
A Characterization of Globally Consistent
Databases and Their Correct Access Paths

YEHOSHUA SAGIV

University of Illinois at Urbana-Champaign

The representative instance is proposed as a representation of the data stored in a database whose
relations are not the projections of a universal instance. Database schemes are characterized for which
local consistency implies global consistency. (Local consistency means that each relation satisfies its
own functional dependencies; global consistency means that the representative instance satisfies all
the functional dependencies.) A method of efficiently computing projections of the representative
instance is given, provided that local consistency implies global consistency. Throughout, it is assumed
that a cover of the functional dependencies is embodied in the database scheme in the form of keys.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic; H.2.1 [Database Management]: Logical Design--normal forms, schema and sub-
schema; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval--query
formulation

General Terms: Algorithms, Design, Languages, Theory

Additional Key Words and Phrases: Chase, extension join, functional dependency, null value,
relational algebra, relational database, representative instance, universal relation scheme

1. INTRODUCTION

The universal instance assumption is essential to many papers in design theory
for relational databases. As pointed out in [ll], two different concepts are
included in this assumption. The most basic concept is the universal relation
scheme assumption (also known as the uniqueness assumption [6]). It asserts
that each attribute has a unique role, that is, for any subset of attributes X, there
is (at most) one relationship among the attributes of X. This assumption is made
explicitly or implicitly in many papers in design theory for relational databases.
In particular, it is made in papers dealing with the axiomatization of dependencies
and with synthesis and decomposition of relation schemes.

The second and more controversial concept is the universal instance assump-
tion, that is, the assumption that the relations of a database are the projections
of a single relation over the set of all the attributes. This assumption is needed in
order to define lossless joins [l]. There are two versions of this assumption.

This work was supported in part by the National Science Foundaton under Grant MCS-80-03308.
Author’s present address: Institute of Mathematics and Computer Science, The Hebrew University
of Jerusalem, Givat Ram 91904, Jerusalem, Israel.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1983 ACM 0362-5915/83/0600-0266 $00.75

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983, Pages 266-286

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319983.319988&domain=pdf&date_stamp=1983-06-01

Globally Consistent Databases and Their Correct Access Paths l 267

According to the first, this assumption has to be made only in order to determine
whether a join is lossless, that is, it is only a tool that is used when a database is
designed and when queries are evaluated [ll]. The second version (the pure
universal instance assumption) states that the relations of a database must always
be the projections of a universal instance, and null values have to be used in
order to satisfy this requirement [14, 15, 17, 18, 241.

When a universal instance is assumed, users can formulate queries having in
mind the universal instance rather than the actual relations of the database [161.
If a given query refers to a set of attributes X, then the first step in evaluating
this query is to compute the projection of the universal instance onto X [21].
When the pure universal instance assumption is made, it is sufficient to take any
lossless join over a set of attributes that contains X. However, if the relations of
the database are not the projections of a universal instance, different lossless
joins might give different results [21]. In [ll] this problem is solved by requiring
that the join dependency consisting of all the relation schemes be acyclic. In this
paper we propose an alternative solution. We believe that our solution reflects
the properties of functional dependencies better than the solution given in [ll].
In particular, some of the problems left open in [ll] are handled in our case
without explicitly defining maximal objects [20].

In this paper we assume a universal relation scheme, but not a pure universal
instance. Instead we define the representative instance of a database (see Section
3). The representative instance has been used to determine whether the database
satisfies a set of functional dependencies [13,26]. We believe that the represent-
ative instance correctly describes the information stored in the database even
when the relations are not the projections of a universal instance. As a first step
toward evaluating queries with respect to the representative instance, we address
the following problems.

(1) Under what conditions is the database globally consistent if each relation
is locally consistent? That is, under what conditions does the representative
instance satisfy all the functional dependencies if each relation satisfies its own
functional dependencies?

(2) How can we efficiently compute projections of the representative instance?

Throughout this paper we assume that a cover of the functional dependencies
is embodied in the database scheme in the form of keys (as in [6]). In Section 3
we define the uniqueness condition, and in Section 4 we prove that local
consistency implies global consistency if and only if the database scheme satisfies
the uniqueness condition. In Section 5 we show how to efficiently compute
projections of the representative instance provided that the database scheme
satisfies the uniqueness condition.

