John 
SZ Mike 1 Elsie 
SZ Elsie 1 Elsie 
SZ Rachel 1 Rachel 
SZ Sharon 1 Rachel 
SZ Peter 0 I 
S2 Beth 0 I 
SZ Liz 0 I 
SB Beth 1 Beth 
S3 Elsie 1 Elsie 
S3 Rachel 1 Peter 
S3 Sharon 1 Peter 
S3 Peter 1 Peter 
S3 John 0 I 
SB Liz 0 I 

S3 Mike 0 I 
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I 
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25K 
33K 

I 
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I 

Fig. 8. Relation 
emp>elh. 

the completed relation instances; no confusion should arise, since both of these 
representations represent the same information. 

We can now define a historical relational database as a collection of historical 
relations over the same set of states. In what follows, we continue to use the term 
static database as a general term to describe those familiar databases which 
attempt to model only one state of the world. 

The development of the historical relation emp-rek in this section has been 
very informal; it has been presented in this way because viewing such a database 
as a three-dimensional object aids our intuition. The technique of time-stamping 
each tuple is a fairly simple idea, and many databases have kept information 
such as salary histories in a similar way. It is important to note, however, that 
the STATE and EXISTS? attributes are distinguished attributes that are an 
intrinsic part of the historical database model, and not ordinary attributes under 
the user’s direct control. By this means an explicit temporal semantics can be 
incorporated directly within the framework of the relational model, provided that 
the model is extended to include a special treatment for these attributes. We have 
tried in this section to provide a reasonable intuition about the added dimension 
that time contributes to database semantics. In Section 6, we will show how the 
model, and not the user, provides a temporal semantics by the interpretation that 
it gives to these distinguished attributes and to its interaction with all of the other 
elements in the basic relational model. Through the technique of meaning 
postulates [6, 351, which are axioms that constrain the set of allowable models, 
the user is provided with the facility to make certain modifications to the general 
temporal semantics provided in the general historical relational model. Since this 
semantics depends upon the formalization of IL,, we provide a brief overview of 
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this logic and its model theory in the next section. Those familiar with Montague’s 
formulation of IL [35] will see that in IL, we have reformulated IL to include s as 
a basic type, along the lines suggested in [18]. 

5. INTENSIONAL LOGIC AND INTENSIONAL MODELS 

Most database researchers have some degree of familiarity with the general 
concepts and some of the theory of first-order logic, if not with its model theory 
then at least with its deductive apparatus. We hope that what we provide here in 
the way of introduction to intensional logic will at least suffice to make the rest 
of this paper intelligible; should we inspire some readers to seek broader knowl- 
edge of the subject, we recommend [14] as an excellent introduction before 
plunging headlong into Montague’s extremely terse presentation [35]. 

IL, is a, typed, higher order lambda calculus incorporating indexical semantics. 
It is typed: Every expression in IL, has an associated type, which determines 
what kind of object in the intensional model for the language can be assigned to 
it by an interpretation function as its denotation. It is higher order: Unlike first- 
order languages which allow quantification only over individuals, or second-order 
languages which allow quantification only over individuals or sets of individuals, 
IL, allows quantification over variables of every type. It is a lambda calculus: It 
provides a lambda operator which allows the formation of expressions denoting 
constructed functions of arbitrary type (see [lo]). (Readers familiar with the 
programming language LISP [32] are familiar with the general concepts of lambda 
abstraction. Hobbs and Rosenschein [23] exploit this similarity in their attempt 
to interpret a simplified version of Montague’s IL as LISP expressions.) Finally, 
it incorporates indexicakznantics by including in the syntax expressions of a 
type whose interpretation is a special set of indices or states, and by having a 
model theory that is based upon a possible worlds/temporal (or indexical) 
semantics. 

Definition. The set of types for IL, is the smallest set T such that: 

1. e, t, and s are in T, and 
2. ifa,bET,then(a,b)ET. 

We anticipate the semantic discussion below to say that the interpretation 
function for the language will assign to expressions of type e (for entity) individ- 
uals in the model; to expressions of type t (for truth values), one of the truth 
values 0 (false) or 1 (true); to expressions for type s (for states), states or points 
of reference; and to expressions of type (a, b), some function from objects in the 
model of type a to objects of type b. 

We shah not present the complete syntax of IL,, since the examples we use in 
the following sections use only a portion of the language. Instead we stress the 
following points of notation and departures from standard first-order languages. 

1. IL, contains an infinite number of variables of the form un,= for each type a 
and natural number n, and a set of constants C,, possibly empty, for each type a. 

2. IL, contains the usual truth function operator - (NOT), and truth functional 
connectives A (AND), V (OR), + (material implication), w (mutual material 
implication), = (equality), and < (prior to). 
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3. IL, contains the universal and existential quantifiers, V and 3, respectively. 

The usual rules of formation apply to the above language elements. In addition, 
the following syntactic constructs are peculiar to IL,. 

4. If a is an expression of type (a, b) and p is an expression of type a, then 
a(p) is an expression of type b, and denotes the result of applying the function 
denoted by a to the object denoted by /3 as argument. 

5. If x is a variable of type a, and fi an expression of type b, then x3cp is an 
expression of type (a, b), and denotes a particular function from objects of type 
a to objects of type b. 

Not surprisingly, it is the model theory of IL, that is of most interest to us here. 
We proceed by first formally defining a model for IL, and then discussing its 
significance. 

A model M for the language IL, is an ordered 4-tuple M = (E, S, < F) where 

1. E is a nonempty set (the set of basic entities); 
2. S is a non-empty set (the set of states); 
3. < is a linear ordering on S (this gives the interpretation of the “prior to” 

symbol < in the language); 
4. F is the function which assigns to each constant ca E C, an element in D,, 

the set of possible denotations of expressions of type a, which is defined 
recursively over the set of types T as follows. 

D, = E 

Dt = (0, 1) 

D, = S 

D (a,b) = Db , Dll that is, the set of all functions from D, to Db. 

The set E is intended to represent the set of possible individuals, and S the set 
of points of reference or states, ordered by C. 

We point out that, in particular, an expression of type (a, t) for any type a 
denotes a function from D, into (0, l} and can therefore be thought of as the 
characteristic function of a set of objects in D,. Accordingly, we will often speak, 
for example, of sets of individuals, when we should more formally speak of 
functions from individuals to (0, l}. For example, over a universe consisting of 
the set {a, b, c, d, e}, the set {a, c, e} is equivalently represented by the following 
characteristic function. 

1 
0 
1 
0 
1 I 

Probably the best way to get a feeling for what these definitions say is to set up 
a small language and model and provide some examples. Let us therefore assume 
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a language that contains the following constants of the indicated types. 

Peter, Liz, Elsie, and THEBOSS of type (s, e) 

77, 78, 79,80, and 81 of type s, 

and 

EMP of type (s, ( e, t)). 

Let us also assume that our model M = (E, S, <, F) is defined as follows. 

E = {Peter, Liz, Elsie} --- 

5’ = (1977, 1978, 1979, 1980, 1981} 

with < the obvious ordering on S. 
Assume that the interpretation function F makes the obvious assignments to 

the state constants. The other constants are interpreted as foIIows. 

F(Peter) = 

F(Elsie) = 

These functions, from states to individuals, are what we have defined above as 
individual concepts (ICs). They are intended to represent the sense of a name 
since they pick out the individual referred to by the name at every index. The ICs 
above ah share the additional property of being constant ICs (or rigid designators): 
in each state Si, they pick out the same individual. Compare how F interprets the 
constant THE-BOSS: 

F(THE-BOSS) = 1979 + Peter 

This function is also an IC, but it is not a constant IC. Later we shah see how this 
distinction between constant and unconstrained ICs wiII be related to the data- 
base concepts of key and non-key attributes, respectively. We can think of this 
function as representing the role of the boss, in that it tells who fills that role in 
every state. The interpretation of EMP wiII be a function which, for any state, 
picks out a set of individuals (the intended interpretation being that set of 
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individuals who are EMPloyees in that state): 

F(EMP) = 

Such a function is often called a property of individuals. Notice that we have 
used set notation instead of the more cumbersome, though equivalent represen- 
tation by characteristic functions. 

