
Formal Semantics for Time in Databases

JAMES CLIFFORD and DAVID S. WARREN

State University of New York at Stony Brook

The concept of a historical database is introduced as a tool for modeling the dynamic nature of some
part of the real world. Just as fust-order logic has been shown to be a useful formalism for expressing
and understanding the underlying semantics of the relational database model, intensional logic is
presented as an analogous formalism for expressing and understanding the temporal semantics
involved in a historical database. The various components of the relational model, as extended to
include historical relations, are discussed in terms of the model theory for the logic IL,, a variation of
the logic IL formulated by Richard Montague. The modal concepts of intensional and extensional
data constraints and queries are introduced and contrasted. Finally, the potential application of these
ideas to the problem of natural language database querying is discussed.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-data models

General Terms: Theory, Design, Language

Additional Key Words and Phrases: Relational database, entity-relationship model, intensional logic,
historical databases, temporal semantics

1. INTRODUCTION

The relational database model proposed in [13] views a database as a collection
of “time-varying relations of assorted degrees” [B]. However, the model itself
incorporates neither the concept of time nor any theory of temporal semantics.
This paper suggests that the concept of time can be of interest in real-world
databases and presents a technique for incorporating a semantics of time into a
database model. The relational model is used as the formal database framework
within which the work is cast, but it is not an essential ingredient in the work
discussed.

A great deal of attention has been given lately to the role that formal logic can
play in providing a formal mathematical theory to unify the theory and semantics
of database concepts and operations (cf. [17]). We believe that this is a healthy
trend that can only serve to clarify and make precise otherwise vague ideas and
theories. Moreover, a great deal of the metatheory of formal logic can be applied
directly to the understanding and the proof of many notions in database theory.

This material is based upon work supported by the National Science Foundation under Grant IST-
8010834,
Authors’ addresses: David S. Warren, Department of Computer Science, State University of New
York at Stony Brook, Stony Brook, NY 11794. James Clifford, Graduate School of Business
Administration, New York University, 90 Trinity Place, New York, NY 10606.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1983 ACM 0362-5915/83/0600-0214 $00.75

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983, Pages 214-254.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319983.319986&domain=pdf&date_stamp=1983-06-01

Formal Semantics for Time in Databases * 215

In this paper we propose the concept of a historical database as a to?1 for
modeling the changing states of information about some part of the real world.
Most conventional databases are static, representing a snapshot view of the world
at a given moment in time; changes in the real world generally are reflected in
the database by changes to its data, thereby “forgetting,” as it were, the old data.
By contrast, a historical database is a model of the dynamically changing real
world. Changes in the real world are reflected in such a database by establishing
a new -state description; no data are ever “forgotten.” As such, the historical
database can be viewed intuitively as a collection of static databases organized in
a coherent fashion. This paper provides a detailed description of such an organi-
zation and a discussion of the usefulness of the historical database concept for
modeling the real world (or some “possible world”) more closely than is possible
with a static database. A good overview of the issues involved in incorporating a
temporal dimension in databases is provided in [5].

We believe that providing a formal semantics for a database model is of
paramount importance to its usefulness. The concept of time is crucial to all
databases, but is only treated implicitly in the existing database models. Data-
bases exist in time and model changes that occur temporally in the world via
database state changes. In order to have a proper understanding of how an
explicit representation of time interacts with all of the data in the database, it is
not enough simply to allow users to utilize “time attributes” where they seem
appropriate. By incorporating a general temporal semantics directly within the
database model, not only do we spare the user the task of defining such a
semantics, but we also can ensure that time is treated in a uniform and consistent
manner. Moreover, if the temporal semantics is built into the model, implemen-
tations of a historical database can take advantage of this standard semantics to
increase the efficiency of database operations. The basis which we suggest for the
semantics of a historical database model is the formulation of an intensional logic
IL,, a modification of the language IL of Richard Montague [35], whose work has
profoundly influenced current research in linguistics and the philosophy of
language.

major reason for preferring a Montaae-tvne logic over other formulations
of temparaLnrintensi0na.l logics (as in [42]) & the framework he provides 1351 for
defining a formal syntax and semantics of English using IL. The development of -..” -:-‘~-.: .._. .---.--- .-..I_._ -- .I _-__ _.
the hlstorlcal database model is part of our research into the larger area of natural
language database querying (NLQ). Our approach is motivated by the desire to
develop a framework for NLQ that is founded squarely on a fully formalized
syntax and semantics in the sense of Montague [35]. In [ll] we discuss the
translation of English database queries into the logic IL,, and provide a general
schema for defining an English query language specific to a given database
domain. In this paper we show how the model theory of the logic IL, influences
our view of the objects in the historical database. In particular, database attributes
are viewed in our historical database model as functions from moments in time
to values (in the appropriate domain), and IL, gives us the power to speak directly
about these “higher order” objects and to incorporate them into a general
temporal semantics for the database. We can therefore express both static and
dynamic constraints (as discussed in [38]) in the same language, by quantifying
over variables of the appropriate types.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

216 - J. Clifford and D. S. Warren

It should perhaps be noted that a historical database, as we define it, is a
theoretical object, and a rather large one at that; no remarks in this paper should
be construed as referring to any techniques for implementing this object. Ob-
viously a direct implementation would be prohibitively costly for any real data-
base. Reasonable implementations that eliminate much of the inherent data
redundancy of the formal model are not difficult to imagine. We are currently in
the process of developing a number of different implementations and algorithms
for a historical database (HDB).

After a brief introduction to our notation in Section 2 and a discussion in
Section 3 of the motivation behind the historical database concept, we provide in
Section 4 a stepwise development of a historical relational database for a simplistic
database consisting of a single “entity” relation. Section 5 introduces the inten-
sional logic and model theory that we use to describe the semantics of this model.
In Section 6 we discuss in detail the relationship between a historical database
and its representation in a model for intensional logic. We adopt the entity-
relationship view of data semantics, modified slightly to incorporate a semantics
for time; as a working example in this section we use a historical version of the
entity-relationship department-store database described by Chang [8], of which
the example in Section 4 was a part. Finally in Section 7 we discuss a variety of
issues that this research raises in the area of database semantics.

2. DEFINITIONS AND NOTATION

This section introduces some of the standard definitions from the relational
database model (mostly from [29]), along with a few remarks about our notation.

A relation scheme R = (A, K) is an ordered pair consisting of a finite set of
attributes A = {Al, AZ, . . . , An} and a finite set of key attributes K = {Kl, Kz,
. . . , K,}, where K c A. To say that K = (Kl, Kz, . . . , K,} is a Key of scheme R
is to say that any valid relation r on R has the property that for any distinct
tuples tl and t2 in r, tl(K) # tz(K), and no proper subset of K has this property.
We generally underline the key attributes and write such a relation scheme as
R &42 . - - A,, Am+1 . . . A,); in this case, it is to be understood that A = {AI,
. . .) A,} andx = {Al,. . . , A,}. We will occasionally refer to such an R as an n-
ary relation scheme. The attributes A,+l, . . . , A, are referred to as role attributes.

The values for the attributes come from a set D of domains, D = (01~02, . . . ,
Dl}, each Di being any nonempty set. We let UD denote the union of these
domains, that is, UD = D1 U DZ U . . . U DI.

In order to relate the attributes with their domain, we assume that U is the set
of all the attributes in the database, and that there is a function DOM: U + D
which maps each attribute onto its corresponding domain, that is, DOM(AJ is
the domain of the attribute Ai.

Finally, we say that a relation r on relation scheme R = (A, K) is a finite set
of mappings {tl, t2, . . . , tn}, where each ti is a function from A to UD such that
ti(Aj) E DOM(Aj) for all ti E r and all Aj E A, and for any distinct tuples ti and tj
in r, tl(K) # k?(K).

For a relation r on R = (A, K), if X c A and t E r, by t(X) we mean the
restriction of t to X. We sometimes use the notation t(R) to mean t(A), that is,
we use the name of the scheme, R, to stand for the set, A, of all of its attributes.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 217

If r is a relation on scheme R = (A, K), A; E A and a E DOM(Ai), the usual
relational operations are defined. Select Ai equal to a in relation r, written
u+=(r), is the relation r’ on scheme R, such that

r’ = { t : t E r and t(AJ = a},

that is, that subset of the tuples of r which have the value a for the attribute Ai.
If X c A, the projection ofr onto X, written l&(r), is the relation r’ on X, such
that

r’ = {t(X) : t E r},

obtained by deleting all the columns corresponding to the attributes in A - X,
and then removing any duplicate tuples that remain.

An entity relation is a relation r on a scheme R of the form (Xi AI - - - A,),
where X1 is the key and any k-value for & uniquely determinesthe values for
each of the other attributes. (This essentially means that each entity relation is
in Boyce-Codd Normal Form (BCNF); see [48] for a discussion.) Intuitively, a
K1-value k uniquely identifies some entity of interest to the database, and each
Ai-value associated with k gives one of the attributes of k. We use the notation tk
to denote the tuple whose key value is k.

A relationship relation is a relation r on scheme R of the form (Xl . . . K,, A1
a. a A,), where (X1, . . . , K,} is the key and determines the valuesof thether
attributes. Intuitively, a (X1, . . . , Q-value (kl, . . . , k,) represents an wary
relationship among the n entities kl, . . . , k,, and each Ai-value associated with
(h . . . , k,) gives an attribute of that relationship.

3. MOTIVATION

Consider a static database with the relation scheme EMP-REL(EMP MGR
SAL DEPT) and a relation emp-real on EMP-REL. A typical query to such
a relation, of the sort that has been treated in the literature, might be, “What is
employee John’s salary?” In the relational algebra this would be expressed as
&AL (UEMP=John(emp -rel)). A first-order language would express this same query
as something like {z] 33t 3y emp- rel(John, r, y, z)}, where n, y, and z are
individual variables, and John is an individual constant. In order to answer such
a query, a data manipulation language (DML) simply accesses the relation
instance emp-rel on EMP-REL, such as the one in Figure 1. In recent
database literature (e.g., [B, 33,41]), such a relation instance has been termed the
extension of the relation scheme EMP-REL, a term borrowed from logic.

One could imagine other sorts of queries that casual users might want to ask
about the employees in this company, for example:

“Has John’s salary risen?”
“When was Peter rehired?”
“Did Rachel work for the toy department last year?”
“Has John ever earned the same salary as Peter?”
“Will the average salary in the linen department surpass $3O,OOO within the next
five years?”

Time-dependent questions of this sort are not handled by existing static database
models or systems, and have not received adequate attention within the database

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

218 * J. Clifford and D. S. Warren

EMP-REL EMP MGR DEPT SAL

John John Linen 25K
Mike John Linen 17K
Elsie Elsie TOY 26K
Liz Liz Hardware 30K
Rachel Liz Hardware 29K
Peter Liz Hardware 29K

Fig. 1. Relation emp_rel.

literature (although the need for a temporal semantics in databases is discussed,
for example, in [5, 7, 26, 28,38,44]). Real database administrators faced with the
need to process particular instances of queries of this sort have undoubtedly used
some version of the technique that we present here of incorporating a time
attribute into the database and providing this attribute with a special significance.
We are interested in developing a unified and formal theory of database semantics
that includes time. In other words, given the need for maintaining a historical
record of changing data, and a language (English) that makes (explicit or implicit)
reference to the concept of time, we would like a theory that provides a database
semantics capable of interpreting sentences in the language correctly, that is, in
a way that corresponds with our intuitive understanding of the relation of time
to the semantics of the real world.

Let us consider more closely the query, “Has John’s salary risen?” Even with
time represented explicitly in the database, there is no apparent simple relational
algebraic formulation for this query. With the first-order representation for John’s
salary given above, as a first guess we might imagine that RISE ({z 1 3x 3y
emprel (John, X, y, 2))) would represent this new query, where RISE is a
predicate symbol. However, even with an FD that ensured that John had only
one salary, say, $25,000 (25K), it clearly makes no sense to ask whether 25K
“rises.” In order to answer this question, more data are needed than the current
extension of John’s salary: The values of John’s salary for some other point(s) in
time (in this instance, in the past) are needed. In the model that we present, we
identify such things as SALaries, not with individual dollar amounts, but with
dollar amounts in the role of an EMPloyee’s salary.