2. PRELIMINARIES

2.1 Basic Definitions

We view a relation (cf., [9]) as a finite table with columns, labeled attributes, and
rows, called t&es, that represent mappings from the attributes to their associated
domains. Let p be a tuple of a relation labeled by a set of attributes R. If A E R,

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

268 l Yehoshua Sagiv

then p(A) is the value of p in column A; if S c R, then p[S] denotes the values of
p for the attributes in S. We say that r is a relation ouer a set of attributes R if the
columns of r are labeled by the attributes of R.

We use letters from the beginning of the alphabet (A, B, C, . . .) to denote
attributes, and letters from the end of the alphabet (. . . , X, Y, 2) to denote sets
of attributes. A string of attributes (e.g., ABCD) denotes the set containing these
attributes, and the union of two sets X and Y is written XY.

A relational database scheme over a set of attributes U is a set of ordered
pairs (RI, KI), . . . , (R,,K,) such that Ri C_ U and Ki is a set of (explicit) keys of
Ri. Each Ri is a set of attributes labeling the columns of a relation, and we use it
as the name of the relation (i.e., there are no distinct relations over the same set
of attributes). We call each Ri a relation scheme. The set of FDs (functional
dependencies) that are embodied in Ri is

Fi= {X+ Ri-XlXE Ki}.

We impose the following two conditions on the set of keys Ki for Ri. First, each
Ri has at least one key (which may be Ri itself). Second, no Ki can have two
distinct keys X and Y such that X c Y.

A database is a set of relations rl, . . . , r,, over RI, . . . , R,, respectively, such
that each ri satisfies Fi. That is, a database is the “current value” of the database
scheme. We assume that F = UT==1 Fi is a cover of all the FDs imposed on the
database by the user. In other words, a cover of the FDs is embodied in the
database scheme (in the form of (explicit) keys) as in [6].

The assumption that the FDs are embodied as keys is well justified. It is easier
to enforce an FD that follows from a key than an FD whose left side is not a key.
Consequently, we prefer a design in which all the FDs follow from the keys of the
relation schemes. A priori, we do not require that Fi be a cover of all the FDs of
F+ (i.e., the closure of F) that are defined over the attributes of R,. Hence, the
relation schemes are not necessarily in any normal form, and we can always
synthesize a database scheme that embodies a cover of the given FDs [5].
However, the database schemes that satisfy the uniqueness condition are also in
Boyce-Codd normal form.

2.2 Relations with Null Values

In many cases there is a need to represent partial information in the database. If
we have a relation over the attributes Manager and Department, and Jones is a
manager without a department, then the tuple (Jones, 6) is inserted into this
relation. The value 6 is a special value, called a null value, and it denotes
unknown information. Suppose that there are two managers without a depart-
ment, for example, Jones and Smith. There is no reason to assume that they
manage the same (unknown) department. In order to distinguish the null value
in the tuple (Jones, 8) from the null value in the tuple (Smith, a), we will mark
each null value with a unique subscript and store the tuples (Jones, &) and
(Smith, 62). Null values with distinguishing subscripts are called marked nulls
[15, 181 and are used exclusively in this paper. Two null values are equal only if
they have the same subscript. We say that tuples pl and pz agree on column A,

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths * 269

written ~1 (A) = pz(A), if either both pl (A) and pLp (A) are not null and equal or
both are null and equal.

2.3 The Chase Process

Suppose that a relation r (with null values) is required to satisfy an FD X --, Y.
It is not necessarily correct to argue that r violates X+ Y if it has two tuples that
agree on X and disagree on some columns of Y. Instead, we associate with X +
Y the following FD rule for equating symbols’ of r.

FD rule (for X-t Y). Suppose that r has tuples h1 and ~2 that agree on all the
columns for X but disagree on some columns of Y. Then for all columns A in Y
such that PI(A) # ~z(A),

(1) if p1 has 6, in column A and ~2 has 8; in column A, then replace all occurrences
of Sj in r with &, and

(2) if pl has a nonnull value c in column A and ~2 has a null value 8; in that
column, then replace all occurrences of Si with the nonnull value c.