Rather than giving the semantic rules for IL, which, for each expression A, 
define the extension of A with respect to a model M, a state i, and a variable -.- 
assignment g, we provide some examples. Consider the expression EMP(78). 
Since EMP is of type (s, (e, t) ), and 78 is of type s, this expression is well formed 
and is of type (e, t ). Its interpretation is given by applying the function which is 
the interpretation of EMP to the interpretation of 78, namely, 1978, as shown: 

ri977+ (Liz1 1 
1978 -+ i&er , Liz} 
1979 + {Peter, Liz} 
1980 + (Peter) - 

(1978) = {Peter, Liz}. - - 

L 
\-, 

1981 -+ {Elsie} I 

Thus we see that the interpretation rules give the expected meaning to 
EMP(78), namely, {Peter, Liz} , the set of individuals who are EMPloyees in 
1978. Consider now theexpression EMP(78) (Elsie), of type t. The denotation of 
this expression is “computed” by applying the set {Peter, Liz}, (considered as a - - 
function) to the argument Elsie to obtain the value 0 (false), that is, Elsie is not 
an EMPloyee in 1978. 

Now, suppose we want to form an expression whose denotation is a function 
from states to those individuals who were not the boss in those states. Such an 
expression would be of the same type as the constant EMP, namely, (s, (e, t ) ), 
and can be constructed from the constants we have so far defined using lambda 
abstraction over the set of states and the set of individuals. In order to do this, we 
need to use two variables in the logic: a variable i of type s, that is, a variable 
over states, and a variable u of type e, a variable over individuals. We already 
know that the interpretation function F gives the interpretation of each nonlogical 
constant. The variable assignment g, as in first-order languages, provides the 
denotation of variables. Explicitly, for every variable y of type a, g( y) E D,. With 
these two variables we can form an expression which denotes the function we 
want, namely, 

Xihu [- THE -BOSS(i)(u)]. 

The denotation of this function, let us call it N--T--B, is given in Figure 9. We 
have indicated the sets by their characteristic functions; in each year, one and 
only one person is not not the boss (namely, the one who is the boss). 

Finally, we consider an example that makes explicit, reference to time, the 
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N-T-B = 

-1977 --* Liz 

[ Peter Elsie 

+ 0 

+ + 1 1 1 

1979 -9 [ Liz -+ 
Peter + 0 
Elsie + 1 1 1 

1980 --* [ Liz + 
Peter + 0 
Elsie + 1 1 1 

1981 -3 [ Liz + 
Peter + 1 
Elsie + 1 1 0 

Fig. 9 The denotation of function N-T_B. 

formula which translates the sentence “Elsie was the boss”: 

3i[[i < now] A THE-.BOSS(1’)(Elsie)]. 

If we assume that now (of type s) is interpreted as 1981, this formula will be true 
just in case there is some time i prior to 1981 at which Elsie was “t,he boss.” It is 
easy to see that with respect to the model M this formula is false, and the 
inductive definition of the interpretation of the language IL, makes this formula 
denote 0. 

This completes our brief introduction to the language IL, and its semantics. It 
should be sufficient to enable the reader unfamiliar with formalized intensional 
logic to understand the following section, in which we present a detailed discussion 
of the model-theoretic implications of a historical relational database. 

6. INTENSIONAL LOGIC AND HISTORICAL DATABASES 

In this section we describe the relationship between the historical relational 
database model and the logic IL, and its model theory. This relationship is first 
presented formally. It is then followed by an informal discussion that emphasizes 
insights that this relationship can provide into the way that a database models 
the “real world,” and into the nature of entities and relationships, key and non- 
key attributes, queries and data constraints, and the interaction of time with all 
of these concepts. The formalism is presented in the interest of completeness and 
rigor, but it is easy to get lost in some of the notation; the informal discussion 
provides a better overview of how the temporal dimension is incorporated into 
the traditional relational model and of how it affects this model. 

In the previous section, we described the syntax and semantics of the language 
IL,. To be more precise we should rather say the family of IL, languages, since 
any particular language in this family is determined by the set C of nonlogical 
constants. The general, intuitive description of the historical relational database 
concept presented in Section 4 will now be formalized and related to the discussion 
of the intensional logic as follows. First, we show that particular HDB scheme 
defines a particular logic in the family of IL, languages that providesal 
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expression of the historical database semantics and that serves as the target 
language for translations from our English Query Language (described in [ 111). ----_. .- ---___- _ ..-. 
Second, we show how the interpretation of the set of nonlogical constants of this 
applied II,, is Q- .--I 

-_ 
iven by an instance of an HDB on this scheme at any moment in .-. - ----._ -..---- . _ - .- - _ c . _.-l_l .,.- 

its history. 

6.1 Introduction 

In IL,, as in Montague’s formulation of IL, all functions are defined as taking 
only one argument. It is well known, however (see the discussion in [lo]), that 
any function of n arguments can be represented by an equivalent function of one 
argument whose value is a function of n - 1 arguments. Thus, for example, if fis 
a function of two arguments, ( f(a))(b) represents the value off for the arguments 
a and 13. The function f(a) represents a function of one variable whose value for 
any argument x is (f(a))(x). We shall abbreviate this notation as f(a)(x) or as 
f( { a, x) ), and assume that the generalization to functions of n arguments is 
obvious. Thus, if g is a function of n arguments, g(x1)(x2) - . - (x,) or g( (3c1, x2, 
* . . , x,)) abbreviates (((&))(xz)) - . e ) (x,), which represents the value of the n- 
ary function g for the arguments x1, x2, . . . , xn. 

In our discussion of functions, we will have occasion to speak of particular 
function spaces, that is, the set of all functions with the same domain and the 
same range. For example, the set of all functions with domain S (states) and range 
E (individuals) is written ES. Recalling our notation for the denotation sets 
corresponding to a given type in IL,, this function space can also be written D,“*, 
and represents the set of all ICs. We will sometimes refer to a given function in 
this function space as being of type (s, e), although strictly speaking we should 
rather say that if, for example, X is a term in the language IL, that names this 
function, then X is of type (s, e). In general, a function from A to B will be said 
to be of type (A, B ) . Many of the nonlogical constants that we will be discussing 
will be of types such as (s, (e, (e, . . . , (e, t), . . . ))), where there are n e’s before 
the t. Instead of this cumbersome notation, we will abbreviate such a type as 
(s, (en, t)). 

Definition. The logical domain of a database attribute A, LD(A), that. is, the 
domain in the logical model that corresponds to the values in the database 
domain of the attribute A, is defined as follows. 

S if A = STATE 
LD(A) = TV if A = EXISTS? . 

E otherwise 

Definition. We say that X is an (Al, AZ, . . . , A, )-value for a relation scheme 
R(...AlA2...A,...),ifX=(xl,xz ,..., x,) where xi E LD(Ai), 15 i 5 n. If 
n = 1 we sometimes omit the braces and say simply that X is an Al-value. 

Definition. We modify the definition of the relational database projection 
operator II to handle the special case of projection of a null relation differently 
according to the LD of the attribute projected upon: 

{t(A):tEr} ifrZ0 

IL(r) = 
I ifr=0 and LD(A) = E 
0 ifr=0 and LD(A) = TV * 
0 ifr=Q and LD(A) = STATE 
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We call the elements I, 0, and (ZI bottom of the logical domains E, TV, and 
STATE, respectively. With this modified project operator we will be able to 
define a total function from a relation defined over only a subset, of the set of 
STATES, given certain simple assumptions on how to interpret the database. 

We have chosen in this work to adopt the entity-relationship view of data 
semantics [9], as applied to the relational model, for two main reasons. First, we 
view the constraints that the entity-relationship model makes upon the database 
view of an enterprise as rather “natural” constraints that accord with our 
intuition. Second, these same constraints annear to haTdirect logical analogues 
in thekinda.&rbje~tities, relationships, and properties-contained in the -.. .- _ -.- 
rnpdel theory of our logic. Since Montague’s Intensional Model Theory and 
Chen’s Entity-Relationship Model are two independent efforts to characterize 
real-world semantics, we feel that the similarity in some of their concepts 
strengthens their intuitive appeal. The constraints of the entity-relationship 
model applied to the historical database concept, combined with some simple 
assumptions on how to interpret a historical database, allow us to define a 
reasonably straightforward mapping between any relational HDB that conforms 
to these constraints and an IL, model. 

We proceed to define the entity-relationship constraints that we place upon 
the more general HDB model presented in Section 5. We then define first the IL, 
language that a given HDB scheme defines, and second the model Mhdb for that 
language that is induced by an instance hdb on this scheme. 

Definition. A historical entity relation is a historical relation rt, on a scheme 
of the form (STATE K EXISTS? A1 . e . A,) with the following constraints. -- 

1. K and A1 - - - A, are as in an entity relation. 
2. An entity can belong to only one “entity-set.” That is, if rl is a historical 

entity relation on RI (STATE K1 EXISTS? AI - -. A,) and rz is a historical 
entity relation on Rz (Sm.!EXISTS? A’1 q - B AL), then for any TV E rl and 
t2 E r2, tl(Kl) Z t2(K2Tv 

3. For any tuple t in ‘51, if t(EXISTS?) = 1 then the entity represented by 
t(K1 ) is said to exist in the state given by t(STATE), and the values of t (A1 ), 1 
I i 5 n, must not be 1. (Note that we do not build into the model any other 
kinds of null values.) 