It is not difficult to see that if we need to keep track of when the facts we
record in our database are to be considered “true,” then we need to “time-stamp”
these facts in some way. Exactly how we propose to do this, and how this proposal
will extend the concept of and intuition about relations, are the subjects of the
remaining sections of this paper. For the moment we take a simplified look at
this suggestion and discuss some of the issues involved. A first point to notice is
that the expression {z 1 3x 3y emprel (John, x, y, z)} has, in these two queries,
two very different meanings. The simple query {z 1 3x 3y emprel (John, x, y,
z)} denotes the extensional value 25K, the salary that John is making now. The
second query, however, RISE ({z 1 3x 3y emp-rel (John, X, y, z)}), is not to be
interpreted as asking RISE (25K). Some other meaning, involving more than the
current extension of John’s salary, must be given to John’s salary in order to
determine whether the predicate RISE is true of it. This other meaning for John’s
salary, we shall see, is what is called (in intensional logic) its intension. (The
terms “extension” and “intension” are given formal definitions in intensional

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

i

1977 ---f John-
1978 --) John
1979 + John
1980 + John
1981+ John-

1977 -9 linen’ 1977 ---f 25K
1978 + linen 1978 + 25K
1979 + linen
1980 + shoe
1981-+ shoe. L 1

1979 -+ 27K
1980 + 27K
1981+ 30K

(a) 04 (4

Fig. 2. (a) Intension of “John”; (b) intension of
“Department-of-John”; (c) intension of “Salary-of-John.”

Formal Semantics for Time in Databases * 219

logic, and will be defined formally here. They should not be confused with their
usage in some database papers, for example, [41], in which the term “intension”
is used to refer to axioms which constrain the set of possible models for the
database.) It is helpful to think of them in terms of roles, which at any moment
of time might be filled by any appropriate individual.

The concept of intension dates back to Frege [16] and his distinction between
the sense and denotation of an expression in a language. A full discussion of the
history of these concepts in logic is beyond the scope of this paper. (Carnap [6]
and Dowty [14], among others, provide a useful introduction to these issues.)
Roughly speaking, the extension of a linguistic expression is some “object” or
element of the appropriate kind in the model for that language. The extension of
a name is some individual in the model; the extension of a formula is one of the
objects “True” or “False”; the extension of a set is some collection of individuals,
and so on. The concept of intension, on the other hand, is meant to capture the
notion of the “sense” or “idea” or “meaning” of an expression. This somewhat
vague idea is formalized in Montague’s IL by defining the intension of any
expression as a function from a set of points of reference (variously called
“possible worlds” or indices) to extensions. Thus the intension of a name, called
an individual concept (IQ, is a function which, given any index, picks out some
individual as the referent of that name at that index. Similarly, the intension of
a set, called a property, picks out some collection of individuals which is the
referent of the set-name at each index, and the intension of a formula, called a
proposition, is that function which, for any index, tells whether the formula is
true or false at that index.

For example, suppose that we are interested in maintaining a yearly record of
the emp -rel relation, say for the period of the last five years. If we define a set
of times, say, S = {1977,1978,1979,1980, 1981}, as the complete set of indices or
points of reference of interest to us, then the intension of a name in our language
will be a function from this set S to individuals in the model. Thus, considering
the employee John, we might have the intensions depicted in Figure 2 for the
names “John,” “ Department-of-John,” and “Salary-of-John” (assuming for the
moment some linguistic mechanism for constructing these names). The function
that is the intension of “Department-of-John,” for instance, represents the role
of John’s department and tells what department “fills” that role in each state.
We can now imagine a DML that could examine such a database and provide an
affirmative answer to our query, “Has John’s salary risen?” In the remaining
sections we present a formalization of these ideas in terms of the relational
database model using the intensional logic IL,. We also discuss the application of

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

220 l J. Clifford and D. S. Warren

EMP MGR DEF’T SAL

John John Linen 23K
Mike John Linen 17K
Elsie Elsie TOY 26K

Peter Liz Hardware 29K

(a)

Fig. 3. (a) emp-rell; (b) relation emp_rels;
(c) relation emp_rela.

(b)

this logic to database querying in natural language, and to the unified expression
of various kinds of data constraints.

4. HISTORICAL DATABASES

We imagine that an enterprise wishes to maintain a historical database, that is,
one that models the dynamic nature of that part of the real world that is its
concern. To simplify the discussion, we again consider only our entity relation
scheme EMP-REL as representing the entire database; in Section 6, we present
a more formal view, and include both entity and relationship relations. We
suppose that we are given three static relation instances, emp-reh, emp-relz,
and emp-reb (Figure 3), that is, instances which each repr’esent a single state of
the world as modeled in the relational database.

We will proceed to develop the concept of a historical database in stages in
order to provide some intuition for the more formal treatment given in the next
sections. We will use the EMP-REL entity relation scheme as our running
example. The first step is to incorporate a method for time-stamping the tuples
(“facts”) in our database. To do this we add a new attribute, STATE, to the
relation scheme, creating the scheme EMP- REL’GSTATE EMP MGR DEPT
SAL). Each tuple t in an instance emp -reli is extendedaccordingly, by adding
the value S; for the attribute STATE. The extended relations emp-rel: are
shown in Figure 4. Formally,

emp-rel: = {t: t (EMP-REL) E emp-reli and t (STATE) = Si}.

ACM Transactions on Database Systems, Vol. 8, NO. 2, June 1983.

Formal Semantics for Time in Databases * 221

STATE EMP MGR DEPT SAL - -

s, John John Linen 23K
SI Mike John Linen 17K
St Elsie Elsie TOY 26K
2% Liz Liz Hardware 30K
Sl Rachel Liz Hardware 29K
Sl Peter Liz Hardware 29K

(a)

~~ y~;;~ e?p-rel;; (b) relation emp-relz; (c) relation

b)

STATE EMP MGR DEPT SAL - -

S3 Beth Beth Linen 23K
S3 Elsie Elsie TOY 2’IK

S3 Rachel Peter Hardware 28K
S3 Sharon Peter Hardware 25K
S3 Peter Peter Hardware 33K

(4

We thus adopt an obvious notational convenience that a relation instance ri is to
be associated with state Si.

We would like to view these new relation instances emp-relI as providing
historical information about the changing values of the attributes of the objects
denoted by values of the key, in this instance about EMPloyees. In order to
visualize more clearly what is going on, we propose the picture of a historical
relation as a “three-dimensional relation,” each plane of which is a “static” or
planar relation instance on EMP-REL for a given state of the world Si. Time
adds the third dimension to the normal flat-table view of relations. In a tabular
relation, we understand that a row or tuple corresponds to the information about
a particular object, and a column corresponds to the active domain of a particular
attribute. We now propose to view each non-key attribute, such as SAL, as a set
of roles related to the objects given by the key values, for example, John’s
SALary, Mike’s SALary, and so on. In order to see more easily exactly what
individuals fill these roles in each state, we want to “line up” the entities in the
cube (sort on the key attribute). Figure 5 illustrates such a cube for the emp-rel
relation.

Figure 5 also illustrates a problem that we must solve, namely, that some
EMPloyees are not represented in every state. For example, John is not an
EMPloyee in state &, and therefore there is no tuple for John in the plane for S3
in this cube. Given the query, “What is John’s salary in Ss?” we would want our
model to give us the power to say not that there is no such employee, but rather
that John does not work for us in S3.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

222 * J. Clifford and D. S. Warren

John

John
Mike John Linen
Elsie
Liz
Rachel Liz
Peter

STATE EMP MGR DEPT SAL - -

Fig. 5. Relation emp_rel.

In order to provide a framework in which these issues can be examined, we
introduce the concept of a completed relation. Later this notion will be incorpo-
rated into a more formal definition of a number of assumptions on the interpre-
tation of a historical database, assumptions with the same flavor as the Closed
World Assumption of Reiter [41] but expanded to incorporate the temporal
dimension. In order to indicate which entities are of interest in any state, we will
use a special Boolean-valued attribute EXISTS?. In those states in which an
entity does not exist as an EMPloyee, EXISTS? will be 0 for that EMP, and all
of the other attributes will be given the value I, a distinguished entity whose
meaning is that no individual fills the role of that attribute, that is, the attribute
does not apply. A completed relation will have a tuple in each state for every
entity that is an EMPloyee in any state in the entire database. In this way, we
will be able to follow objects and their attributes throughout all of the states of
the database. To do this, we determine all of the objects (key values) that are
represented in any relation instance, and we extend with a null tuple each
instance that does not represent information about this object.

We formalize these ideas as follows. Given a relation scheme R’(STATE KA1
. . . A,) and an instance rf on R’, we define the active key domain=) of rl
on R’ to be the set of all key values (entities) in the relation instance r:, that is,

AKD(rl) = l-I&l).

We then extend this definition to a set of instances I = {r’l, . . . , rk} on R’ by
defining the complete active key domain (CAKD) of a set of instances as

CAKD(1) = UAKD(rl) for all r: E I.

CAKD(I) is exactly the set we need-it represents all of the EMP entities about
which any information is stored in the database.

We then extend each relation instance rl so that it has a tuple for each entity
in CAKD(I), the set of all “possible” EMPloyees that are “actual” in some state.
Now by construction the projection of each expanded instance r” onto the
attribute K will correspond to all of the entities, that is,

II&-F) = CAKD(1).

If the entity k is an actual entity in state Si, then in the expanded relation rf
the tuple tZ will have tl(EXISTS?) = 1 and will agree with the tuple tlk in rI on
every other attribute. On the other hand, if k is not an actual entity in state Si,

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases l 223

I- - STATE EMP EXISTS? MGR

Sl
Sl
Sl
Sl
Sl
Sl
Sl
S1

John 1
Mike 1
Elsie 1
Liz 1
Rachel 1
Peter 1
Sharon 0
Beth 0

John
Mike
Elsie
Liz
Liz
Liz

I
I

DEPT SAL

Linen
Linen

TOY
Hardware
Hardware
Hardware

I
I

23K
17K
26K
30K
29K
29K

I
I

EMP EXISTS? MGR

John
Mike
Elsie
Rachel
Sharon
Peter
Beth
Liz

1 John
1 Elsie
1 Elsie
1 Rachel
1 Rachel
0 I
0 I
0 .L

DEPT

Linen

TOY
TOY
Hardware
Hardware

I
I
I

SAL

25K
20K
27K
28K
25K

I
I
I

(a)

Fig. 6. (a) Rela-
tion emp-rely;
(b) relation
emp-relk; (c) re-
lation emp-relc.

EMP

Beth
Elsie
Rachel
Sharon
Peter
John
Liz
Mike

EXISTS? MGR DEPT SAL

Beth
Elsie
Peter
Peter
Peter

I
I
I

Linen

TOY
Hardware
Hardware
Hardware

I
I
I

23K
27K
28K
25K
33K

I
I
I

(4

then the tuple tE will have t{ (EXISTS?) = 0, but the distinguished value I for
every other attribute other than STATE, indicating the inapplicability of this
information for this entity, that is, that no individual fills the roles of these
attributes for that entity. Formally, we define the completed relation as follows:

r: = {t: t(R’, E r: & t(EXISTS?) = l}
U {t: t(K) E CAKD(1) - AKD(r:) &

t(STATE) = Si & t(EXISTS?) = 0 &
t(A) = I for all A E {AI, . . . , A,}}.

The three completed EMPloyee relation instances are shown in Figure 6, arranged
in a consistent (but arbitrarily chosen) order on key values,

The three-dimensional cube representation of the completed relation, such that
the ith plane of the cube is r:‘, is shown in Figure 7.

The concept of a completed relation, combined with the EXISTS? attribute ---
and the distinguished value 1, allows us to refer in any state to anv &&&,&lP _-... -- _-- -.- -.__. .-- __-_ ,__-.-.I)
that is actual at any time,jn.thed~can follow the changes _ ___._

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

224 l J. Clifford and D. S. Warren

Figure 7

1

S3 John 0 I I I

SZ John 1 John Linen 25K

S1 John 1 John Linen 23K
S1 Mike 1 John Linen 17K
S1 Elsie 1 Elsie TOY 26K
S, Liz 1 Liz Hardware 30K
S1 Rachel 1 Liz Hardware 29K
S1 Peter 1 Liz Hardware 29K
S, Sharon 0 I I I
S1 Beth 0 I I I

(STATE EMP EXISTS? MGR DEPT SAL)

STATE EMP EXISTS? MGR DEPT SAL

S2
S2
S2
SZ
SZ
SZ
SZ
S2

John
Mike
Elsie
Liz
Rachel
Peter
Sharon
Beth

1 John
1 Elsie
1 Elsie
0 I
1 Rachel
0 I
1 Rachel
0 I

Linen

TOY
TOY

I
Hardware

I
Hardware

I

25K
20K
27K

I
28K

I
25K

I

STATE EMP EXISTS? MGR DEPT SAL

S3
SI
SS
S3
S3
S3
S3
SS

John
Mike
Elsie
Liz
Rachel
Peter
Sharon
Beth

I
I

Elsie
I

Peter
Peter
Peter
Beth

I
I

TOY
I

Hardware
Hardware
Hardware
Linen

I
I

27K
I

33K
25K
23K

inlh a three-dimensional row of the cube. - ---__
In subsequent sections, we will introduce enough of the theory of IL, to show
how it can be applied to a historical database to provide a comprehensive
database semantics capable of treating time-dependent queries and constraints.