Suppose that the relation r is required to satisfy a set F of FDs. We can apply
the FD rules for F to r until no more symbols of r can be equated. The relation
obtained in this way is called the chase of r with respect to F, written chase&-),
and it satisfies an FD X -+ Y of F if and only if there is no pair of tuples that
agree on X and disagree on some columns of Y. We say that the relation r
satisfies F if and only if chase&) satisfies F. If r satisfies F, then chaseF(r) is
unique up to renaming of null values [19].

Example 1: Part A. Suppose that F = {A +C,A+D,B+C,CD+B}and
let r be the following relation:

A B C D

1 1 81 82

63 2 1 64
1 65 86 2
2 1 67 1

We apply the FD rule for A + C to the first and third tuples to replace 6~ with
61. Then all occurrences of 61 are replaced with & by applying the FD rule for
B + C to the fourth and first tuples. The result is the following relation:

A B C D

By applying the FD rule for A + D to the first and third tuples, 82 is replaced
with 2. Now 85 is replaced with 1 by applying the FD rule for CD + B to the first

’ Occasionally, we refer to null and nonnull values as symbols.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

270 - Yehoshua Sagiv

and third tuples. Since no more applications are possible, chase&) is

A B C D

1 1 67 2
63 2 1 84
1 1 67 2
2 1 87 1

Clearly, chase&-) (and hence r) satisfies F.

Example 1: Part B. Suppose that we add the FD C + D to Fin Part A. Then
chasep(r) is no longer unique, since 82 can be replaced with either 1 or 2, and
C + D is not satisfied by chase&) (and r).

If r satisfies F, then r also satisfies additional FDs that can be inferred by
Armstrong’s axioms [4]. The closure of a set of attributes X with respect to a set
of FDs F, written XF+, is the set of all attributes A such that X+ A can be derived
from F by Armstrong’s axioms. We can compute X$ in linear time [5]. If F
denotes a cover of all the FDs imposed on the database (i.e., the embodied FDs),
then we usually write X+ instead of XF+.

2.4 Relational Expressions and Extension Joins

In this paper we consider relational expressions over the operators project,
(natural) join, and union (denoted by n, W, and U, respectively). The operands
are the relation schemes RI, . . . , R,. Let (Y be a set of relations rl, . , . , r, for the
relation schemes RI, . . . , R,, respectively, such that each ri satisfies Fi. The value
of E for (Y, written u,(E), is computed by substituting the relations rl, . . . , r,, for
the relation schemes RI, . . . , R,, and applying the operators according to the
usual definitions. (When the join is applied, two tuples are joined on a given
column only if they agree in this column.) Two expressions El and EZ are
equivalent,’ written El = Ez, if for all sets (Y, u, (El) = u, (E2). The expression EP
is contained in El, written Ez c El, if for all sets (Y, u,(Ez) c u, (El). An expression
E has a unique value for the current database; therefore by a slight abuse of
notation we denote this value by E (rather than u,(E), where (Y is the set of
current relations). In particular, if p is a tuple in the value of E for the current
database, then we write p E E.

The expression ~7-1 R,; is an extension join [12] of Ri, if for all 15 j < m, the
set Ri, . . . R,; contains a key of Rc+,. We say that the extension join wF1 Ri, is
ouer the set of attributes Ri, . . . Ri,. Extension joins are a special case of lossless
joins [l].

Example 2. Let (ABC, {A}), (BD, {B}), (CDE, {CD}) be a database scheme.
ABC w BD is an extension join of ABC. Similarly, ABC w BD w CDE is an
extension join of ABC, since ABC contains the key B of BD, and ABCD
contains the key CD of CDE. ABC w CDE is not an extension join, since ABC

’ This notion of equivalence is called strong equiualence in [3].

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths * 271

does not contain any key of CDE (i.e., ABC does not contain CD which is the
only key of CDE) .

3. The Representative Instance

The ultimate goal of designing a database scheme has always been a collection of
relation schemes RI, . . , , R, that are independent, that is, relation schemes that
allow the user to update each relation in the database without having to change
the contents of the other relations. Of course, there might be some semantically
meaningful constraints (e.g., as in [lo]) that do not allow every possible update.
But these constraints should be as limited as possible. We feel that enforcing the
universal instance assumption is too restrictive. Clearly, this assumption can
always be enforced by using marked nulls [16, 181. However, this can be done
only at the expense of applying the chase process to the universal instance
whenever updates are performed on the database. Furthermore, we have to store
many null values that do not provide any information. These null values are
needed only to satisfy the universal instance assumption.