4. For any tuple t in rh, if t(EXISTS?) = 0 then the entity represented by 
t(K) is said not to exist in the state given by t(STATE), and the values of I, 
lrisn,mustallbeI. 

Definition. A historical relationship relation is a relation rh on a scheme of 
the form (STATE K1 . e . K, EXISTS? AI . - . A,,,) with the following constraints. -- - 

5. Kl . . . K,, and A1 . - . A, are as in relationship relations. 
6. For any tuple t in rh, if t(EXISTS?) = 1 then the relationship represented 

by U-G e . . Kn) is said to exist in the state given by t(STATE), and the values of 
t(A1), 15 i 5 n, must not be 1. 

7. For any tuple t in rh, if t(EXISTS?) = 0 then the relationship represented 
by t(K - . - K,) is said not to exist in the state given by t(STATE), and the 
valuesoft(Ai),lri<nmustallbel. 

Moreover, the following inter-relational constraints must be satisfied. 
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8. Only one relationship is allowed among (between) the same entity sets. That 
is, it is not permitted to have more than one historical relationship relation whose 
object key is Kl - e . K,. 

9. For each historical relationship rh with entity keys {K1, KZ , . . . , I&}, there 
must exist, for each of the Ki, a corresponding historical entity relation ri such 
that for each tuple t in rh with t(EXISTS?) = 1, there must exist in the relation 
ri corresponding to Ki a tuple t’ such that t’(Ki) = t(Ki), t’(STATE) = t(STATE), 
and t’(EXISTS?) = 1. 

10. A role attribute A can appear as a role attribute in at most one relation. If 
role attribute A in rl is an entity attribute Kin r2, then for each tuple t in r1 with 
t(EXISTS?) = 1 there must be a t’ in r2 with t(STATE) = t’(STATE) and t(A) 
= t(K). 

These last two interrelational constraints ensure that if an entity h participates 
in a relationship or fills a role in a state s, then the existence of k in state s must 
be predicated in the entity relation for k. All of these constraints are essentially 
the same as in the general entity-relationship model, extended to include a 
temporal semantics. 

Definition. We will sometimes wish to refer to database entities or relationships 
by the neutral word object or object of arity n; if n = 1, this term refers to an 
entity, whereas if n > 1, it refers to an n-ary relationship. 

Definition. By a historical database (HDB), we shall mean a collection of 
historical entity and historical relationship relations that satisfy the above con- 
straints, which we shall refer to as the historical entity-relationship constraints. 

6.2 The IL, Language Defined by an HDB Scheme 

The information in an HDB is organized in the form of historical entity and 
historical relationship relations. We represent this information in the logical 
model by some set of functions which are defined implicitly by the database. In 
this section we give the names of the functions that are needed to represent the 
HDB as a portion of an intensional model. These names are simply a set of 
nonlogical constants that define a particular IL, language. In this section, we only 
briefly discuss the sorts of functions denoted by these constants; in the following 
section, we shall show how any instance of an HDB induces the interpretation of 
these constants. 

For each HDB, we shall define six sorts of constants, corresponding to domain 
values, time values, entity attributes, role attributes, relationships, and the 
associations between objects (entities or relationships) and their role attributes. 
In the discussion to follow, we shall have occasion to make reference to a sample 
database to exhibit some of the ideas that we discuss. We therefore define a 
simple historical database based on the department-store relational database 
example in [8]. 

Historical Entity Relation Schemes 
EMP-REL (STATE EMP EXISTS? MGR DEPT SAL) 
DEPT-REL(STATEmT EXISTS? FLOOR) 
ITEM-REL (STATE I= EXISTS? TYPE) ~- 
Historical Relationship Relation Schemes 
SALES.-REL (STATE DEPT ITEM EXISTS? VOL) --- 
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EMP 

Peter 
Liz 
Elsie 
Peter 
Liz 
Elsie 
Peter 
Liz 
Elsie 

EXISTS? MGR DEPT SAL 

I 
I 

Elsie 
Elsie 
Elsie 
Elsie 
Liz 
Liz 

I 

I I 
I I 

TOY 50 
Hardware 30 

TOY 35 

TOY 50 
Linen 35 
Hardware 50 

I I 

Fig. 10. Relation emp_rel. 

STATE DEPT EXISTS? FLOOR 

TOY 
Hardware 
Linen 

TOY 
Hardware 
Linen 

TOY 
Hardware 
Linen 

1 Fl 
1 F2 
0 I 
1 F2 
1 F2 
1 F3 
1 F2 
0 I 
1 F3 

Fig. 11. Relation dept-rel. 

We will also have occasion to use the instances given in Figures lo-13 over these 
schemes. 

6.2.1 Domain Value Constants (DVCs). Recall that the union of all of the 
domains of the database attributes is the set UD. Corresponding to UD we define 
the set of individual constants in IL,, C, = {d’ 1 d E UD} , so that we can refer in 
the logic to any value that might appear in any state of the database. 

6.2.2 Time constants (TCs). The domain of the distinguished attribute STATE 
is the set S. Corresponding to this set, we define the set of state constants in IL,, 
C, = S. It will also prove useful to allow constants that refer to sets of states, in 
particular to contiguous states or intervals; for example, a constant 1978 of type 
(s, t) would denote the set of all moments of time in the year 1978. We will 
therefore allow in IL, a set of constants of this type, namely, Ccs,t). These latter 
are not determined by the database, but rather by the kinds of users and queries 
that the database system is intended to support. 

The general picture of the historical database as encoded in the IL, model is 
provided by the denotations of the remaining four kinds of constants. Before 
stating formally the rules for deriving their denotations from the database, we 
give the following overview. 

1. The set of entities (e.g., EMPloyees) in any state is given by the denotation 
of the corresponding entity constant (e.g., EMP;) for the entity set. 

2. The set of n-tuples participating in any n-ary relationship in any state is 
given by the denotation of the relationship constant REL-n. All n-ary relation- 
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STATE ITEM EXISTS? TYPE 

S1 Ball 1 5 
SI Game 1 6 
Sl Glove 1 7 

S2 Ball 1 0 
S2 Game 1 6 
SZ Glove 1 5 
SS Ball 1 10 
S3 Game 0 I 
S3 Glove 0 I 

Fig. 12. Relation item rel. 

STATE 

S1 
S, 
Sl 
SI 
SO 
SP 
SZ 
SZ 
s3 

S3 
s3 

SZ 

DEPT 

TOY 
TOY 
Hardware 
Linen 

TOY 
TOY 
Hardware 
Linen 

TOY 
TOY 
Hardware 
Linen 

ITEM 

Ball 
Game 
Glove 
Glove 
Ball 
Game 
Glove 
Glove 
Ball 
Game 
Glove 
Glove 

EXISTS? VOL 

1 3 
1 6 
1 9 

0 I 

1 3 
1 6 
1 9 

1 2 
1 4 
1 6 
0 I 
0 I 

Fig. 13. Relation salesrel. 

ships can be combined into a single function since the entity sets of the partici- 
pants uniquely determine the relationship. 

3. For each role (e.g., SALary), the set of ICs that fill that role in any state is 
given by the denotation of the corresponding role constant (e.g., SAL’). An IC 
tills a role only in those states in which its associated object exists (or, equiva- 
lently, in which its value is not I). 

4. n-ary objects are bound permanently to each of their role ICs Ai by 
the denotation of the nonindexical constants AS-Ai. Thus, for example, each 
EMPloyee is permanently bound to three ICs which, in those states in which the 
employee exists, are its SAL, MGR, and DEPT selecting functions. 

6.2.3 Entity Existence Constants (EECs). For each historical entity relation 
with entity key K, we use a nonlogical constant K!+ in IL, of type (s, (e, t ) ) which 
denotes, at each state, the set of individuals (subset of E) which exist as K- 
entities in the state. For example, the historical entity relation DEPT-REL with 
entity key DEPT induces ih the logic the constant DEPT’, of type (s, (e, t) ). 
DEPT!+ denotes at any state the set of entities which are departments in that 
state. Ccs,(e,t)) is the set of all these entity-key constants. 

6.2.4 Relationship Existence Constants (RECs). For each n for which there 
exists one or more n-ary historical relationship relations, the set Cc, (en,t) 1 consists 
of the single nonlogical constant REL-n, which denotes at each state the set of 
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logical n-tuples (subset of E”) which exist as nary relationships in that state. For 
example, SALES-REL is a binary historical relationship relation that induces 
in the logic the constant REL-2 of type (s, (e, (e, t) ) ). REL-2 denotes at any 
state the set of binary relationships (in this example, this is just the set of 
DEPT-ITEM pairs) that exist in that state. 