At times we will want to consider all of these relation instances as comprising
a single relation on the scheme EMP-REL. We can easily combine them into
one large relation by taking their union. Accordingly, we define a historical
relation rh on a relation scheme R”(STATE K EXISTS? Al - - - A,) for a set of
instances I = {rl, r2, . . . , r,} as the xofthe completed relations r:’ that we
have just constructed (Figure 8). There are no tuples lost in taking this union
(i.e., there were no duplicates) because of the manner in which we have con-
structed each instance. Moreover, we now that {STATE, K} is a key of rh.

Finally, for each Si E S the corresponding completed relation r-7 is embedded in
rh, since

rl = OSTATE=S,(~~).

We shall use the term historical relation in the rest of this paper indiscriminately
to refer either to this single relation or to the three-dimensional organization of

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases - 225

STATE EMP EXISTS? MGR

S1 John 1 John
S1 Mike 1 John
S1 Elsie 1 Elsie
S1 Liz 1 Liz

S1 Rachel 1 Liz
S1 Peter 1 Liz
S1 Sharon 0 I
S1 Beth 0 I
SZ John 1 John
SZ Mike 1 Elsie
SZ Elsie 1 Elsie
SZ Rachel 1 Rachel
SZ Sharon 1 Rachel
SZ Peter 0 I
S2 Beth 0 I
SZ Liz 0 I
SB Beth 1 Beth
S3 Elsie 1 Elsie
S3 Rachel 1 Peter
S3 Sharon 1 Peter
S3 Peter 1 Peter
S3 John 0 I
SB Liz 0 I

S3 Mike 0 I

DEPT

Linen
Linen

TOY
Hardware
Hardware
Hardware

I
I

Linen

TOY
TOY
Hardware
Hardware

I
I
I

Linen

TOY
Hardware
Hardware
Hardware

I
I
I

SAL

23K
17K
26K
30K
29K
29K

I
I

25K
20K
27K
28K
25K

I
I
I

23K
27K
28K
25K
33K

I
I
I

Fig. 8. Relation
emp>elh.

the completed relation instances; no confusion should arise, since both of these
representations represent the same information.

We can now define a historical relational database as a collection of historical
relations over the same set of states. In what follows, we continue to use the term
static database as a general term to describe those familiar databases which
attempt to model only one state of the world.

The development of the historical relation emp-rek in this section has been
very informal; it has been presented in this way because viewing such a database
as a three-dimensional object aids our intuition. The technique of time-stamping
each tuple is a fairly simple idea, and many databases have kept information
such as salary histories in a similar way. It is important to note, however, that
the STATE and EXISTS? attributes are distinguished attributes that are an
intrinsic part of the historical database model, and not ordinary attributes under
the user’s direct control. By this means an explicit temporal semantics can be
incorporated directly within the framework of the relational model, provided that
the model is extended to include a special treatment for these attributes. We have
tried in this section to provide a reasonable intuition about the added dimension
that time contributes to database semantics. In Section 6, we will show how the
model, and not the user, provides a temporal semantics by the interpretation that
it gives to these distinguished attributes and to its interaction with all of the other
elements in the basic relational model. Through the technique of meaning
postulates [6, 351, which are axioms that constrain the set of allowable models,
the user is provided with the facility to make certain modifications to the general
temporal semantics provided in the general historical relational model. Since this
semantics depends upon the formalization of IL,, we provide a brief overview of

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

226 * J. Clifford and D. S. Warren

this logic and its model theory in the next section. Those familiar with Montague’s
formulation of IL [35] will see that in IL, we have reformulated IL to include s as
a basic type, along the lines suggested in [18].

5. INTENSIONAL LOGIC AND INTENSIONAL MODELS

Most database researchers have some degree of familiarity with the general
concepts and some of the theory of first-order logic, if not with its model theory
then at least with its deductive apparatus. We hope that what we provide here in
the way of introduction to intensional logic will at least suffice to make the rest
of this paper intelligible; should we inspire some readers to seek broader knowl-
edge of the subject, we recommend [14] as an excellent introduction before
plunging headlong into Montague’s extremely terse presentation [35].

IL, is a, typed, higher order lambda calculus incorporating indexical semantics.
It is typed: Every expression in IL, has an associated type, which determines
what kind of object in the intensional model for the language can be assigned to
it by an interpretation function as its denotation. It is higher order: Unlike first-
order languages which allow quantification only over individuals, or second-order
languages which allow quantification only over individuals or sets of individuals,
IL, allows quantification over variables of every type. It is a lambda calculus: It
provides a lambda operator which allows the formation of expressions denoting
constructed functions of arbitrary type (see [lo]). (Readers familiar with the
programming language LISP [32] are familiar with the general concepts of lambda
abstraction. Hobbs and Rosenschein [23] exploit this similarity in their attempt
to interpret a simplified version of Montague’s IL as LISP expressions.) Finally,
it incorporates indexicakznantics by including in the syntax expressions of a
type whose interpretation is a special set of indices or states, and by having a
model theory that is based upon a possible worlds/temporal (or indexical)
semantics.

Definition. The set of types for IL, is the smallest set T such that:

1. e, t, and s are in T, and
2. ifa,bET,then(a,b)ET.

We anticipate the semantic discussion below to say that the interpretation
function for the language will assign to expressions of type e (for entity) individ-
uals in the model; to expressions of type t (for truth values), one of the truth
values 0 (false) or 1 (true); to expressions for type s (for states), states or points
of reference; and to expressions of type (a, b), some function from objects in the
model of type a to objects of type b.

We shah not present the complete syntax of IL,, since the examples we use in
the following sections use only a portion of the language. Instead we stress the
following points of notation and departures from standard first-order languages.

1. IL, contains an infinite number of variables of the form un,= for each type a
and natural number n, and a set of constants C,, possibly empty, for each type a.

2. IL, contains the usual truth function operator - (NOT), and truth functional
connectives A (AND), V (OR), + (material implication), w (mutual material
implication), = (equality), and < (prior to).

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 227

3. IL, contains the universal and existential quantifiers, V and 3, respectively.

The usual rules of formation apply to the above language elements. In addition,
the following syntactic constructs are peculiar to IL,.

4. If a is an expression of type (a, b) and p is an expression of type a, then
a(p) is an expression of type b, and denotes the result of applying the function
denoted by a to the object denoted by /3 as argument.

5. If x is a variable of type a, and fi an expression of type b, then x3cp is an
expression of type (a, b), and denotes a particular function from objects of type
a to objects of type b.

Not surprisingly, it is the model theory of IL, that is of most interest to us here.
We proceed by first formally defining a model for IL, and then discussing its
significance.

A model M for the language IL, is an ordered 4-tuple M = (E, S, < F) where

1. E is a nonempty set (the set of basic entities);
2. S is a non-empty set (the set of states);
3. < is a linear ordering on S (this gives the interpretation of the “prior to”

symbol < in the language);
4. F is the function which assigns to each constant ca E C, an element in D,,

the set of possible denotations of expressions of type a, which is defined
recursively over the set of types T as follows.

D, = E

Dt = (0, 1)

D, = S

D (a,b) = Db , Dll that is, the set of all functions from D, to Db.

The set E is intended to represent the set of possible individuals, and S the set
of points of reference or states, ordered by C.

We point out that, in particular, an expression of type (a, t) for any type a
denotes a function from D, into (0, l} and can therefore be thought of as the
characteristic function of a set of objects in D,. Accordingly, we will often speak,
for example, of sets of individuals, when we should more formally speak of
functions from individuals to (0, l}. For example, over a universe consisting of
the set {a, b, c, d, e}, the set {a, c, e} is equivalently represented by the following
characteristic function.

1
0
1
0
1 I

Probably the best way to get a feeling for what these definitions say is to set up
a small language and model and provide some examples. Let us therefore assume

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

228 . J. Clifford and D. S. Warren

a language that contains the following constants of the indicated types.

Peter, Liz, Elsie, and THEBOSS of type (s, e)

77, 78, 79,80, and 81 of type s,

and

EMP of type (s, (e, t)).

Let us also assume that our model M = (E, S, <, F) is defined as follows.

E = {Peter, Liz, Elsie} ---

5’ = (1977, 1978, 1979, 1980, 1981}

with < the obvious ordering on S.
Assume that the interpretation function F makes the obvious assignments to

the state constants. The other constants are interpreted as foIIows.

F(Peter) =

F(Elsie) =

These functions, from states to individuals, are what we have defined above as
individual concepts (ICs). They are intended to represent the sense of a name
since they pick out the individual referred to by the name at every index. The ICs
above ah share the additional property of being constant ICs (or rigid designators):
in each state Si, they pick out the same individual. Compare how F interprets the
constant THE-BOSS:

F(THE-BOSS) = 1979 + Peter

This function is also an IC, but it is not a constant IC. Later we shah see how this
distinction between constant and unconstrained ICs wiII be related to the data-
base concepts of key and non-key attributes, respectively. We can think of this
function as representing the role of the boss, in that it tells who fills that role in
every state. The interpretation of EMP wiII be a function which, for any state,
picks out a set of individuals (the intended interpretation being that set of

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases - 229

individuals who are EMPloyees in that state):

F(EMP) =

Such a function is often called a property of individuals. Notice that we have
used set notation instead of the more cumbersome, though equivalent represen-
tation by characteristic functions.

Rather than giving the semantic rules for IL, which, for each expression A,
define the extension of A with respect to a model M, a state i, and a variable -.-
assignment g, we provide some examples. Consider the expression EMP(78).
Since EMP is of type (s, (e, t)), and 78 is of type s, this expression is well formed
and is of type (e, t). Its interpretation is given by applying the function which is
the interpretation of EMP to the interpretation of 78, namely, 1978, as shown:

ri977+ (Liz1 1
1978 -+ i&er , Liz}
1979 + {Peter, Liz}
1980 + (Peter) -

(1978) = {Peter, Liz}. - -

L
\-,

1981 -+ {Elsie} I

Thus we see that the interpretation rules give the expected meaning to
EMP(78), namely, {Peter, Liz} , the set of individuals who are EMPloyees in
1978. Consider now theexpression EMP(78) (Elsie), of type t. The denotation of
this expression is “computed” by applying the set {Peter, Liz}, (considered as a - -
function) to the argument Elsie to obtain the value 0 (false), that is, Elsie is not
an EMPloyee in 1978.

Now, suppose we want to form an expression whose denotation is a function
from states to those individuals who were not the boss in those states. Such an
expression would be of the same type as the constant EMP, namely, (s, (e, t)),
and can be constructed from the constants we have so far defined using lambda
abstraction over the set of states and the set of individuals. In order to do this, we
need to use two variables in the logic: a variable i of type s, that is, a variable
over states, and a variable u of type e, a variable over individuals. We already
know that the interpretation function F gives the interpretation of each nonlogical
constant. The variable assignment g, as in first-order languages, provides the
denotation of variables. Explicitly, for every variable y of type a, g(y) E D,. With
these two variables we can form an expression which denotes the function we
want, namely,

Xihu [- THE -BOSS(i)(u)].

The denotation of this function, let us call it N--T--B, is given in Figure 9. We
have indicated the sets by their characteristic functions; in each year, one and
only one person is not not the boss (namely, the one who is the boss).

Finally, we consider an example that makes explicit, reference to time, the

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

230 - J. Clifford and D. S. Warren

N-T-B =

-1977 --* Liz

[Peter Elsie

+ 0

+ + 1 1 1

1979 -9 [Liz -+
Peter + 0
Elsie + 1 1 1

1980 --* [Liz +
Peter + 0
Elsie + 1 1 1

1981 -3 [Liz +
Peter + 1
Elsie + 1 1 0

Fig. 9 The denotation of function N-T_B.

formula which translates the sentence “Elsie was the boss”:

3i[[i < now] A THE-.BOSS(1’)(Elsie)].

If we assume that now (of type s) is interpreted as 1981, this formula will be true
just in case there is some time i prior to 1981 at which Elsie was “t,he boss.” It is
easy to see that with respect to the model M this formula is false, and the
inductive definition of the interpretation of the language IL, makes this formula
denote 0.

This completes our brief introduction to the language IL, and its semantics. It
should be sufficient to enable the reader unfamiliar with formalized intensional
logic to understand the following section, in which we present a detailed discussion
of the model-theoretic implications of a historical relational database.

6. INTENSIONAL LOGIC AND HISTORICAL DATABASES

In this section we describe the relationship between the historical relational
database model and the logic IL, and its model theory. This relationship is first
presented formally. It is then followed by an informal discussion that emphasizes
insights that this relationship can provide into the way that a database models
the “real world,” and into the nature of entities and relationships, key and non-
key attributes, queries and data constraints, and the interaction of time with all
of these concepts. The formalism is presented in the interest of completeness and
rigor, but it is easy to get lost in some of the notation; the informal discussion
provides a better overview of how the temporal dimension is incorporated into
the traditional relational model and of how it affects this model.