Efficiency is not the only issue. Most relational database systems are not
designed to use the chase process. Therefore, there is a need to develop a theory
for determining correct access paths when the universal instance assumption is
not satisfied. The simplified universal instance assumption of [111 is one possible
solution. Only acyclic database schemes are considered by [111 and it argues that
queries can be evaluated by applying tableau optimization [2] as if there were a
universal instance. We require that database schemes satisfy the uniqueness
condition (defined later), and we show that queries should be evaluated by
performing the union of several lossless joins rather than just one lossless join.
The class of acyclic database schemes and the class of database schemes satisfying
the uniqueness condition are not comparable; that is, there are acyclic database
schemes that do not satisfy the uniqueness condition, and some database schemes
that satisfy the uniqueness condition are cyclic. Whether a database scheme is
acyclic depends only on the set of attributes of each relation scheme. In contrast,
the definition of the uniqueness condition considers both the set of attributes and
the set of FDs of each relation scheme.

In this section we define the representative instance [13, 251 of a database
rl, . . . , r,,. The representative instance is defined for every rl, . . . , r, (even if the
ri)s are not the projections of a single relation). If rl , . . . , r, are the projections of
a universal instance r and the database scheme has the lossless join property,
then r is also the representative instance. In [13, 261 the representative instance
is used to determine whether the database satisfies a set of FDs. We believe that
the representative instance is also a correct representation of all the information
stored in the database, and queries posed about the contents of the database
should be answered with respect to the representative instance.

Let U be the set of all the attributes. A relation ri can be viewed as a relation
over U by adding columns for the attributes in U - Ri that contain distinct null
values. Formally, the augmentation of a relation ri over Ri to a relation over U,
written av(ri), is a minimal relation satisfying the following definition: (IJ] p
agrees with some tuple of ri on Ri, and has distinct null values (that do not appear
in any other tuple) for the attributes of U - Ri}.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

272 * Yehoshua Sagiv

Example 3. Let r be the relation

A C

Cl cz
c3 c4

A relation satisfying the definition of (YABCD (r) is

ABC D

Cl 61 c2 s2

c3 63 c4 84

where 81 P! {cl, ~2, CQ, ~4) for every i.

Consider a database rl, . . . , r,, over relation schemes RI, . . . , R,, and let r’ =
UF1 au(ri). If there are no dependencies, then r’ is the representative instance
of the database rl, . . . , r,. When dependencies are present, the chase process
should be applied to r’. Thus, if the only dependencies are those in the set of FDs
F, then the representative instance is chaseF (r’). The database r-1, . . . , r, satisfies
the set of FDs F if the representative instance satisfies F [13, 261.

Example 4: Part A. Consider the database scheme (ABCD, {A}), (CGDEF,
{CG}), (DEFB, {DEF}), (BCF, {BC}). Note that this database scheme is in
Boyce-Codd normal form. Suppose that the relation for ABCD is {1112}, the
relation for CGDEF is {lllll}, the relation for DEFB is (1111)) and the relation
for BCF is empty. To obtain the representative instance we have to compute the
chase of the following relation:

A B C D E F G

1 1 1 2 61 62 83
s4 s5 1 1 1 1 1
6s 1 & 1 1 1 88

The null value & can be replaced with 1 by applying the FD rule for DEF -+ B
to the second and third tuples, and then 82 is replaced with 1 by applying the FD
rule for BC + F to the first and second tuples. No FD rule can be applied after
that, and so the representative instance is

ABCDEFG

1 1 1 2 61 1 63

64 1 1 1 1 1 1
sg 1 67 1 1 1 6s

This representative instance (and hence also the database) satisfies the FDs that
are embodied in the relation schemes.
ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths l 273

Example 4: Part B. Suppose that the relation for BCF in Part A were (112)
instead of 0. Then the tuple

(83, 1, 1, 810, 611, 2, 812)

would be added to the representative instance, and the representative instance
would violate the FD BC + F.