6.2.5 Role Constants (RCs). For each role attribute A in the historical database 
scheme, we use a nonlogical constant A’ of type (s, ( (s, e), t) ) in IL, which 
denotes, at each state, the set of A-ICs which exist in that state. C’C~,((~,~),Q) is the 
set of all of these role constants. For example, the role attributes DEPT (from 
EMP-REL) and VOL (from SALES-REL) induce in the logic the constants 
DEPT’ and VOL’ of type (a, ( (s, e), t) ). DEPT’, for example, denotes in any 
state the set of DEPT-ICs (i.e., department-of-some-employee roles) that exist in 
that state. Notice that DEPT’ and DEPT: are two different constants of different 
types, induced by two different “occurrences” (and two different uses) of the 
single database attribute DEPT. This distinction between object (entity or 
relationship) attributes and role attributes is an important one. The values of 
object attributes are entities, while the values of role attributes are functions 
(ICs). If, as in the case of departments in this example, an attribute is considered 
in one case (EMP-REL) as a role attribute (an attribute of the entity EMP) 
and in another as an object attribute (the entity department), two different 
constants denoting two different functions are induced in the logic. Attributes of 
a department are attributes of the department as an entity and not as a role. 

6.2.6 Association Constants (ACs). For each n for which there is an object in 
the database the set Clen,((s,e),t)) consists of a set of nonlogical constants AS-Ai 
which denote the permanent association (i.e., state-independent, or nonindexical) 
between each object of arity n and each of its role attributes AL. For example, the 
constant AS-SAL of type (e, ( (s, e), t)) in the logic represents the association 
between each entity (object of arity 1) and its salary IC. AS-FLOOR associates 
each department with its floor IC, and so on. The constant AS-VOL of type (e, 
(e, ( (s, e), t) ) ) represents the association between each binary DEPT-ITEM 
relationship and its sales-VOLume. 

Any given HDB scheme thus determines a set CHDB of constants in ILs,un~ 
from among these six categories of nonlogical constants. (These constants are 
uniquely determined except for the constants of type (s, t), for which many 
choices can be made.) In the case of the department-store database, the following 
set of constants is determined. 

Cdept-store = ct? u cs u C(SJ) 

u ~WW)) 

u C@,(e,W))) 

UC (%((sse)J)) 

u ~(e,((s,e).t)) 

u CMe,(m,t))) 
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where 

C, is the set of domain value constants, 
C, is the set of state constants, 
Ccs,t) is some set of state-set constants, 
Cc, (e,t)) = {EMP ‘, , DEPT ‘, , ITEM ‘,} is the set of EECs, 
Ccs,(e,(e,t))) = {REL-2) is the set of RECs, 
Ccs,((s,e),t)) = {MGR’, DEPT’, SAL’, FLOOR’, TYPE’} is the set of RCs, and 
Cc, ( (s,e),t)) = {AS-MGR, AS-DEPT, AS-SAL, AS-FLOOR, AS-TYPE} and 

Cle,(e,((s,e),l))) = {AS-VOL}, and the union of these last two is the set 
of ACs. 

In the following section, we will give formal definitions of an HDB scheme and 
an instance hdb on this scheme, and show how the interpretation of the constants 
determined by a given historical database scheme HDB is induced by an instance 
hdb over that scheme. 

6.3 The Intensional Model Induced by a Database Instance 

Before proceeding to define how a given instance of an HDB induces the 
definition of the interpretation-of-constants function F, we need to define some 
preliminary notions. 

The view of a relational HDB as a three-dimensional cube composed of a 
sequence of static relations has served a useful purpose in guiding our intuition 
as to how time interacts with the other attributes in the database. It was this 
view which caused us to look at key attributes as constant ICs, functions from 
states to individuals, and at role attributes as unconstrained ICs. We will now 
argue that this view is inadequate in the face of the generally accepted notion of 
dense time. We will therefore fortify this view with two additional assumptions, 
the Comprehension Principle and the Continuity Assumption. These will enable 
us to view an HDB as modeling an enterprise completely over an interval of the 
real-time line, and to answer such crucial questions as what objects exist in any 
state s and what are the values of their Ai-ICs in these states. 

Definition. A closed interval [tl, tz] on the real-time line is defined, as usual, 
as the infinite set of all states in R between and including tl and t2, that is, [tl.. t2] 
= {t ) t E R and tl I t 5 tz}. The appropriately modified definitions for [tl, tz), (tl, 
tz], and (tl, t2) are assumed, and the general term interval will sometimes be used 
to refer to any of these. 

For purposes of illustration let us consider again the historical entity relation 
scheme EMP-REL(STATE EMP DEPT MGR SAL), and assume that we have -- 
an instance that is defined over this scheme for the sequence of states (Sl, SZ, 
. ..) ST). The first assumption which we shall make about any such relation is 
that it is intended to model EMPloyee entities over the entire closed interval of 
time [&, ST]. Since under the most reasonable views of time this interval is 
assumed to be dense, the best that any finite relation can do is to provide a 
simulation of this infinite set of moments of time. If a relation is modeling 
contingent data, it simulates this dense interval by means of a sequence of 
snapshots, or still photos, in this case taken at each moment in the sequence (5’1, 
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. ..) ST ) . (Some relations model noncontingent data and can be computed, as 
described by Maier and Warren [30]; we will not consider such relations here.) 
Because we take this idea as basic, that is, because it seems to be the only 
reasonable interpretation to place on any historical database that records facts 
over some interval of time, we state it as the following principle. 

Definition. The Comprehensbn Principle states that under any reasonable 
interpretation a historical database defined over a sequence of states (S, Sz, 
. . . ) S,) should be considered as modeling an enterprise completely over the 
entire closed interval [S, &I. Any and all information about the objects of 
interest to the enterprise can be assumed to be contained in or implied by the 
historical database for the entire interval [S, &I. Moreover, for any state S not 
in the interval [&, &I, as far as the database is concerned, no entities or 
relationships exist, and the value of all ICs is 1. 

One area for further research would be the relaxation of the second part of this 
principle, related to the Closed World Assumption of Reiter [41], perhaps with 
the introduction of a many-valued logic. In our model, the set TV of truth values 
is the set (0, l} , and we use 0 (false) as the obvious choice to mean does not exist. 
It is because no such obvious choice exists from the set E of entities that we have 
augmented E with the distinguished entity I, which can be considered as meaning 
“inapplicable.” We do not thereby pretend to be offering anything more than a 
practical solution to the interesting philosophical problems of existence, proper- 
ties of nonexistent but possible entities, and so on, which are of considerable 
philosophical and logical interest (Quine in particular [39,40] has contributed a 
great deal to the understanding of these issues from both points of view). We 
point out that I is the only so-called null value that we provide with a special 
semantics in this model. Future work might incorporate others as a formal null 
value semantics is developed. (The entire issue of null values in relational 
databases is discussed in [19].) 

It remains only to make an assumption about what the database means to say 
about all those other moments of time which fall in the interval [Sr , S7] but which 
are not included in the sequence (S, , Sz, . . . , S7 ) specifically mentioned in the 
database. 

The problem stated in simple terms is this. The database samples the values of 
the ICs of interest for only some finite subset of states in [S, , S,,], yet we want to 
be able to consider that the database implicitly defines each IC as a total function 
from S into E. How are we to interpret the database, that is, what functions are 
we to assume that the ICs represent? 

Definition. Any assumption which extends a mapping from a finite set of 
moments { Sr , SZ , . . . , S,} (ordered as in the sequence (2%) SZ, . . . , 8,)) into a set 
of individuals, into a mapping from all moments in the closed, dense interval [Sl, 
S,,], into that set of individuals, will in general be called a Continuity Assumption. 

We have looked at a number of different proposals for interpolating these role 
functions in the database, but for the sake of this exposition we will only discuss 
the following simple assumption. For all role attributes that record nonnumeric 
data (e.g., MGR, DEPT), and for some that record numeric data (e.g., SAL), it is 
clear that the IC intended by the discrete points recorded in the database in 
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Fig. 14. Discrete points in database. 
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Fig. 15. Step-function. 

Figure 14 is the step-function shown in Figure 15. In other words, under the step- 
function continuity assumption, the value of an IC for any state s within the 
database cube is given by the value of the function recorded in the database at 
the greatest state s’ less than or equal to s. We assume that the HDB initially 
records information about an object X when it becomes of interest to the 
enterprise, say at state si. We then assume that a new tuple for X is added to the 
database at some subsequent state sj > ai when and only when one or more of its 
Ai-ICs has changed value, or when it ceases to be an object of interest to the 
enterprise (EXISTS? becomes 0). In the interest of keeping our initial model 
simple, we will commit ourselves here to this view of the temporal semantics of 
an HDB. That is, for the remainder of this work we assume that all role attributes 
model step-functions. 