In the previous section, we described the syntax and semantics of the language
IL,. To be more precise we should rather say the family of IL, languages, since
any particular language in this family is determined by the set C of nonlogical
constants. The general, intuitive description of the historical relational database
concept presented in Section 4 will now be formalized and related to the discussion
of the intensional logic as follows. First, we show that particular HDB scheme
defines a particular logic in the family of IL, languages that providesal

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases - 231

expression of the historical database semantics and that serves as the target
language for translations from our English Query Language (described in [111). ----_. .- ---___- _ ..-.
Second, we show how the interpretation of the set of nonlogical constants of this
applied II,, is Q- .--I

-_
iven by an instance of an HDB on this scheme at any moment in .-. - ----._ -..---- . _ - .- - _ c . _.-l_l .,.-

its history.

6.1 Introduction

In IL,, as in Montague’s formulation of IL, all functions are defined as taking
only one argument. It is well known, however (see the discussion in [lo]), that
any function of n arguments can be represented by an equivalent function of one
argument whose value is a function of n - 1 arguments. Thus, for example, if fis
a function of two arguments, (f(a))(b) represents the value off for the arguments
a and 13. The function f(a) represents a function of one variable whose value for
any argument x is (f(a))(x). We shall abbreviate this notation as f(a)(x) or as
f({ a, x)), and assume that the generalization to functions of n arguments is
obvious. Thus, if g is a function of n arguments, g(x1)(x2) - . - (x,) or g((3c1, x2,
* . . , x,)) abbreviates (((&))(xz)) - . e) (x,), which represents the value of the n-
ary function g for the arguments x1, x2, . . . , xn.

In our discussion of functions, we will have occasion to speak of particular
function spaces, that is, the set of all functions with the same domain and the
same range. For example, the set of all functions with domain S (states) and range
E (individuals) is written ES. Recalling our notation for the denotation sets
corresponding to a given type in IL,, this function space can also be written D,“*,
and represents the set of all ICs. We will sometimes refer to a given function in
this function space as being of type (s, e), although strictly speaking we should
rather say that if, for example, X is a term in the language IL, that names this
function, then X is of type (s, e). In general, a function from A to B will be said
to be of type (A, B) . Many of the nonlogical constants that we will be discussing
will be of types such as (s, (e, (e, . . . , (e, t), . . .))), where there are n e’s before
the t. Instead of this cumbersome notation, we will abbreviate such a type as
(s, (en, t)).

Definition. The logical domain of a database attribute A, LD(A), that. is, the
domain in the logical model that corresponds to the values in the database
domain of the attribute A, is defined as follows.

S if A = STATE
LD(A) = TV if A = EXISTS? .

E otherwise

Definition. We say that X is an (Al, AZ, . . . , A,)-value for a relation scheme
R(...AlA2...A,...),ifX=(xl,xz ,..., x,) where xi E LD(Ai), 15 i 5 n. If
n = 1 we sometimes omit the braces and say simply that X is an Al-value.

Definition. We modify the definition of the relational database projection
operator II to handle the special case of projection of a null relation differently
according to the LD of the attribute projected upon:

{t(A):tEr} ifrZ0

IL(r) =
I ifr=0 and LD(A) = E
0 ifr=0 and LD(A) = TV *
0 ifr=Q and LD(A) = STATE

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

232 - J. Clifford and D. S. Warren

We call the elements I, 0, and (ZI bottom of the logical domains E, TV, and
STATE, respectively. With this modified project operator we will be able to
define a total function from a relation defined over only a subset, of the set of
STATES, given certain simple assumptions on how to interpret the database.

We have chosen in this work to adopt the entity-relationship view of data
semantics [9], as applied to the relational model, for two main reasons. First, we
view the constraints that the entity-relationship model makes upon the database
view of an enterprise as rather “natural” constraints that accord with our
intuition. Second, these same constraints annear to haTdirect logical analogues
in thekinda.&rbje~tities, relationships, and properties-contained in the -.. .- _ -.-
rnpdel theory of our logic. Since Montague’s Intensional Model Theory and
Chen’s Entity-Relationship Model are two independent efforts to characterize
real-world semantics, we feel that the similarity in some of their concepts
strengthens their intuitive appeal. The constraints of the entity-relationship
model applied to the historical database concept, combined with some simple
assumptions on how to interpret a historical database, allow us to define a
reasonably straightforward mapping between any relational HDB that conforms
to these constraints and an IL, model.

We proceed to define the entity-relationship constraints that we place upon
the more general HDB model presented in Section 5. We then define first the IL,
language that a given HDB scheme defines, and second the model Mhdb for that
language that is induced by an instance hdb on this scheme.

Definition. A historical entity relation is a historical relation rt, on a scheme
of the form (STATE K EXISTS? A1 . e . A,) with the following constraints. --

1. K and A1 - - - A, are as in an entity relation.
2. An entity can belong to only one “entity-set.” That is, if rl is a historical

entity relation on RI (STATE K1 EXISTS? AI - -. A,) and rz is a historical
entity relation on Rz (Sm.!EXISTS? A’1 q - B AL), then for any TV E rl and
t2 E r2, tl(Kl) Z t2(K2Tv

3. For any tuple t in ‘51, if t(EXISTS?) = 1 then the entity represented by
t(K1) is said to exist in the state given by t(STATE), and the values of t (A1), 1
I i 5 n, must not be 1. (Note that we do not build into the model any other
kinds of null values.)

4. For any tuple t in rh, if t(EXISTS?) = 0 then the entity represented by
t(K) is said not to exist in the state given by t(STATE), and the values of I,
lrisn,mustallbeI.

Definition. A historical relationship relation is a relation rh on a scheme of
the form (STATE K1 . e . K, EXISTS? AI . - . A,,,) with the following constraints. -- -

5. Kl . . . K,, and A1 . - . A, are as in relationship relations.
6. For any tuple t in rh, if t(EXISTS?) = 1 then the relationship represented

by U-G e . . Kn) is said to exist in the state given by t(STATE), and the values of
t(A1), 15 i 5 n, must not be 1.

7. For any tuple t in rh, if t(EXISTS?) = 0 then the relationship represented
by t(K - . - K,) is said not to exist in the state given by t(STATE), and the
valuesoft(Ai),lri<nmustallbel.

Moreover, the following inter-relational constraints must be satisfied.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 233

8. Only one relationship is allowed among (between) the same entity sets. That
is, it is not permitted to have more than one historical relationship relation whose
object key is Kl - e . K,.

9. For each historical relationship rh with entity keys {K1, KZ , . . . , I&}, there
must exist, for each of the Ki, a corresponding historical entity relation ri such
that for each tuple t in rh with t(EXISTS?) = 1, there must exist in the relation
ri corresponding to Ki a tuple t’ such that t’(Ki) = t(Ki), t’(STATE) = t(STATE),
and t’(EXISTS?) = 1.

10. A role attribute A can appear as a role attribute in at most one relation. If
role attribute A in rl is an entity attribute Kin r2, then for each tuple t in r1 with
t(EXISTS?) = 1 there must be a t’ in r2 with t(STATE) = t’(STATE) and t(A)
= t(K).

These last two interrelational constraints ensure that if an entity h participates
in a relationship or fills a role in a state s, then the existence of k in state s must
be predicated in the entity relation for k. All of these constraints are essentially
the same as in the general entity-relationship model, extended to include a
temporal semantics.

Definition. We will sometimes wish to refer to database entities or relationships
by the neutral word object or object of arity n; if n = 1, this term refers to an
entity, whereas if n > 1, it refers to an n-ary relationship.

Definition. By a historical database (HDB), we shall mean a collection of
historical entity and historical relationship relations that satisfy the above con-
straints, which we shall refer to as the historical entity-relationship constraints.

6.2 The IL, Language Defined by an HDB Scheme

The information in an HDB is organized in the form of historical entity and
historical relationship relations. We represent this information in the logical
model by some set of functions which are defined implicitly by the database. In
this section we give the names of the functions that are needed to represent the
HDB as a portion of an intensional model. These names are simply a set of
nonlogical constants that define a particular IL, language. In this section, we only
briefly discuss the sorts of functions denoted by these constants; in the following
section, we shall show how any instance of an HDB induces the interpretation of
these constants.

For each HDB, we shall define six sorts of constants, corresponding to domain
values, time values, entity attributes, role attributes, relationships, and the
associations between objects (entities or relationships) and their role attributes.
In the discussion to follow, we shall have occasion to make reference to a sample
database to exhibit some of the ideas that we discuss. We therefore define a
simple historical database based on the department-store relational database
example in [8].

Historical Entity Relation Schemes
EMP-REL (STATE EMP EXISTS? MGR DEPT SAL)
DEPT-REL(STATEmT EXISTS? FLOOR)
ITEM-REL (STATE I= EXISTS? TYPE) ~-
Historical Relationship Relation Schemes
SALES.-REL (STATE DEPT ITEM EXISTS? VOL) ---

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

234 * J. Clifford and D. S. Warren

EMP

Peter
Liz
Elsie
Peter
Liz
Elsie
Peter
Liz
Elsie

EXISTS? MGR DEPT SAL

I
I

Elsie
Elsie
Elsie
Elsie
Liz
Liz

I

I I
I I

TOY 50
Hardware 30

TOY 35

TOY 50
Linen 35
Hardware 50

I I

Fig. 10. Relation emp_rel.

STATE DEPT EXISTS? FLOOR

TOY
Hardware
Linen

TOY
Hardware
Linen

TOY
Hardware
Linen

1 Fl
1 F2
0 I
1 F2
1 F2
1 F3
1 F2
0 I
1 F3

Fig. 11. Relation dept-rel.

We will also have occasion to use the instances given in Figures lo-13 over these
schemes.

6.2.1 Domain Value Constants (DVCs). Recall that the union of all of the
domains of the database attributes is the set UD. Corresponding to UD we define
the set of individual constants in IL,, C, = {d’ 1 d E UD} , so that we can refer in
the logic to any value that might appear in any state of the database.

6.2.2 Time constants (TCs). The domain of the distinguished attribute STATE
is the set S. Corresponding to this set, we define the set of state constants in IL,,
C, = S. It will also prove useful to allow constants that refer to sets of states, in
particular to contiguous states or intervals; for example, a constant 1978 of type
(s, t) would denote the set of all moments of time in the year 1978. We will
therefore allow in IL, a set of constants of this type, namely, Ccs,t). These latter
are not determined by the database, but rather by the kinds of users and queries
that the database system is intended to support.

The general picture of the historical database as encoded in the IL, model is
provided by the denotations of the remaining four kinds of constants. Before
stating formally the rules for deriving their denotations from the database, we
give the following overview.

1. The set of entities (e.g., EMPloyees) in any state is given by the denotation
of the corresponding entity constant (e.g., EMP;) for the entity set.

2. The set of n-tuples participating in any n-ary relationship in any state is
given by the denotation of the relationship constant REL-n. All n-ary relation-

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 235

STATE ITEM EXISTS? TYPE

S1 Ball 1 5
SI Game 1 6
Sl Glove 1 7

S2 Ball 1 0
S2 Game 1 6
SZ Glove 1 5
SS Ball 1 10
S3 Game 0 I
S3 Glove 0 I

Fig. 12. Relation item rel.

STATE

S1
S,
Sl
SI
SO
SP
SZ
SZ
s3

S3
s3

SZ

DEPT

TOY
TOY
Hardware
Linen

TOY
TOY
Hardware
Linen

TOY
TOY
Hardware
Linen

ITEM

Ball
Game
Glove
Glove
Ball
Game
Glove
Glove
Ball
Game
Glove
Glove

EXISTS? VOL

1 3
1 6
1 9

0 I

1 3
1 6
1 9

1 2
1 4
1 6
0 I
0 I

Fig. 13. Relation salesrel.

ships can be combined into a single function since the entity sets of the partici-
pants uniquely determine the relationship.

3. For each role (e.g., SALary), the set of ICs that fill that role in any state is
given by the denotation of the corresponding role constant (e.g., SAL’). An IC
tills a role only in those states in which its associated object exists (or, equiva-
lently, in which its value is not I).

4. n-ary objects are bound permanently to each of their role ICs Ai by
the denotation of the nonindexical constants AS-Ai. Thus, for example, each
EMPloyee is permanently bound to three ICs which, in those states in which the
employee exists, are its SAL, MGR, and DEPT selecting functions.