We proceed now to formalize these notions, defining a database scheme HDB, 
a database hdb, and the model M induced by such a scheme and database. 

Definition. A historical rel -_ .-..-I .wscheme is an ordered 8- 
tuple (U, D, R, S, TV, DOM, CO, f), where: 

1. U = {Al, Az, . . . , A,) is a nonempty set, the set of attributes; 
2. D = (01, Dz, . . . , D,,} is a nonempty set, the set of domains, such that each 

Di E D is itself a nonempty set; 
3. R = {R,, Rz, . . . , RP} is a set of historical-entity and historical-relationship 
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relation schemes, where each Ri E R is an ordered pair (A;, h:; ), such that 

;Ai=U; 
i=l 

4. S is any nonempty set, the set of states; 
5. TV is the set of truth values (we consider in this paper only the case of TV 

= V-J 11); 
6. DOM: {STATE, EXISTS?} U U + D U {S, TV} is a function that assigns 

to each attribute its corresponding domain, subject to the restriction that 
DOM(STATE) = S and DOM(EXISTS?) = TV; 

7. CD is a partial ordering, possibly empty, on D, 
8. fiS + R is an injective function that assigns to each state s a real number; 

it can thus be looked at as an embedding of the set of states onto the real- 
time line. 

Given such a scheme, we define the following linear ordering on S consistent with 
the ordering of the image of S under f, that is, as reals. 

<S = {(Si, Sj) 1 Si, Sj E S and f(s) < fbj)). 

Definition. A he-- is a set of 
relations, hdb = {Q, rz, . . . , rP} such that hdb is a set of completed historical- 
entity and historical-relationship relations such that for each relation scheme Ri 
= (A;, Ki) in HDB, ri is a relation on Ri that satisfies the appropriate historical 
entity-relationship constraints. 

Given such a database hdb we can define the following concepts that pertain 
to its temporal dimension. 

Definition. ED&d,,, the set of e-states of the database hdb, is 
that finite set of states {sl, sz, . . . , s,} given as follows. 

P 

EDShdb = i’i, HSTATE (I;.). 

Note that, because each relation ri E hdb is completed, we have 

HISTATE (R ) = EDShdb . 

Definition. The initial state SIhdb of hdb is given as 

SIhdb = the minimum element of EDShdb under <s. 

Definition. The final state SFhdb of hdb is given as 

SFhdb = the maximum element of EDShdb under <s. 

(Note that SIhdb and SFhdb are unique because <s is a linear ordering.) 

Definition. The database real time interval RT&, is the set of all times for 
which, under the comprehension principle, the database hdb is assumed to have 
complete information. This can be simply defined as follows. 

RTIhdb = [f@Ihdb),f(SFhdb)]. 

The RTI should be at least this big; under different assumptions about the future 
and the past it might be defined as a larger interval. For instance, the upper 
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endpoint might reasonably be taken from a real-time clock to represent the 
moment “now.” 

The step-function continuity assumption tells us that if we want to know 
whether an object exists in a state s, or what the value of any IC is in a state s, 
we should look at the information in the database for that state s’ which is the 
latest state no later than s that is specifically mentioned in the database. We 
make this notion precise in the following definition. 

Definition. The database representative of a state s, [s], is defined as follows. 

ifs E RTI, then 

[sl = the largest state s’ E EDSM~ such that s’ % s . 
if s @ RTI, then s 

Under this definition, we assume that no objects exist or have any role-ICs 
outside of the real-time interval RTI hdb. If we wanted to model SIhdb as the 
“beginning of time,” and/or SFM, as the “end of time,” we could modify this 
definition to map all times before SIhdb to SIhdb, and similarly for all times after 
SFM. We now define an extended Select operator which will enable us to select 
the value of any attribute in any state in I, regardless of whether that state is 
specifically represented in the database. 

Definition. We define the operation u*, the historical database select, as 
follows, 

o*STATE = s, A = x(d = aSTATE = [s], A = k-i) 

for any relation ri E r, A E IJ, and x E UD. (Note that this definition gives the 
empty relation for any s not in RTI.) 

Definition. The model k&, induced by hdb on HDB is an ordered 5-tuple 
h&t, = (E, S, <, <E, F), where: 

1. E = UD U {I}, that is, the set of all individuals in the domain of HDB, plus 
the distinguished individual I, the null individual; 

2. S = R, that is, the set of all times is just the set of real numbers; 
3. c is the linear ordering on the real numbers; 
4. <E = <D (given by HDB); 
5. F is a function from the set of constants C nDB into objects in it&,, such that 

F(ca) E D,; the exact specification of F is given in the following section. 

6.4 The Interpretation of the Nonlogical Constants 

Definition. Let r be a relation over the scheme R (B1 . . - B, C1 . -. C,). Then 
the function to Ci represented by r, B,,o,, is a function% - 

whose interpretation is given as follows. 
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where 
xi E LD(Ki). 

In other words, we say that for each non-key attribute C,, the relation r represents 
a total function B,.,, from the domain of (LD(Bl), . . . , LD(B,)) n-tuples to 
LD(C,). If a tuple with a given (LD(&), . . . , LD(B, ) ) - value X appears in the 
relation r, then the value of the function &,c, for X is just the value of Ci associated 
with X in r. Otherwise, by our assumptions on the interpretation of the database, 
the value is bottom in LD(Ci). 

We now define precisely what we mean by saying that a given instance hdb on 
a scheme HDB induces the definition of F hdb, the function from the set of 
constants of our IL, language to the function spaces in our model. We discuss in 
turn the interpretation of the six sorts of constants we introduced in the previous 
section as being induced by a particular HDB scheme: DVCs, TCs, EECs, RECs, 
RCs, and ACs. 

6.4.1 Interpretation of DVCs. For any DVC d’ E C,, Fhdb(d’) = d E UD. 

6.4.2 Interpretation of TCs. For any constant c E Cs, F(c) = f(c), that is, the 
interpretation given by the embedding of the states in the real numbers. For any 
set-of-states constant c E Cts,t), we insist that F(c) defines an interval of time. 

6.4.3 Interpretation of EECs. Let r be a historical entity relation on scheme 
R(STATE K1 EXISTS? A1 . . . A,). Then Fhdb(K{,), the interpretation of the 
EEC K<*, of type (s, (e, t)), is that function fin (s, (e, t) ) whose value for any 
state s E S and individual x E E is given as follows. 

f(S, Xl = ~EXISTS?(UST.~TE = LK, = Jr)). 

Thus, under our interpretation of the historical database the only K1-entities that 
exist are those that the database historical entity relation r with. entity key K1 
says exist. 

As an example, let us consider the interpretation of the constant EMP’,, and 
evaluate it for some elements in its domain. 

Example 1. “Is Peter an employee in state Sl?” 

f((S, Peter)) 
= ~E~ISTS?(U*STATE=S,,EMP=PETER(~~~- 4) 

(STATE EMP EXISTS? MGR DEPT SAL) 
= nEXISTS? & Peter 0 I I I 
= 0. 

Thus, Peter is not an employee in S, . 

Example 2. “Is Liz an employee in state Ss?” 

f((S3, Liz)) 

= ~EXISTS?(~*~TATE=~.,,EMP=L~Z(~~~ A)) 

(STATE EMP EXISTS? MGR DEPT SAL) 
= nEXlSTs? S3 Liz 1 Ez Dz 50 
= 1. 
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Thus, Liz is an employee in Ss. 

Example 3. “Is entity 50 an employee in state Sa?” 

f((S3, 50)) 
= HEXISTS? (5 *STATE=S~,,EMP=.~O (emp rel)) 

= HsxisTs?(STATE EMP EXISTS? MGR DEPT SAL) 
0 

= 0. 

Thus, 50 is not an employee in S3, 

6.4.4 Interpretation of RECs. Unlike the case of EECs, in which a single 
historical entity relation r over a scheme R represented all of the information 
about the existence of entities of a given sort in the database, in the case of RECs 
there may be any number of historical relationship relations of a given arity that 
must together be considered to determine which nary relationships exist. Our 
definition of the interpretation of the constants REL-n, therefore, must be given 
in terms of the entire database and not just of a single relation. 

Let n-rels = (Q, . . . , l;h} be the set of all the n-ary historical relationship 
relations in the database, that is, all relations in the database over schemes Ri of 
the form Ri (STATE Ki, - * * Kin EXISTS? Ai, * - * A, ) . Since these Irz relations are 
all defined over the same logical domains for the set of attributes {STATE, Ki,, 
---, Ki,>, EXISTS?}, we can conceptually take the union of these k projections 
considered as relations over these logical domains. (Notice that LD(KQ = E for 
all Ki,.) In order to do this we define a new relation r over the scheme 
R(STATE El . . . E, EXISTS?), where r is the union of these k relations over ~- 
these “common” attributes: 

k 

r= u II 
i=l STATE,Ki ,,,.., K,,,ExISTS?(ri)’ 

Then the interpretation of the constant REL-n induced by the database, 
Fhdb (REL-n), is that function fin (s, (en, t) ) whose value for any state s E S and 
n-tuple (xl, x2, . . . , x,) EE”isgivenas: 

fb, (Xl, x2, . . . , Xn )) = ~EXISTS?(U*STATE=~,V~ ,,..., 4)=(X ,,..., x,) b)), 

which is completely analogous to our definition of the interpretation of the EECs, 
or I-ary relationships. 

For example, in our department-store database the only binary relationship is 
the one between DEPTs and ITEMS. We evaluate f for various 2-tuples in various 
states. 

Example 4. “Is there a relationship between the Hardware Department and 
Item Glove in state &?” 

f( (&, Hardware, Glove)) 

= nEXISTS? ((J$TATE=S:,.DEPT=Hardware,ITEM=Glove (SakS-rel)) 

(STATE DEPT ITEM EXISTS? VOL) 
= HEXISTS? s3 Hardware Glove 0 I 

= 0 
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Thus, the relationship Hardware-Glove does not exist in &. 

Example 5. “Is there a relationship between the Toy Department and Item 
Game in state Sl?” 

f(C% TOY, Game)) 

= ITEXISTS? ((JSTATE=SI,DEPT=TO~,ITEM=G~~~(S~~~S---~~~)) 

(STATE DEPT ITEM EXISTS? VOL) 
= nEXISTS? Sl TOY Game 1 6 

= 1. 

Thus, the relationship Toy-Game does exist in 5’3. 

Example 6. “Is there a relationship between the Toy Department and Peter in 
State &?” 

f(( Sl, TOY, Peter)) 

=II EXISTS?(u&TATE =S,,DEPT =TO~,ITEM = Peter ( ales~-rel)) S 

= I~ExIsTs?(STATE DEPT ITEM EXISTS? VOL) 
0 

= 0. 

Thus the relationship Toy-Peter does not exist in S,. 

In order to define the interpretation of the remaining two kinds of nonlogical 
constants that we have defined, we again need a preliminary definition, in this 
case to handle the role-attribute ICs. 

Definition. Let r be a historical relation on scheme R (STATE & . . . K,, 
EXISTS? A1 . . . A,), and let X be a (Kl . . . K,) -value, that imXEE”.hen the 
A,-IC associated with the object X in r on R, fi,,,.,,, is that function of type 
(s, e) whose interpretation induced by r is given as follows: 

I%,.,&) = HA,(C.~TATE =s.(K, K,) =x(r)). 

Definition. The set of Ai-XC’s associated with the object X in r on R in state 
s, Fzv., x, is a function of type (s, ( (s, e), t) ), whose interpretation induced by r 
is given as follows: 

F ~EXISTS?(~STATE=~,(~...K,) =x(r)) # 0 
Za,,x,~,ax(S) = ‘FIA~r’a’ ~thenuise 

In other words, in any state s we associate an object X with its role-attribute 
ICs only if the object X exists in state s, otherwise it is not associated with any 
ICs. (Note that in any state the set given by F2 is either a singleton set- 
containing one IC-or the empty set.) This definition enables us to simplify the 
types of many of our constants (as compared to Montague’s treatment in PTQ 
[35]), while at the same time avoiding assigning a role to any IC associated with 
an object that is nonexistent is a given state. 

6.4.5 Interpretation of RCs. Let r be a historical relation on scheme 
R(STATE Kl . . . K, EXISTS? A, . -0 A,). Then the interpretation induced ___- 
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by r of the RC A{ is simply the union of all of the sets of Ai-ICs associated with 
any objects X. In other words, Fhdb(Ail) is that function fin (s, ( (s, e), t) ) whose 
value for any state s E S is given as follows. 

f(s) = & Fz, \I 4s). 

For example, SAL’ for any state s denotes the set of all ICs which are the salary- 
selecting functions of any employee. 

6.4.6 Interpretation of ACs. As in the case of the REL-n’s, for any given n we 
use a single nonlogical constant to represent information about all objects of arity 
n, information that may be located in an arbitrary number of database relations. 
An AC AS-n represents the association between any object of arity n and each of 
its role ICs. We must therefore define the interpretation of these constants in 
terms of the entire database and not just of a single relation. We would like to 
take all of the functions given by Fz, that is, the set of all of the ICs associated 
with any object X, and merge them all together to yield a single function which, 
for any object X, gives all of the role ICs associated with X. In order to do this, we 
need to make this notion of merging precise. 

Definition. We say that a relation r on R = (A, K) is defined for the object 
n E K if x E l&f(r). 

As before we let n-rels = {rl, . . . , rk} be the set of all relations ri in the database 
over schemes Ri of the form Ri (STATE K 1, - . - K,( EXISTS? Al, - - - A,,). By 
the historical entity-relationship constraint (2), an entity X can belong to only 
one entity set, and by constraint (6) only one relationship can exist for any set of 
entity sets. Together, these constraints mean that any n-ary object (xl, x2, . . . , x,) 
is defined by at most one relation in hdb, that is 

IluG,,..., KsE(ri) fl II W,... KS,) (rj) = 0, 

for any two distinct relations ri, r; E n-rels. From this, it follows that for any 
X E E” and any role attribute A, the function A, x.,, Rh is defined for at most one 
ri E n-rels; this is thus also the case for the function Fz,,.,,.,. 

Then the interpretation of AS-AL induced by the database is that function f in 
(en, ( (s, e), t) ) whose value for any X E E” is given as follows. 

f(X) = $J ,Fb&(s) if for some r in n-rels the object X is defined in r 
otherwise I 

In other words, the interpretation of AS-Ai gives, for any n-ary object X, the set 
of all ICs in the role Ai associated with X in any state. 

After this more formal presentation of the logical model induced by an HDB 
instance, it will be informative to take a look at each of the elements in the 
historical database in turn to see how it is reflected in the model. 

6.5 Informal Discussion of IL, and HDB 

65.1 Domains and Values. In the definition of the HDB, the set UD consists 
of the names of all of the individuals that may possibly be referenced in any stage 
of the database history. The database itself can be viewed as a collection of 
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sentences in an implied logic, and we have just presented a translation from this 
language into IL,. The domains correspond in the following way. The set of 
constants of type e in IL,, C,, is defined to be {d: d E UD}. Correspondingly, the 
set E of individuals in the model for IL, is defined to be {d : d E C’D} U {I}. 
Moreover we have specified the interpretation of these constants in the obvious 
way: 

Fhdb(d) = d. - 

6.5.2 Attributes. As we have seen, the HDB model identifies three different 
kinds of attributes: the distinguished attributes STATE and EXISTS?, attributes 
that are keys whose values are rigid designators of entities, and role attributes 
which are unconstrained functions (ICs) which in any state give some property of 
either an entity or a relationship. Montague describes this distinction between 
constant and unconstrained ICs in this manner: “‘Ordinary’ common nouns (for 
example, horse) will denote sets of constant individual concepts (for example, the 
set of constant functions on worlds and moments having horses as their values; 
from an intuitive viewpoint, this is no different from the set of horses). It would 
be unacceptable to impose this condition on such ‘extraordinary’ common nouns 
as price or temperature; the individual concepts in their extensions would in the 
most natural cases be functions whose values vary with their temporal arguments” 
[35]. We have made the same claim here in the HDB realm, in particular, we 
have argued that key attributes (such as EMP) and role attributes (such as SAL) 
are to be identified with Montague’s “ordinary” and “extraordinary” common 
nouns, respectively. 

It is, of course, the attribute STATE which bears the burden of providing the 
temporal semantics for the HDB model. We believe that it is best to define the 
model in terms of a very general temporal semantics and allow the user to specify 
(via meaning postulates) further properties of this parameter. We have described 
here our step-function continuity assumption as a means of interpolating the 
partial function given by the historical database. The attribute EXISTS? enables 
objects to come in and out of focus at will as objects of interest to the enterprise. 
When an object is of interest, EXISTS? has the value 1 and all of the role 
attributes for that object are defined; otherwise, EXISTS? is 0 and it has no 
attributes (all are I). 