6.2.3 Entity Existence Constants (EECs). For each historical entity relation
with entity key K, we use a nonlogical constant K!+ in IL, of type (s, (e, t)) which
denotes, at each state, the set of individuals (subset of E) which exist as K-
entities in the state. For example, the historical entity relation DEPT-REL with
entity key DEPT induces ih the logic the constant DEPT’, of type (s, (e, t)).
DEPT!+ denotes at any state the set of entities which are departments in that
state. Ccs,(e,t)) is the set of all these entity-key constants.

6.2.4 Relationship Existence Constants (RECs). For each n for which there
exists one or more n-ary historical relationship relations, the set Cc, (en,t) 1 consists
of the single nonlogical constant REL-n, which denotes at each state the set of

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

236 * J. Clifford and D. S. Warren

logical n-tuples (subset of E”) which exist as nary relationships in that state. For
example, SALES-REL is a binary historical relationship relation that induces
in the logic the constant REL-2 of type (s, (e, (e, t))). REL-2 denotes at any
state the set of binary relationships (in this example, this is just the set of
DEPT-ITEM pairs) that exist in that state.

6.2.5 Role Constants (RCs). For each role attribute A in the historical database
scheme, we use a nonlogical constant A’ of type (s, ((s, e), t)) in IL, which
denotes, at each state, the set of A-ICs which exist in that state. C’C~,((~,~),Q) is the
set of all of these role constants. For example, the role attributes DEPT (from
EMP-REL) and VOL (from SALES-REL) induce in the logic the constants
DEPT’ and VOL’ of type (a, ((s, e), t)). DEPT’, for example, denotes in any
state the set of DEPT-ICs (i.e., department-of-some-employee roles) that exist in
that state. Notice that DEPT’ and DEPT: are two different constants of different
types, induced by two different “occurrences” (and two different uses) of the
single database attribute DEPT. This distinction between object (entity or
relationship) attributes and role attributes is an important one. The values of
object attributes are entities, while the values of role attributes are functions
(ICs). If, as in the case of departments in this example, an attribute is considered
in one case (EMP-REL) as a role attribute (an attribute of the entity EMP)
and in another as an object attribute (the entity department), two different
constants denoting two different functions are induced in the logic. Attributes of
a department are attributes of the department as an entity and not as a role.

6.2.6 Association Constants (ACs). For each n for which there is an object in
the database the set Clen,((s,e),t)) consists of a set of nonlogical constants AS-Ai
which denote the permanent association (i.e., state-independent, or nonindexical)
between each object of arity n and each of its role attributes AL. For example, the
constant AS-SAL of type (e, ((s, e), t)) in the logic represents the association
between each entity (object of arity 1) and its salary IC. AS-FLOOR associates
each department with its floor IC, and so on. The constant AS-VOL of type (e,
(e, ((s, e), t))) represents the association between each binary DEPT-ITEM
relationship and its sales-VOLume.

Any given HDB scheme thus determines a set CHDB of constants in ILs,un~
from among these six categories of nonlogical constants. (These constants are
uniquely determined except for the constants of type (s, t), for which many
choices can be made.) In the case of the department-store database, the following
set of constants is determined.

Cdept-store = ct? u cs u C(SJ)

u ~WW))

u C@,(e,W)))

UC (%((sse)J))

u ~(e,((s,e).t))

u CMe,(m,t)))

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 237

where

C, is the set of domain value constants,
C, is the set of state constants,
Ccs,t) is some set of state-set constants,
Cc, (e,t)) = {EMP ‘, , DEPT ‘, , ITEM ‘,} is the set of EECs,
Ccs,(e,(e,t))) = {REL-2) is the set of RECs,
Ccs,((s,e),t)) = {MGR’, DEPT’, SAL’, FLOOR’, TYPE’} is the set of RCs, and
Cc, ((s,e),t)) = {AS-MGR, AS-DEPT, AS-SAL, AS-FLOOR, AS-TYPE} and

Cle,(e,((s,e),l))) = {AS-VOL}, and the union of these last two is the set
of ACs.

In the following section, we will give formal definitions of an HDB scheme and
an instance hdb on this scheme, and show how the interpretation of the constants
determined by a given historical database scheme HDB is induced by an instance
hdb over that scheme.

6.3 The Intensional Model Induced by a Database Instance

Before proceeding to define how a given instance of an HDB induces the
definition of the interpretation-of-constants function F, we need to define some
preliminary notions.

The view of a relational HDB as a three-dimensional cube composed of a
sequence of static relations has served a useful purpose in guiding our intuition
as to how time interacts with the other attributes in the database. It was this
view which caused us to look at key attributes as constant ICs, functions from
states to individuals, and at role attributes as unconstrained ICs. We will now
argue that this view is inadequate in the face of the generally accepted notion of
dense time. We will therefore fortify this view with two additional assumptions,
the Comprehension Principle and the Continuity Assumption. These will enable
us to view an HDB as modeling an enterprise completely over an interval of the
real-time line, and to answer such crucial questions as what objects exist in any
state s and what are the values of their Ai-ICs in these states.

Definition. A closed interval [tl, tz] on the real-time line is defined, as usual,
as the infinite set of all states in R between and including tl and t2, that is, [tl.. t2]
= {t) t E R and tl I t 5 tz}. The appropriately modified definitions for [tl, tz), (tl,
tz], and (tl, t2) are assumed, and the general term interval will sometimes be used
to refer to any of these.

For purposes of illustration let us consider again the historical entity relation
scheme EMP-REL(STATE EMP DEPT MGR SAL), and assume that we have --
an instance that is defined over this scheme for the sequence of states (Sl, SZ,
. ..) ST). The first assumption which we shall make about any such relation is
that it is intended to model EMPloyee entities over the entire closed interval of
time [&, ST]. Since under the most reasonable views of time this interval is
assumed to be dense, the best that any finite relation can do is to provide a
simulation of this infinite set of moments of time. If a relation is modeling
contingent data, it simulates this dense interval by means of a sequence of
snapshots, or still photos, in this case taken at each moment in the sequence (5’1,

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

238 * J. Clifford and D. S. Warren

. ..) ST) . (Some relations model noncontingent data and can be computed, as
described by Maier and Warren [30]; we will not consider such relations here.)
Because we take this idea as basic, that is, because it seems to be the only
reasonable interpretation to place on any historical database that records facts
over some interval of time, we state it as the following principle.

Definition. The Comprehensbn Principle states that under any reasonable
interpretation a historical database defined over a sequence of states (S, Sz,
. . .) S,) should be considered as modeling an enterprise completely over the
entire closed interval [S, &I. Any and all information about the objects of
interest to the enterprise can be assumed to be contained in or implied by the
historical database for the entire interval [S, &I. Moreover, for any state S not
in the interval [&, &I, as far as the database is concerned, no entities or
relationships exist, and the value of all ICs is 1.

One area for further research would be the relaxation of the second part of this
principle, related to the Closed World Assumption of Reiter [41], perhaps with
the introduction of a many-valued logic. In our model, the set TV of truth values
is the set (0, l} , and we use 0 (false) as the obvious choice to mean does not exist.
It is because no such obvious choice exists from the set E of entities that we have
augmented E with the distinguished entity I, which can be considered as meaning
“inapplicable.” We do not thereby pretend to be offering anything more than a
practical solution to the interesting philosophical problems of existence, proper-
ties of nonexistent but possible entities, and so on, which are of considerable
philosophical and logical interest (Quine in particular [39,40] has contributed a
great deal to the understanding of these issues from both points of view). We
point out that I is the only so-called null value that we provide with a special
semantics in this model. Future work might incorporate others as a formal null
value semantics is developed. (The entire issue of null values in relational
databases is discussed in [19].)

It remains only to make an assumption about what the database means to say
about all those other moments of time which fall in the interval [Sr , S7] but which
are not included in the sequence (S, , Sz, . . . , S7) specifically mentioned in the
database.

The problem stated in simple terms is this. The database samples the values of
the ICs of interest for only some finite subset of states in [S, , S,,], yet we want to
be able to consider that the database implicitly defines each IC as a total function
from S into E. How are we to interpret the database, that is, what functions are
we to assume that the ICs represent?

Definition. Any assumption which extends a mapping from a finite set of
moments { Sr , SZ , . . . , S,} (ordered as in the sequence (2%) SZ, . . . , 8,)) into a set
of individuals, into a mapping from all moments in the closed, dense interval [Sl,
S,,], into that set of individuals, will in general be called a Continuity Assumption.

We have looked at a number of different proposals for interpolating these role
functions in the database, but for the sake of this exposition we will only discuss
the following simple assumption. For all role attributes that record nonnumeric
data (e.g., MGR, DEPT), and for some that record numeric data (e.g., SAL), it is
clear that the IC intended by the discrete points recorded in the database in

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 239

h

9
8
7
6
5
4
3
2
1

x x x

x x

Fig. 14. Discrete points in database.

c
9
8
7 x ---- x ____ x--

6
5 X- x-

--

4
3 x--
2 X--

1

P
SI sz s:i s4 ss ss S?

Fig. 15. Step-function.

Figure 14 is the step-function shown in Figure 15. In other words, under the step-
function continuity assumption, the value of an IC for any state s within the
database cube is given by the value of the function recorded in the database at
the greatest state s’ less than or equal to s. We assume that the HDB initially
records information about an object X when it becomes of interest to the
enterprise, say at state si. We then assume that a new tuple for X is added to the
database at some subsequent state sj > ai when and only when one or more of its
Ai-ICs has changed value, or when it ceases to be an object of interest to the
enterprise (EXISTS? becomes 0). In the interest of keeping our initial model
simple, we will commit ourselves here to this view of the temporal semantics of
an HDB. That is, for the remainder of this work we assume that all role attributes
model step-functions.

We proceed now to formalize these notions, defining a database scheme HDB,
a database hdb, and the model M induced by such a scheme and database.

Definition. A historical rel -_ .-..-I .wscheme is an ordered 8-
tuple (U, D, R, S, TV, DOM, CO, f), where:

1. U = {Al, Az, . . . , A,) is a nonempty set, the set of attributes;
2. D = (01, Dz, . . . , D,,} is a nonempty set, the set of domains, such that each

Di E D is itself a nonempty set;
3. R = {R,, Rz, . . . , RP} is a set of historical-entity and historical-relationship

ACM Transactions on Database System, Vol. 8, No. 2, June 1983.

240 . J. Clifford and D. S. Warren

relation schemes, where each Ri E R is an ordered pair (A;, h:;), such that

;Ai=U;
i=l

4. S is any nonempty set, the set of states;
5. TV is the set of truth values (we consider in this paper only the case of TV

= V-J 11);
6. DOM: {STATE, EXISTS?} U U + D U {S, TV} is a function that assigns

to each attribute its corresponding domain, subject to the restriction that
DOM(STATE) = S and DOM(EXISTS?) = TV;

7. CD is a partial ordering, possibly empty, on D,
8. fiS + R is an injective function that assigns to each state s a real number;

it can thus be looked at as an embedding of the set of states onto the real-
time line.

Given such a scheme, we define the following linear ordering on S consistent with
the ordering of the image of S under f, that is, as reals.

<S = {(Si, Sj) 1 Si, Sj E S and f(s) < fbj)).

Definition. A he-- is a set of
relations, hdb = {Q, rz, . . . , rP} such that hdb is a set of completed historical-
entity and historical-relationship relations such that for each relation scheme Ri
= (A;, Ki) in HDB, ri is a relation on Ri that satisfies the appropriate historical
entity-relationship constraints.

Given such a database hdb we can define the following concepts that pertain
to its temporal dimension.

Definition. ED&d,,, the set of e-states of the database hdb, is
that finite set of states {sl, sz, . . . , s,} given as follows.

P

EDShdb = i’i, HSTATE (I;.).

Note that, because each relation ri E hdb is completed, we have

HISTATE (R) = EDShdb .

Definition. The initial state SIhdb of hdb is given as

SIhdb = the minimum element of EDShdb under <s.

Definition. The final state SFhdb of hdb is given as

SFhdb = the maximum element of EDShdb under <s.

(Note that SIhdb and SFhdb are unique because <s is a linear ordering.)

Definition. The database real time interval RT&, is the set of all times for
which, under the comprehension principle, the database hdb is assumed to have
complete information. This can be simply defined as follows.

RTIhdb = [f@Ihdb),f(SFhdb)].

The RTI should be at least this big; under different assumptions about the future
and the past it might be defined as a larger interval. For instance, the upper

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases . 241

endpoint might reasonably be taken from a real-time clock to represent the
moment “now.”

The step-function continuity assumption tells us that if we want to know
whether an object exists in a state s, or what the value of any IC is in a state s,
we should look at the information in the database for that state s’ which is the
latest state no later than s that is specifically mentioned in the database. We
make this notion precise in the following definition.