6.5.3 TupZes. A tuple in the HDB model, as in the entity-relationship model, is 
viewed as a collection of facts about a single object, an entity or a relationship. In 
either case it has seemed more natural to us to view the association between an 
object and its attributes as essentially binary. The theory could easily have 
treated nary tuples as wary associations among the various ICs involved. With 
the choice of semantic primitives that we have made, a tuple in a historical 
relation representing an object of arity n with m role attributes is reflected in the 
logic IL, by a simple sentence composed of three parts: 

1. n entity existence terms and, if n > 1, an additional relationship existence 
term; 

2. m terms identifying the sorts of the m role attributes; 
3. m terms associating the n-ary object with each of its m attributes. 
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For example, the first tuple in dept-rel is completely represented in IL, by the 
following formula in IL, (assume that the variable x is of type (s, e) ). 

3 x[DEPT;(Sr, Toy) A FLOOR’(Si, X) A AS FLOOR(Toy, X) A x(SJ = F,] 

The first tuple in sales-rel is completely represented in IL, by the following. 

3 x[DEPTi(Si, Toy) A ITEML( S1, Ball) A VOL’( &, 3~) 
A AS-VOL(Toy, Ball, X) A x( S,) = 31 

6.5.4 Data Dependencies and Constraints. The inclusion of an explicit time 
component in the HDB model allows us to express the semantics of a wide class 
of database constraints in the same language, something not possible in a first- 
order logic without some extra apparatus. We divide these database constraints 
into two categories and make the following definitions. 

Definition. An extensioq&&ztabase constraint is a constraint on individual 
valid states of the database. It can be said to hold (or not hold) simply on the 
basis of the extension of the database with respect to a single state. 

Definition. An intensional database constraint is a constraint which defines 
valid state progressions in the database. It can be said to hold (or not hold) only 
by examining at least two states of the HDB. 

Current theoretical relational database research has been primarily concerned 
(without itself using the term) with extensional constraints, such as FDs or 
MVDs. The relationship between the FDs and MVDs of the relational model and 
axioms expressed as formulas in a first-order logic is one which is well understood 
(see, e.g., [36, 371). The FD EMP + SAL, for example, is an abbreviation for the 
first-order formula 

V x V y V .a [EMP(x) A SAL(y) A SAL(z) 
A AS-SAL&, y) A AS-SAL& .a) + y = z] 

in the domain relational calculus (i.e., with variables having individuals as their 
domain), or for the formula 

V tl V tz[tl(EMP) = tz(EMP) + tl(SAL) = tz(SAL)] 

in the tuple relational calculus (i.e., with variables having tuples as their domain). 
Ullman [48] discusses these two calculi and demonstrates their equivalence. An 
intensional logic allows us to express more fully and easily the intent of these 
FDs. We can specify explicitly that they must hold over all states of the database. 
Moreover, we can make the more explicit statement that there is only one 
function (IC) that picks out a given attribute (e.g., the SALary) of any object 
(e.g., EMP) that has that attribute: 

V x V y V z V i [EMP’(i, x) A SAL’(i, y) A SAL’(i, z) 
A AS-SAL(x, y) A AS-SAL@, .a) + y = z]. 

Here we have quantified over all states of the database with the state variable i 
(type s), and over the ICs X, y, and z, we have equated not merely the value 
(extension) of the two SALaries, but the SALary-ICs (functions) themselves. (We 
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note in passing that the comparable axiom in IL, using “tuple” variables would 
require a different approach than we have taken. We would have to have tuple 
variables of the appropriate type, since IL, is a typed logic.) Similar intensional 
axioms for MVDs would constrain the acceptable models for our HDB. 

Intensional constraints have not received much attention in the database 
literature. Where they have been examined (e.g., by Smith and Smith [46], 
Nicolas and Yazdanian [38], and Casanova and Bernstein [7] as “MC 
constraints” or constraints upon update operation& they have been considered 
as different in kind from extensional (or “static”) constraints. In this paper we 
have shown how IL,, as a higher order language with a temporal dimension, 
allows us to consider different types of objects (e.g., states, individuals, ICs, and 
other arbitrarily defined functions) and to make statements about any of these 
objects with the full power of quantified logic and lambda calculus. We can thus 
express both types of constraints in IL, in the same natural way, that is, as axioms 
about objects (of the appropriate type), without having to invent a new technique 
for expressing the dynamic constraints. 

Consider the following kind of constraint that might hold in an enterprise 
keeping a relation on EMP-REL. 

No employee can ever be given a cut in pay. 

This is an intensional constraint. It constrains the kind of function that can serve 
as a SAL-IC for any EMPloyee, in particular to those functions from states to 
dollar values that have everywhere a nonnegative derivative. It is not expressible 
as a first-order database axiom because it does not refer simply to the extension 
of the SALary function in any one state, but rather to the entire function 
considered as an intensional object, namely, an IC. In IL, this constraint is 
expressible as: 

V il V u V x [EXP’*(il, U) A SAL’(il, r) A AS-SAL& x) 
+ v i,[i, < iz + X(il) I x(iz)]]. 

Where u is a variable over individuals. This ability to consider both intensional 
and extensional constraints as essentially the same kind of constraint, and to 
express them in the same language, is a good example of the power that an 
intensional logic has to provide a unified theory of database semantics. In the 
section on queries which follows, we give examples of the “definition” in IL, of 
English words such as “rehire” (an EMPloyee) , “raise” (a SALary) , and “transfer” 
(a DEPT assignment), definitions which use the same concept of explicit quan- 
tification over states of the HDB. 

6.5.5 Queries. As with database constraints, the inclusion of the state compo- 
nent in the historical database model allows us to consider a much broader class 
of database queries in a consistent manner. We are similarly motivated, therefore, 
to make the following distinction. An extensional database am is a query 
whose evaluation depends only on the values in the database with respect to a 
single index or state. An intensional d-is a query whose evaluation 
depends on the intensions of at least one attribute, that is, on the function from 
states to individuals (ICs) that represents that attribute. 

It should be apparent that extensional queries are precisely those that static 
databases have been concerned with handling, and moreover that these queries 
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are handled just as well by a historical database. We note, however, that since 
the HDB contains, as it were, many static databases indexed by state, it is 
possible to ask the same extensional queries with respect to different states and 
thus to get potentially different answers. For example, the answer to “What is 
Peter’s salary?” with respect to state SZ is “30K,” but with respect to state & 
what appears to be the same query of the same database yields the equally 
correct (but different) answer “35K.” Thus we see that in order to utilize the 
power of the HDB, extensional queries must be more fully specified to indicate 
the state at which evaluation is to be performed. In [ll], this process is explained 
more fully, and the concept of a variable now, whose interpretation is always the 
latest state of the HDB, is discussed. 

It is the class of intensional queries in which we are more interested because 
these queries utilize the full power of the HDB and show it to be a much closer 
model of the real world than a one-dimensional static database. We suggest that 
within the context of an HDB we have the potential to answer all of the queries 
which were mentioned at the beginning of Section 3. We repeat them here. 

“Has John’s salary risen?” 
“When was Peter rehired?” 
“Did Rachel work for the toy department last year?” 
“Has John ever earned the same salary as Peter?” 
“Will the average salary in the linen department surpass $30,000 within the next 
five years?” 

How, for instance, might we handle the query “Has John’s salary risen?” Let 
us assume a mechanism for translating this query into the following formula in 
IL 

3 x[SAL’(now, x) A EMPk(now, John) A AS-SAL(John, X) A RISE’(now, x)] 

In order to evaluate this query, we need some mechanism for providing a meaning 
to the predicate RISE’. There are two ways that we could do this: either by 
providing the denotation of RISE’ via a direct translation from the database, 
analogous to the way we defined our primitives (such as SAL’), or by providing 
its denotation indirectly, essentially making RISE’ a predicate whose meaning is 
derived from the denotations of the basic predicates induced by the database. 
This is the course we shall take, as the former method is impractical-it would 
have to be updated with each database update. Before we can provide any 
definition, we must, of course, decide upon an appropriate meaning for the 
English word “rise.” We suggest the following: RISE’ is true of a SALary IC at a 
given state i if and only if there is a preceding interval of time culminating in 
state i during which the SAL-IC has an everywhere nonnegative derivative (or, 
equivalently, is monotonically nondecreasing). Of course we could quibble about 
this definition for a while, but that is not the point. The point is that given any 
such well-defined semantics for the word, we could express its meaning in IL,. 
The suggested definition translates into the IL, meaning postulate: 

V x V i [RISE’& X) c-, [SAL’& X) A 3 il V iz V & 
[i, 5 iz < is 5 i + x(iz) I x($]]]. 