Definition. The database representative of a state s, [s], is defined as follows.

ifs E RTI, then

[sl = the largest state s’ E EDSM~ such that s’ % s .
if s @ RTI, then s

Under this definition, we assume that no objects exist or have any role-ICs
outside of the real-time interval RTI hdb. If we wanted to model SIhdb as the
“beginning of time,” and/or SFM, as the “end of time,” we could modify this
definition to map all times before SIhdb to SIhdb, and similarly for all times after
SFM. We now define an extended Select operator which will enable us to select
the value of any attribute in any state in I, regardless of whether that state is
specifically represented in the database.

Definition. We define the operation u*, the historical database select, as
follows,

o*STATE = s, A = x(d = aSTATE = [s], A = k-i)

for any relation ri E r, A E IJ, and x E UD. (Note that this definition gives the
empty relation for any s not in RTI.)

Definition. The model k&, induced by hdb on HDB is an ordered 5-tuple
h&t, = (E, S, <, <E, F), where:

1. E = UD U {I}, that is, the set of all individuals in the domain of HDB, plus
the distinguished individual I, the null individual;

2. S = R, that is, the set of all times is just the set of real numbers;
3. c is the linear ordering on the real numbers;
4. <E = <D (given by HDB);
5. F is a function from the set of constants C nDB into objects in it&,, such that

F(ca) E D,; the exact specification of F is given in the following section.

6.4 The Interpretation of the Nonlogical Constants

Definition. Let r be a relation over the scheme R (B1 . . - B, C1 . -. C,). Then
the function to Ci represented by r, B,,o,, is a function% -

whose interpretation is given as follows.

ACM Transaction, on Database Systems, Vol. 8, No. 2, June 1983.

242 * J. Clifford and D. S. Warren

where
xi E LD(Ki).

In other words, we say that for each non-key attribute C,, the relation r represents
a total function B,.,, from the domain of (LD(Bl), . . . , LD(B,)) n-tuples to
LD(C,). If a tuple with a given (LD(&), . . . , LD(B,)) - value X appears in the
relation r, then the value of the function &,c, for X is just the value of Ci associated
with X in r. Otherwise, by our assumptions on the interpretation of the database,
the value is bottom in LD(Ci).

We now define precisely what we mean by saying that a given instance hdb on
a scheme HDB induces the definition of F hdb, the function from the set of
constants of our IL, language to the function spaces in our model. We discuss in
turn the interpretation of the six sorts of constants we introduced in the previous
section as being induced by a particular HDB scheme: DVCs, TCs, EECs, RECs,
RCs, and ACs.

6.4.1 Interpretation of DVCs. For any DVC d’ E C,, Fhdb(d’) = d E UD.

6.4.2 Interpretation of TCs. For any constant c E Cs, F(c) = f(c), that is, the
interpretation given by the embedding of the states in the real numbers. For any
set-of-states constant c E Cts,t), we insist that F(c) defines an interval of time.

6.4.3 Interpretation of EECs. Let r be a historical entity relation on scheme
R(STATE K1 EXISTS? A1 . . . A,). Then Fhdb(K{,), the interpretation of the
EEC K<*, of type (s, (e, t)), is that function fin (s, (e, t)) whose value for any
state s E S and individual x E E is given as follows.

f(S, Xl = ~EXISTS?(UST.~TE = LK, = Jr)).

Thus, under our interpretation of the historical database the only K1-entities that
exist are those that the database historical entity relation r with. entity key K1
says exist.

As an example, let us consider the interpretation of the constant EMP’,, and
evaluate it for some elements in its domain.

Example 1. “Is Peter an employee in state Sl?”

f((S, Peter))
= ~E~ISTS?(U*STATE=S,,EMP=PETER(~~~- 4)

(STATE EMP EXISTS? MGR DEPT SAL)
= nEXISTS? & Peter 0 I I I
= 0.

Thus, Peter is not an employee in S, .

Example 2. “Is Liz an employee in state Ss?”

f((S3, Liz))

= ~EXISTS?(~*~TATE=~.,,EMP=L~Z(~~~ A))

(STATE EMP EXISTS? MGR DEPT SAL)
= nEXlSTs? S3 Liz 1 Ez Dz 50
= 1.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases 243

Thus, Liz is an employee in Ss.

Example 3. “Is entity 50 an employee in state Sa?”

f((S3, 50))
= HEXISTS? (5 *STATE=S~,,EMP=.~O (emp rel))

= HsxisTs?(STATE EMP EXISTS? MGR DEPT SAL)
0

= 0.

Thus, 50 is not an employee in S3,

6.4.4 Interpretation of RECs. Unlike the case of EECs, in which a single
historical entity relation r over a scheme R represented all of the information
about the existence of entities of a given sort in the database, in the case of RECs
there may be any number of historical relationship relations of a given arity that
must together be considered to determine which nary relationships exist. Our
definition of the interpretation of the constants REL-n, therefore, must be given
in terms of the entire database and not just of a single relation.

Let n-rels = (Q, . . . , l;h} be the set of all the n-ary historical relationship
relations in the database, that is, all relations in the database over schemes Ri of
the form Ri (STATE Ki, - * * Kin EXISTS? Ai, * - * A,) . Since these Irz relations are
all defined over the same logical domains for the set of attributes {STATE, Ki,,
---, Ki,>, EXISTS?}, we can conceptually take the union of these k projections
considered as relations over these logical domains. (Notice that LD(KQ = E for
all Ki,.) In order to do this we define a new relation r over the scheme
R(STATE El . . . E, EXISTS?), where r is the union of these k relations over ~-
these “common” attributes:

k

r= u II
i=l STATE,Ki ,,,.., K,,,ExISTS?(ri)’

Then the interpretation of the constant REL-n induced by the database,
Fhdb (REL-n), is that function fin (s, (en, t)) whose value for any state s E S and
n-tuple (xl, x2, . . . , x,) EE”isgivenas:

fb, (Xl, x2, . . . , Xn)) = ~EXISTS?(U*STATE=~,V~ ,,..., 4)=(X ,,..., x,) b)),

which is completely analogous to our definition of the interpretation of the EECs,
or I-ary relationships.

For example, in our department-store database the only binary relationship is
the one between DEPTs and ITEMS. We evaluate f for various 2-tuples in various
states.

Example 4. “Is there a relationship between the Hardware Department and
Item Glove in state &?”

f((&, Hardware, Glove))

= nEXISTS? ((J$TATE=S:,.DEPT=Hardware,ITEM=Glove (SakS-rel))

(STATE DEPT ITEM EXISTS? VOL)
= HEXISTS? s3 Hardware Glove 0 I

= 0

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

244 ’ J. Clifford and D. S. Warren

Thus, the relationship Hardware-Glove does not exist in &.

Example 5. “Is there a relationship between the Toy Department and Item
Game in state Sl?”

f(C% TOY, Game))

= ITEXISTS? ((JSTATE=SI,DEPT=TO~,ITEM=G~~~(S~~~S---~~~))

(STATE DEPT ITEM EXISTS? VOL)
= nEXISTS? Sl TOY Game 1 6

= 1.

Thus, the relationship Toy-Game does exist in 5’3.

Example 6. “Is there a relationship between the Toy Department and Peter in
State &?”

f((Sl, TOY, Peter))

=II EXISTS?(u&TATE =S,,DEPT =TO~,ITEM = Peter (ales~-rel)) S

= I~ExIsTs?(STATE DEPT ITEM EXISTS? VOL)
0

= 0.

Thus the relationship Toy-Peter does not exist in S,.

In order to define the interpretation of the remaining two kinds of nonlogical
constants that we have defined, we again need a preliminary definition, in this
case to handle the role-attribute ICs.

Definition. Let r be a historical relation on scheme R (STATE & . . . K,,
EXISTS? A1 . . . A,), and let X be a (Kl . . . K,) -value, that imXEE”.hen the
A,-IC associated with the object X in r on R, fi,,,.,,, is that function of type
(s, e) whose interpretation induced by r is given as follows:

I%,.,&) = HA,(C.~TATE =s.(K, K,) =x(r)).

Definition. The set of Ai-XC’s associated with the object X in r on R in state
s, Fzv., x, is a function of type (s, ((s, e), t)), whose interpretation induced by r
is given as follows:

F ~EXISTS?(~STATE=~,(~...K,) =x(r)) # 0
Za,,x,~,ax(S) = ‘FIA~r’a’ ~thenuise

In other words, in any state s we associate an object X with its role-attribute
ICs only if the object X exists in state s, otherwise it is not associated with any
ICs. (Note that in any state the set given by F2 is either a singleton set-
containing one IC-or the empty set.) This definition enables us to simplify the
types of many of our constants (as compared to Montague’s treatment in PTQ
[35]), while at the same time avoiding assigning a role to any IC associated with
an object that is nonexistent is a given state.

6.4.5 Interpretation of RCs. Let r be a historical relation on scheme
R(STATE Kl . . . K, EXISTS? A, . -0 A,). Then the interpretation induced ___-

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 245

by r of the RC A{ is simply the union of all of the sets of Ai-ICs associated with
any objects X. In other words, Fhdb(Ail) is that function fin (s, ((s, e), t)) whose
value for any state s E S is given as follows.

f(s) = & Fz, \I 4s).

For example, SAL’ for any state s denotes the set of all ICs which are the salary-
selecting functions of any employee.

6.4.6 Interpretation of ACs. As in the case of the REL-n’s, for any given n we
use a single nonlogical constant to represent information about all objects of arity
n, information that may be located in an arbitrary number of database relations.
An AC AS-n represents the association between any object of arity n and each of
its role ICs. We must therefore define the interpretation of these constants in
terms of the entire database and not just of a single relation. We would like to
take all of the functions given by Fz, that is, the set of all of the ICs associated
with any object X, and merge them all together to yield a single function which,
for any object X, gives all of the role ICs associated with X. In order to do this, we
need to make this notion of merging precise.

Definition. We say that a relation r on R = (A, K) is defined for the object
n E K if x E l&f(r).

As before we let n-rels = {rl, . . . , rk} be the set of all relations ri in the database
over schemes Ri of the form Ri (STATE K 1, - . - K,(EXISTS? Al, - - - A,,). By
the historical entity-relationship constraint (2), an entity X can belong to only
one entity set, and by constraint (6) only one relationship can exist for any set of
entity sets. Together, these constraints mean that any n-ary object (xl, x2, . . . , x,)
is defined by at most one relation in hdb, that is

IluG,,..., KsE(ri) fl II W,... KS,) (rj) = 0,

for any two distinct relations ri, r; E n-rels. From this, it follows that for any
X E E” and any role attribute A, the function A, x.,, Rh is defined for at most one
ri E n-rels; this is thus also the case for the function Fz,,.,,.,.

Then the interpretation of AS-AL induced by the database is that function f in
(en, ((s, e), t)) whose value for any X E E” is given as follows.

f(X) = $J ,Fb&(s) if for some r in n-rels the object X is defined in r
otherwise I

In other words, the interpretation of AS-Ai gives, for any n-ary object X, the set
of all ICs in the role Ai associated with X in any state.

After this more formal presentation of the logical model induced by an HDB
instance, it will be informative to take a look at each of the elements in the
historical database in turn to see how it is reflected in the model.

6.5 Informal Discussion of IL, and HDB

65.1 Domains and Values. In the definition of the HDB, the set UD consists
of the names of all of the individuals that may possibly be referenced in any stage
of the database history. The database itself can be viewed as a collection of

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

246 * J. Clifford and D. S. Warren

sentences in an implied logic, and we have just presented a translation from this
language into IL,. The domains correspond in the following way. The set of
constants of type e in IL,, C,, is defined to be {d: d E UD}. Correspondingly, the
set E of individuals in the model for IL, is defined to be {d : d E C’D} U {I}.
Moreover we have specified the interpretation of these constants in the obvious
way:

Fhdb(d) = d. -

6.5.2 Attributes. As we have seen, the HDB model identifies three different
kinds of attributes: the distinguished attributes STATE and EXISTS?, attributes
that are keys whose values are rigid designators of entities, and role attributes
which are unconstrained functions (ICs) which in any state give some property of
either an entity or a relationship. Montague describes this distinction between
constant and unconstrained ICs in this manner: “‘Ordinary’ common nouns (for
example, horse) will denote sets of constant individual concepts (for example, the
set of constant functions on worlds and moments having horses as their values;
from an intuitive viewpoint, this is no different from the set of horses). It would
be unacceptable to impose this condition on such ‘extraordinary’ common nouns
as price or temperature; the individual concepts in their extensions would in the
most natural cases be functions whose values vary with their temporal arguments”
[35]. We have made the same claim here in the HDB realm, in particular, we
have argued that key attributes (such as EMP) and role attributes (such as SAL)
are to be identified with Montague’s “ordinary” and “extraordinary” common
nouns, respectively.

It is, of course, the attribute STATE which bears the burden of providing the
temporal semantics for the HDB model. We believe that it is best to define the
model in terms of a very general temporal semantics and allow the user to specify
(via meaning postulates) further properties of this parameter. We have described
here our step-function continuity assumption as a means of interpolating the
partial function given by the historical database. The attribute EXISTS? enables
objects to come in and out of focus at will as objects of interest to the enterprise.
When an object is of interest, EXISTS? has the value 1 and all of the role
attributes for that object are defined; otherwise, EXISTS? is 0 and it has no
attributes (all are I).

6.5.3 TupZes. A tuple in the HDB model, as in the entity-relationship model, is
viewed as a collection of facts about a single object, an entity or a relationship. In
either case it has seemed more natural to us to view the association between an
object and its attributes as essentially binary. The theory could easily have
treated nary tuples as wary associations among the various ICs involved. With
the choice of semantic primitives that we have made, a tuple in a historical
relation representing an object of arity n with m role attributes is reflected in the
logic IL, by a simple sentence composed of three parts:

1. n entity existence terms and, if n > 1, an additional relationship existence
term;

2. m terms identifying the sorts of the m role attributes;
3. m terms associating the n-ary object with each of its m attributes.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases l 247

For example, the first tuple in dept-rel is completely represented in IL, by the
following formula in IL, (assume that the variable x is of type (s, e)).

3 x[DEPT;(Sr, Toy) A FLOOR’(Si, X) A AS FLOOR(Toy, X) A x(SJ = F,]

The first tuple in sales-rel is completely represented in IL, by the following.

3 x[DEPTi(Si, Toy) A ITEML(S1, Ball) A VOL’(&, 3~)
A AS-VOL(Toy, Ball, X) A x(S,) = 31

6.5.4 Data Dependencies and Constraints. The inclusion of an explicit time
component in the HDB model allows us to express the semantics of a wide class
of database constraints in the same language, something not possible in a first-
order logic without some extra apparatus. We divide these database constraints
into two categories and make the following definitions.

Definition. An extensioq&&ztabase constraint is a constraint on individual
valid states of the database. It can be said to hold (or not hold) simply on the
basis of the extension of the database with respect to a single state.

Definition. An intensional database constraint is a constraint which defines
valid state progressions in the database. It can be said to hold (or not hold) only
by examining at least two states of the HDB.

Current theoretical relational database research has been primarily concerned
(without itself using the term) with extensional constraints, such as FDs or
MVDs. The relationship between the FDs and MVDs of the relational model and
axioms expressed as formulas in a first-order logic is one which is well understood
(see, e.g., [36, 371). The FD EMP + SAL, for example, is an abbreviation for the
first-order formula

V x V y V .a [EMP(x) A SAL(y) A SAL(z)
A AS-SAL&, y) A AS-SAL& .a) + y = z]

in the domain relational calculus (i.e., with variables having individuals as their
domain), or for the formula

V tl V tz[tl(EMP) = tz(EMP) + tl(SAL) = tz(SAL)]

in the tuple relational calculus (i.e., with variables having tuples as their domain).
Ullman [48] discusses these two calculi and demonstrates their equivalence. An
intensional logic allows us to express more fully and easily the intent of these
FDs. We can specify explicitly that they must hold over all states of the database.
Moreover, we can make the more explicit statement that there is only one
function (IC) that picks out a given attribute (e.g., the SALary) of any object
(e.g., EMP) that has that attribute:

V x V y V z V i [EMP’(i, x) A SAL’(i, y) A SAL’(i, z)
A AS-SAL(x, y) A AS-SAL@, .a) + y = z].

Here we have quantified over all states of the database with the state variable i
(type s), and over the ICs X, y, and z, we have equated not merely the value
(extension) of the two SALaries, but the SALary-ICs (functions) themselves. (We

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

248 - J. Clifford and D. S. Warren

note in passing that the comparable axiom in IL, using “tuple” variables would
require a different approach than we have taken. We would have to have tuple
variables of the appropriate type, since IL, is a typed logic.) Similar intensional
axioms for MVDs would constrain the acceptable models for our HDB.

Intensional constraints have not received much attention in the database
literature. Where they have been examined (e.g., by Smith and Smith [46],
Nicolas and Yazdanian [38], and Casanova and Bernstein [7] as “MC
constraints” or constraints upon update operation& they have been considered
as different in kind from extensional (or “static”) constraints. In this paper we
have shown how IL,, as a higher order language with a temporal dimension,
allows us to consider different types of objects (e.g., states, individuals, ICs, and
other arbitrarily defined functions) and to make statements about any of these
objects with the full power of quantified logic and lambda calculus. We can thus
express both types of constraints in IL, in the same natural way, that is, as axioms
about objects (of the appropriate type), without having to invent a new technique
for expressing the dynamic constraints.

Consider the following kind of constraint that might hold in an enterprise
keeping a relation on EMP-REL.

No employee can ever be given a cut in pay.

This is an intensional constraint. It constrains the kind of function that can serve
as a SAL-IC for any EMPloyee, in particular to those functions from states to
dollar values that have everywhere a nonnegative derivative. It is not expressible
as a first-order database axiom because it does not refer simply to the extension
of the SALary function in any one state, but rather to the entire function
considered as an intensional object, namely, an IC. In IL, this constraint is
expressible as:

V il V u V x [EXP’*(il, U) A SAL’(il, r) A AS-SAL& x)
+ v i,[i, < iz + X(il) I x(iz)]].

Where u is a variable over individuals. This ability to consider both intensional
and extensional constraints as essentially the same kind of constraint, and to
express them in the same language, is a good example of the power that an
intensional logic has to provide a unified theory of database semantics. In the
section on queries which follows, we give examples of the “definition” in IL, of
English words such as “rehire” (an EMPloyee) , “raise” (a SALary) , and “transfer”
(a DEPT assignment), definitions which use the same concept of explicit quan-
tification over states of the HDB.

6.5.5 Queries. As with database constraints, the inclusion of the state compo-
nent in the historical database model allows us to consider a much broader class
of database queries in a consistent manner. We are similarly motivated, therefore,
to make the following distinction. An extensional database am is a query
whose evaluation depends only on the values in the database with respect to a
single index or state. An intensional d-is a query whose evaluation
depends on the intensions of at least one attribute, that is, on the function from
states to individuals (ICs) that represents that attribute.

It should be apparent that extensional queries are precisely those that static
databases have been concerned with handling, and moreover that these queries

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases * 249

are handled just as well by a historical database. We note, however, that since
the HDB contains, as it were, many static databases indexed by state, it is
possible to ask the same extensional queries with respect to different states and
thus to get potentially different answers. For example, the answer to “What is
Peter’s salary?” with respect to state SZ is “30K,” but with respect to state &
what appears to be the same query of the same database yields the equally
correct (but different) answer “35K.” Thus we see that in order to utilize the
power of the HDB, extensional queries must be more fully specified to indicate
the state at which evaluation is to be performed. In [ll], this process is explained
more fully, and the concept of a variable now, whose interpretation is always the
latest state of the HDB, is discussed.

It is the class of intensional queries in which we are more interested because
these queries utilize the full power of the HDB and show it to be a much closer
model of the real world than a one-dimensional static database. We suggest that
within the context of an HDB we have the potential to answer all of the queries
which were mentioned at the beginning of Section 3. We repeat them here.

“Has John’s salary risen?”
“When was Peter rehired?”
“Did Rachel work for the toy department last year?”
“Has John ever earned the same salary as Peter?”
“Will the average salary in the linen department surpass $30,000 within the next
five years?”

How, for instance, might we handle the query “Has John’s salary risen?” Let
us assume a mechanism for translating this query into the following formula in
IL

3 x[SAL’(now, x) A EMPk(now, John) A AS-SAL(John, X) A RISE’(now, x)]

In order to evaluate this query, we need some mechanism for providing a meaning
to the predicate RISE’. There are two ways that we could do this: either by
providing the denotation of RISE’ via a direct translation from the database,
analogous to the way we defined our primitives (such as SAL’), or by providing
its denotation indirectly, essentially making RISE’ a predicate whose meaning is
derived from the denotations of the basic predicates induced by the database.
This is the course we shall take, as the former method is impractical-it would
have to be updated with each database update. Before we can provide any
definition, we must, of course, decide upon an appropriate meaning for the
English word “rise.” We suggest the following: RISE’ is true of a SALary IC at a
given state i if and only if there is a preceding interval of time culminating in
state i during which the SAL-IC has an everywhere nonnegative derivative (or,
equivalently, is monotonically nondecreasing). Of course we could quibble about
this definition for a while, but that is not the point. The point is that given any
such well-defined semantics for the word, we could express its meaning in IL,.
The suggested definition translates into the IL, meaning postulate:

V x V i [RISE’& X) c-, [SAL’& X) A 3 il V iz V &
[i, 5 iz < is 5 i + x(iz) I x($]]].

We hasten to point out that there is nothing sacred in this definition about the
attribute SAL. In the context of other attributes that in English might meaning-

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

250 - J. Clifford and D. S. Warren

fully be said to “rise,” (e.g., the BALance of a bank account, the BATting-
AVErage of a baseball player), the above meaning postulate could easily be
generalized.

Given this MP, we evaluate the predicate RISE’(i, x) as follows. From emp -r-e1
we see that the SAL-IC associated with John is an IC whose value for the three
known states is as follows. s-1 + I [1 sz 3 30

s3-, 35

The value for all other states is 1. Let us call this function SJ. Then RISE’(i SJ)
evaluated for i = SZ is true (pick Sz as the il which the MP asserts must exist).

As another example, we could define the English verb “rehire” as follows.

V u V i [REHIRE(i, x) f, [EXP!*(i, U) A 3 ir 3 i2
[i, < iz < i A EMP:,(il, U) /\ - EMP:,(iz, u)]]].

That is, it is true at state i that the individual u has been rehired if u is an
EMPloyee at time i, and at some earlier time il was also an EMP, while at some
third time in between i and ii, u was not an EMP.

7. SUMMARY AND FUTURE WORK

In this paper we have espoused the overall philosophy that formal logic has made
and can continue to make important contributions to the understanding and
specification of the semantics of databases. The choice of the logic IL, has been
motivated in this paper by the fact that it incorporates a temporal semantics that
formalizes the concept of a historical database. In [ll], this choice is also
motivated from the perspective of providing a formal definition of an English
query language as a Montague grammar (MG).

Specifically, we have shown how the relational database model can be easily
extended to incorporate the concept of historical relations and, indeed, an entire
historical database, and we have shown how IL, can provide a semantic theory
for this database concept. We have presented both an informal discussion of an
HDB as a cube composed of a time-ordered sequence of flat, static relations, and
a formal description of the relationship between an HDB and the logic IL, and its
model theory. Finally, we have given examples of the power of the historical
database to model real-world semantics more closely than existing database
models. Two such examples were emphasized: the ability to express the semantics
of intend and extensional database constrain@ within the same theory, and
the ability to process intensd and extensional queries.

We believe that the HDB concept is exciting precisely because it suggests the
possibility of formalizing a wide variety of database-semantic issues “under one
roof,” namely, within the precise model-theoretic semantics of IL,. We mention
a number of these issues here.

Montague’s English fragment PTQ [35] is provided with a formal semantics
indirectly, by means of rules for translating expressions in the fragment into IL,
for which a direct model-theoretic semantics is given. In [ll], we present a
technique for describing an English query fragment for relational database
ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases l 251

querying in English, which draws upon Montague’s work and work done subse-
quently by other researchers in logic and linguistic theory within the framework
of MG, especially Bennett [l, 21, Kartunnen [25], and Dowty [15]. In this paper,
we provide a semantics for English questions which takes advantage of the
simplification of real-world semantics inherent in a database, yet which is pow-
erful enough to interpret a useful class of database queries correctly.

The first question that this paper will suggest to many readers is that of
implementation; database theories are almost inevitably, and quite properly,
judged by their practicality. Obviously the picture of each historical relation as a
fully specified cube is an idealization. Even if all of the information in the cube
were known, a direct implementation would be highly redundant. Furthermore,
there may be situations in which the complete history of some attributes may be
unknown or uninteresting to the enterprise. Questions of how to implement these
relations efficiently both for storage and for retrieval, and of how to handle a
mixture of static and historical relations within a single database, are among the
many interesting implementation questions that remain to be studied.