We hasten to point out that there is nothing sacred in this definition about the 
attribute SAL. In the context of other attributes that in English might meaning- 
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fully be said to “rise,” (e.g., the BALance of a bank account, the BATting- 
AVErage of a baseball player), the above meaning postulate could easily be 
generalized. 

Given this MP, we evaluate the predicate RISE’( i, x) as follows. From emp -r-e1 
we see that the SAL-IC associated with John is an IC whose value for the three 
known states is as follows. s-1 + I [ 1 sz 3 30 

s3-, 35 

The value for all other states is 1. Let us call this function SJ. Then RISE’(i SJ) 
evaluated for i = SZ is true (pick Sz as the il which the MP asserts must exist). 

As another example, we could define the English verb “rehire” as follows. 

V u V i [REHIRE(i, x) f, [EXP!*(i, U) A 3 ir 3 i2 
[i, < iz < i A EMP:,(il, U) /\ - EMP:,(iz, u)]]]. 

That is, it is true at state i that the individual u has been rehired if u is an 
EMPloyee at time i, and at some earlier time il was also an EMP, while at some 
third time in between i and ii, u was not an EMP. 

7. SUMMARY AND FUTURE WORK 

In this paper we have espoused the overall philosophy that formal logic has made 
and can continue to make important contributions to the understanding and 
specification of the semantics of databases. The choice of the logic IL, has been 
motivated in this paper by the fact that it incorporates a temporal semantics that 
formalizes the concept of a historical database. In [ll], this choice is also 
motivated from the perspective of providing a formal definition of an English 
query language as a Montague grammar (MG). 

Specifically, we have shown how the relational database model can be easily 
extended to incorporate the concept of historical relations and, indeed, an entire 
historical database, and we have shown how IL, can provide a semantic theory 
for this database concept. We have presented both an informal discussion of an 
HDB as a cube composed of a time-ordered sequence of flat, static relations, and 
a formal description of the relationship between an HDB and the logic IL, and its 
model theory. Finally, we have given examples of the power of the historical 
database to model real-world semantics more closely than existing database 
models. Two such examples were emphasized: the ability to express the semantics 
of intend and extensional database constrain@ within the same theory, and 
the ability to process intensd and extensional queries. 

We believe that the HDB concept is exciting precisely because it suggests the 
possibility of formalizing a wide variety of database-semantic issues “under one 
roof,” namely, within the precise model-theoretic semantics of IL,. We mention 
a number of these issues here. 

Montague’s English fragment PTQ [35] is provided with a formal semantics 
indirectly, by means of rules for translating expressions in the fragment into IL, 
for which a direct model-theoretic semantics is given. In [ll], we present a 
technique for describing an English query fragment for relational database 
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querying in English, which draws upon Montague’s work and work done subse- 
quently by other researchers in logic and linguistic theory within the framework 
of MG, especially Bennett [l, 21, Kartunnen [25], and Dowty [15]. In this paper, 
we provide a semantics for English questions which takes advantage of the 
simplification of real-world semantics inherent in a database, yet which is pow- 
erful enough to interpret a useful class of database queries correctly. 

The first question that this paper will suggest to many readers is that of 
implementation; database theories are almost inevitably, and quite properly, 
judged by their practicality. Obviously the picture of each historical relation as a 
fully specified cube is an idealization. Even if all of the information in the cube 
were known, a direct implementation would be highly redundant. Furthermore, 
there may be situations in which the complete history of some attributes may be 
unknown or uninteresting to the enterprise. Questions of how to implement these 
relations efficiently both for storage and for retrieval, and of how to handle a 
mixture of static and historical relations within a single database, are among the 
many interesting implementation questions that remain to be studied. 

Another area of interest, suggested by our work in defining the translation of 
English questions into IL,, is the possibility of interpreting English statements as 
d-s&. For example, we could interpret the statement “John earns 
30K,” when made by an authorized user, as a command to record this as a fact in 
the database with the time-stamp taken from the system clock. As with questions, 
intensional logic gives us a framework for providing a formal semantics for an 
appropriate fragment of English to serve as a DML to perform such database 
maintenance operations as insertion and deletion. Consideration would have to 
be given to the semantics of error-correction types of maintenance, that is, the 
sorts of commands which mean not that a given fact once true about the world 
no longer obtains, but rather that a previous specification of that “fact” was in 
error. How do such changes, ignored in this paper, affect the model-theoretic 
semantics? Since an update in general represents only partial information about 
a state, can we make certain assumptions that will help to further specify that 
state? (For example, if Peter’s SALary is respecified, can we assume that his 
DEPT remains the same?) 

We have incorporated the work presented in this paper into the relational 
database model, constrained by the view of data semantics presented by the 
entity-relationship model. The question of how to extend other database models, 
such as the hierarchical [24], network [12], and functional [45] models, to include 
a temporal semantics is another area for future study. Even within the relational 
model, the question of other semantic restrictions on the kinds of relations that 
make sense, within the context of a formalized temporal semantics, is still wide 
open for future study. 

The idea of using a database to model hypothetical situations as potential 
futures from a given present situation, and thus providing the ability to answer 
queries about the implications of such “possible worlds,” is another expansion of 
the HDB concept that appears to offer promising applications. The query 
suggested earlier in this paper, “Will the average salary in the linen department 
surpass $30,000 within the next five years?” is the sort of question that we believe 
could be handled by such an organization. Salary raises built into union contracts, 

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983. 



252 - J. Clifford and D. S. Warren 

cost-of-living increases, projections in costs based on the expected inflation rate, 
and so on, are the sorts of applications that a historical database ought to be able 
to model. Stonebraker and Keller [47] provide an examination’ of some of these 
possibilities from a different perspective. 

In the simple model we have presented here, EXISTence is synonymous with 
belonging to an entity set, and we have not allowed an entity to be of more than 
one sort. We have begun investigating an extension to this model that would 
allow entities to fill different (and even multiple) roles at various times, as long 
as they still EXISTed as entities in some relation. For example, we could model 
people with a relation on scheme PERSON-REL(NAME STATE EXISTS? 
GENDER . . . ), and then have relations onschemes such as 
BORROWER-REL(NAME STATE ISBORROWER? ACCT-# . - .) and 
DEPOSITORREL(m sTATE ISDEPOSITOR? ACCT-BAL . . .). 
People could fill the&&-ofwtor and/or borrower in any state at will, 
indicated by the Boolean-valued IS-{ ROLE) ? attribute, provided they were 
said to EXIST in that state in the PERSON relation. Meaning postulates could 
assert the IS-A hierarchy (BORROWER IS-A PERSON, etc.), and with what 
appear at this point to be minor changes in our scheme for encoding a database 
into a logical model the present HDB approach seems to work, and to offer 
interesting insights into the semantics of this sort of database model. 

Another important area for future work is the nature of the time coordinate in 
the HDB model, and the kinds of constraints that particular applications may 
wish to make upon the general treatment we have defined. Allowing more 
sophisticated continuity assumptions, different assumptions for different attri- 
butes, modifying the continuity principle, conceivina of time not as moments but 
as partitioned into intervals, and so on, are among the many issues relating to the 
temporal semantics that remain to be addressed. 

Finally, we note that the last few years have seen a number of researchers, 
among them Schmid and Swenson [43], Hammer and McLeod [21], Maier and 
Warren [31], and Biller and Neuhold [3], discuss the need for more powerful 
database models or languages in order to specify a database semantics that more 
closely models the real world. We agree entirely with this overall goal, but view 
with some apprehension the proliferatied semantic damn 
languages (SDDLs) that are-not. proaided.&lh aformal s.an~~&s. While we -- .-.-- -.--- --. 
would not say that IL, 1s the only solution for a clear database semantics, we do 
believe strongly that an intensional logic such as IL, can serve as a much-needed 
lingua fkmca in which to compare these higher level semantic models and 
languages, and even to provide a basis for constructing proofs that demonstrate 
their equivalence or differences. 

An analogous situation is occurring in the field of artificial intelligence, which 
is witnessing the same proliferation of knowledge representation languages 
(KRLs): frames [34], KRL [4], PROLOG [27], and RLL [20], to name only a few. 
Considerable discussion and often heated arguments have ensued over which 
language is better. Hayes [22] expressed much the same sentiment that we have 
presented here, arguing that logic can serve as a universal tool for clarity and 
comparison. 

Naturally, until the semantics of natural languages is more completely under- 
stood, artificial languages such as these SDDLs, which are clearly more user- 
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oriented than the equally artificial language LL,, are the appropriate kind of 
vehicle for users to express their database semantics. But we believe that unless 
these languages are provided with a formal model-theoretic semantics, there will 
be no basis for making informed judgments about the expressive power of these 
languages as a whole, or about the accuracy (or even the precise meaning) of 
particular statements in these languages. 
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