Another area of interest, suggested by our work in defining the translation of
English questions into IL,, is the possibility of interpreting English statements as
d-s&. For example, we could interpret the statement “John earns
30K,” when made by an authorized user, as a command to record this as a fact in
the database with the time-stamp taken from the system clock. As with questions,
intensional logic gives us a framework for providing a formal semantics for an
appropriate fragment of English to serve as a DML to perform such database
maintenance operations as insertion and deletion. Consideration would have to
be given to the semantics of error-correction types of maintenance, that is, the
sorts of commands which mean not that a given fact once true about the world
no longer obtains, but rather that a previous specification of that “fact” was in
error. How do such changes, ignored in this paper, affect the model-theoretic
semantics? Since an update in general represents only partial information about
a state, can we make certain assumptions that will help to further specify that
state? (For example, if Peter’s SALary is respecified, can we assume that his
DEPT remains the same?)

We have incorporated the work presented in this paper into the relational
database model, constrained by the view of data semantics presented by the
entity-relationship model. The question of how to extend other database models,
such as the hierarchical [24], network [12], and functional [45] models, to include
a temporal semantics is another area for future study. Even within the relational
model, the question of other semantic restrictions on the kinds of relations that
make sense, within the context of a formalized temporal semantics, is still wide
open for future study.

The idea of using a database to model hypothetical situations as potential
futures from a given present situation, and thus providing the ability to answer
queries about the implications of such “possible worlds,” is another expansion of
the HDB concept that appears to offer promising applications. The query
suggested earlier in this paper, “Will the average salary in the linen department
surpass $30,000 within the next five years?” is the sort of question that we believe
could be handled by such an organization. Salary raises built into union contracts,

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

252 - J. Clifford and D. S. Warren

cost-of-living increases, projections in costs based on the expected inflation rate,
and so on, are the sorts of applications that a historical database ought to be able
to model. Stonebraker and Keller [47] provide an examination’ of some of these
possibilities from a different perspective.

In the simple model we have presented here, EXISTence is synonymous with
belonging to an entity set, and we have not allowed an entity to be of more than
one sort. We have begun investigating an extension to this model that would
allow entities to fill different (and even multiple) roles at various times, as long
as they still EXISTed as entities in some relation. For example, we could model
people with a relation on scheme PERSON-REL(NAME STATE EXISTS?
GENDER . . .), and then have relations onschemes such as
BORROWER-REL(NAME STATE ISBORROWER? ACCT-# . - .) and
DEPOSITORREL(m sTATE ISDEPOSITOR? ACCT-BAL . . .).
People could fill the&&-ofwtor and/or borrower in any state at will,
indicated by the Boolean-valued IS-{ ROLE) ? attribute, provided they were
said to EXIST in that state in the PERSON relation. Meaning postulates could
assert the IS-A hierarchy (BORROWER IS-A PERSON, etc.), and with what
appear at this point to be minor changes in our scheme for encoding a database
into a logical model the present HDB approach seems to work, and to offer
interesting insights into the semantics of this sort of database model.

Another important area for future work is the nature of the time coordinate in
the HDB model, and the kinds of constraints that particular applications may
wish to make upon the general treatment we have defined. Allowing more
sophisticated continuity assumptions, different assumptions for different attri-
butes, modifying the continuity principle, conceivina of time not as moments but
as partitioned into intervals, and so on, are among the many issues relating to the
temporal semantics that remain to be addressed.

Finally, we note that the last few years have seen a number of researchers,
among them Schmid and Swenson [43], Hammer and McLeod [21], Maier and
Warren [31], and Biller and Neuhold [3], discuss the need for more powerful
database models or languages in order to specify a database semantics that more
closely models the real world. We agree entirely with this overall goal, but view
with some apprehension the proliferatied semantic damn
languages (SDDLs) that are-not. proaided.&lh aformal s.an~~&s. While we -- .-.-- -.--- --.
would not say that IL, 1s the only solution for a clear database semantics, we do
believe strongly that an intensional logic such as IL, can serve as a much-needed
lingua fkmca in which to compare these higher level semantic models and
languages, and even to provide a basis for constructing proofs that demonstrate
their equivalence or differences.

An analogous situation is occurring in the field of artificial intelligence, which
is witnessing the same proliferation of knowledge representation languages
(KRLs): frames [34], KRL [4], PROLOG [27], and RLL [20], to name only a few.
Considerable discussion and often heated arguments have ensued over which
language is better. Hayes [22] expressed much the same sentiment that we have
presented here, arguing that logic can serve as a universal tool for clarity and
comparison.

Naturally, until the semantics of natural languages is more completely under-
stood, artificial languages such as these SDDLs, which are clearly more user-

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Formal Semantics for Time in Databases l 253

oriented than the equally artificial language LL,, are the appropriate kind of
vehicle for users to express their database semantics. But we believe that unless
these languages are provided with a formal model-theoretic semantics, there will
be no basis for making informed judgments about the expressive power of these
languages as a whole, or about the accuracy (or even the precise meaning) of
particular statements in these languages.

ACKNOWLEDGMENTS

The authors would like to thank Albert Croker, Paul K. Harter, David Maier,
and Ed Sciore for many helpful discussions that contributed to clarifying our
ideas and their presentation herein, and the anonymous referees for suggesting
many improvements to a previous version of this paper.

REFERENCES

1. BENNETT, M.R. Some extensions of a Montague fragment of English. Ph.d dissertation, Uni-
versity of California at Los Angeles, 1974.

2. BENNETT, M.R. Questions in Montague grammar. Indiana University Linguistics Club, Bloom-
ington, Indiana, 1979.

3. BILLER, H., AND NEUHOLD, E.J. Semantics of data bases: The semantics of data models. In/
Syst. 3, 1 (1978), 11-36.

4. BOBROW, D.G., AND WINOGRAD, T. An overview of KRL-A knowledge representation language.
Cognitive Science 1, 1 (1977), 3-46.

5. BUBENKO, J.A., JR. The temporal dimension in information modelling. In Architecture and
Models in Data Ruse Management Systems, G.M. Nijssen (Ed.), North Holland, Amsterdam,
1977.

6. CARNAP, R. Meaning and Necessity. University of Chicago Press, Chicago, 1947.
7. CASANOVA, M.A., AND BERNSTEIN, P.A. The logic of a relational data manipulation language.

In Conference Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages (San Antonio, Texas, January 29-31, 1979), ACM, New York, pp. 101-109.

8. CHANG, CL. DEDUCE 2: Further investigations of deduction in relational data bases. In Logic
and Data Bases, H. GaIlaire and J. Minker (Eds.), Plenum Press, New York, 1978.

9. CHEN, P.P.S. The entity-relationship model-Toward a unified view of data. ACM Trans.
Database Syst. I, 1 (March 1976), 9-36.

10. CHURCH, A.L. The Calculi of Lambda-Conuersion. Princeton University Press, Princeton, N.J.,
1941.

11. CLIFFORD, J. A logical framework for the temporal semantics and natural-language querying of
historical databases. Ph.d dissertation, S.U.N.Y. at Stony Brook, 1982.

12. CODASYL DATA BASE TASK GROUP. CODASYL data base task group report. ACM, New
York, 1971.

13. CODD, E.F. A relational model of data for large shared data banks. Commun. ACM 13, 6 (June
1970), 377-387.

14. DOWTY, D.R., WALL, R.E., AND PETERS, S. Introduction to Montague Semantics. D. Reidel,
Dordrecht, Germany, 1981.

15. DOWTY, D.R. Word Meaning and Montague Grammar. D. Reidel, Dordrecht, Germany, 1979.
16. FREGE, G. On sense and reference. In Translations from the Philosophical Writings of Gottlob

Frege, P. Geach and M. Black (Eds.), Basil Blackwell Publisher, 1952.
17. GALLAIRE, H., AND MINKER, J. Logic and Data Bases. Plenum Press, New York, 1978.
18. GALLIN, D. Intensional and Higher-Order Modal Logic. North-Holland, Amsterdam, 1975.
19. GOLDSTEIN, B.S. Constraints on null values in relational databases. Tech. Rep. 80/015, Dep.

Computer Science, State University of New York at Stony Brook, 1981.
20. GREINER, R., AND LENAT, D.B. A representation language language. In Proc. 1st Annual

National Conference on Artificial Intelligence, Stanford Ca. American Ass. for Artificial InteIIi-
gence, Menlo Park, Ca.

21. HAMMER, M., AND MCLEOD, D. The semantic data model: A modehing mechanism for data

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

254 - J. Clifford and D. S. Warren

base applications. In Proc. ACM SIGMOD International Conference on Management of Data
(Austin, Texas, May 31-June 2,1978), ACM, New York, pp. 26-36.

22. HAYES, P.J. In defence of logic. In Proc. 5th International Joint Conference on Artif Intell.,
Cambridge.

23. HOBBS, J.R., AND ROSENSCHEIN, S.J. Making computational sense of Montague’s intensional
logic. Artif Intel1 9, 3 (1977), 287-306.

24. IBM. IMS/36&Application Description Manual. GH-20-0765, IBM, White Plains, New York.
25. KARTUNNEN, L. Syntax and semantics of questions. Linguistics and Philosophy, 1 (1977), 3-44.
26. KLOPPROGGE, M.R. TERM: An approach to include the time dimension in the entity-relation-

ship model. In Proc. 2nd International Conference on Entity-Relationship Approach, Washing-
ton, DC.

27. KOWALSKI, R. Logic for Problem Solving. Elsevier, North-Holland, New York, 1979.
28. LAINE, H., MAANAVILJA, O., AND PELTONA, E. Grammatical data base model. Znf. Syst. 4, 4

(1979).
29. MAIER, D. The Theory of Relational Databases. Computer Science Press, Potomac, Md., 1983.
30. MAIER, D., AND WARREN, D.S. A theory of computed relations. Tech. Rep. 80/012, Dep.

Computer Science, S.U.N.Y. at Stony Brook, 1980.
31. MAIER, D., AND WARREN, D.S. Specifying connections for a universal relation scheme database.

In Proc. ACM SZGMOD International Conference on Management of Data (Orlando, Florida,
June 2-4, 1982), ACM, New York, pp. 1-7.

32. MCCARTHY, J., ABRAHAMS, P.W., EDWARDS, D.J., HART, T. P., AND LEVIN, M.I. LISP 1.5
Programmer’s Manual. MIT Press, Cambridge, 1962.

33. MINKER, J. An experimental relational data base system based on logic. In Logic and Data
Bases, H. Gallaire and J. Minker (Eds.), Plenum Press, New York, 1978.

34. MINSKY, M. A framework for representation knowledge. In The Psychology of Computer Vision,
P.H. Winston (Ed.), New York, 1975.

35. MONTAGUE, R. The proper treatment of quantification in ordinary English. In Approaches to
Natural Language, K.J.J. Hintikka (Ed.), Dordrecht, Germany, 1973.

36. NICOLAS, J.M. First order logic formalization for functional, multivalued, and mutual dependen-
cies. In Proc. ACM SIGMOD International Conference on Management of Data (Austin, Texas,
May 31-June 2, 1978), ACM, New York, pp. 41-46.

37. NICOLAS, J.M., AND GALLAIRE, H. Data base: theory vs. interpretation. In Logic and Data
Bases, H. Gallaire and J. Minker (Eds.), Plenum Press, New York, 1978.

38. NICOLAS, J.M., AND YAZDANIAN, K. Integrity checking in deductive data bases. In Logic and
Data Bases, H. Gallaire and J. Minker (Eds.), Plenum Press, New York, 1978.

39. QUINE, W.V.O. From a Logical Point of View. Harper and Row, New York, 1953.
40. QUINE, W.V.O. Word and Object. MIT Press, Cambridge, Mass., 1960.
41. REITER, R. On closed world data bases. In Logic and Data Buses, H. Gallaire and J. Minker

(Eds.), Plenum Press, New York, 1978.
42. RESCHER, N., AND URQUHART, A. Temporal Logic. Springer-Verlag, New York, 1971.
43. SCHMID, H.A., AND SWENSON, J.R. On the semantics of the relational data model. In Proc. ACM

SZGMOD International Conference on Management ofData (San Jose, Calif., May 14-16,1975),
ACM, New York, pp. 211-223.

44. SERNADAS, A. Temporal aspects of logical procedure definition. InL Syst. 5 (1980), 167-187.
45. SHIPMAN, D.W. The functional data model and the data language DAPLEX. ACM Trans.

Database Syst. 6, 1 (March 1981), 140-173.
46. SMITH, J.M., AND SMITH, D.C.P. Database abstractions: aggregation and generalization. ACM

Trans. Database Syst 2,2 (June 1977), 105-133.
47. STONEBRAKER, M., AND KELLER, K. Embedding expert knowledge and hypothetical data bases

into a data base system. In Proc. ACM SIGMOD International Conference on Management of
Data (Santa Monica, Calif., May 14-16, 1980), ACM, New York, pp. 58-66.

48. ULLMAN, J.D. Principles ofDatabase Systems. Computer Science Press, Potomac, Md., 1980.

Received June 1981; revised June 1982; accepted October 1982

ACM Transactions on Database Systems, Vol. 8, N o. 2, June 1983.