In both parts of the above example, the projection of the representative
instance onto BCF contains the tuple 111. It may be argued that the tuple 111
over the attributes BCF does not represent correct information, since the relation
for the relation scheme BCF does not contain this tuple. However, if this
argument is accepted, then it follows that two distinct relationships between the
attributes B, C, and Fare stored in the database. One relationship is stored in the
relation for the relation scheme BCF, and the other relationship is obtained by
the extension join CGDEF w DEFB. But this is contrary to the universal relation
scheme assumption, and without this assumption, many basic results (e.g., the
axioms for functional and multivalued dependencies, and the various synthesis
and decomposition algorithms) cannot be used. Therefore, we believe that the
representative instance correctly represents the information stored in the data-
base.

3.1 Computing Total Projections of the Representative Instance

In the remainder of this paper we consider a database scheme (RI, Ki), . . . , (R,,
K,,) and a corresponding database rl, . . . , r,, with a representative instance r. For
simplicity’s sake, we assume that the relations rl, . . . , r,, do not contain null
values. (Databases with nulls are considered in the Appendix.) The user formu-
lates queries having in mind the representative instance r rather than the
individual relations rl, . . . , r,, . Suppose that the user is posing a query that refers
to a set of attributes X. The first step in evaluating this query is to compute the
projection of r onto X. We assume that if the user is referring to the attributes in
X, then he is interested only in tuples of r that have nonnull values for all the
attributes in X. Therefore, the problem addressed in this paper is how to compute
the X-total projection of r, that is,

& 1 p is a tuple in TX(~) without any null value}.

For example, given the database of Example 4, Part A, the ACF-total projection
of the representative instance is (111).

Our approach of computing the X-total projection of the representative instance
in response to a query over X can also be supported by the following argument.
A universal instance I (without nulls) is a containing instance [13] of the database
r-l,..., r, if

(1) I satisfies F, and
(2) for all i we have ri c TR,(R.(I).

Thus, a containing instance is a consistent global state that contains all the
information in the database (and, possibly, more). The information stored in the
database can be viewed as that portion which is common to all the containing
instances of the database. But this common portion is exactly what we compute.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

274 - Yehoshua Sagiv

Figure 1

begin
(1) Y:=x;
(2) while there is a key V E K, such that V 5 Y and Rj p Y do
(3) Y := YR,

end

Formally, if we project each containing instance onto X and then take the
intersection of all these projections, the result is exactly the X-total projection
of the representative instance (provided that the representative instance
satisfies F) .

Example 4 illustrates two surprising facts. First, Part B shows that the repre-
sentative instance does not necessarily satisfy the functional dependencies even
if each relation satisfies the FDs imposed by its keys (this fact was originally
pointed out in [13]). Second, an X-total projection of the representative instance
cannot always be computed by joining several relations of the database and then
projecting onto X. In part A of Example 4, the ABCDF-total projection of the
representative instance is (11121). However, no expression of the form
TX (w,“&) has as its value the relation (11121) over ABCDF. (Here, Ri,, . . . ,
Rim are some of the relation schemes.) In the following sections we characterize
the cases in which the problems indicated by Example 4 do not occur.

3.2 The Uniqueness Condition

Consider a tuple p of Uy==, au(rj) that has originated from the relation ri . Tuple
p is nonnull in the columns of Ri and has distinct nulls in all the other columns.
Therefore, a null value in column A E U - Ri of p can be replaced during the
chase process (either with another null or with a nonnull) only if A E RF [a]. The
problems illustrated in Example 4 are caused by the existence of two different
ways that could potentially replace a specific null value. In order to avoid such
troublesome situations, we require that for each relation scheme Ri, there is a
unique way to derive Rt. We show that the representative instance of the
database rl, . . . , r, satisfies F = UT=1 Fi (for all possible databases rl, . . . , m) if
and only if each relation scheme R: is uniquely derived. We define “uniqueness”
after the following example.

Example 5. Consider the algorithm of Figure 1. This algorithm computes X+
assuming that a cover of F is embodied in the relation schemes. Suppose the
database scheme is (ABC, {A)), (BD, {B}), (CD, {C}). The closure of ABC can
be computed (i.e., derived) in two different ways. Either we use BD and its key
B to obtain ABCD from ABC in line 3 of Figure 1, or we use CD and its key C to
obtain ABCD from ABC.

If the database scheme is (ABC, {A]), (BD, {B}), (CE, (C}), then there is
only one way to compute (ABC)+. BD is used to add D, and CE is used to add E.

A set Y is a superkey of Rj if Y contains X and A such that X E Kj (i.e., X is a
key of Rj) and A E Rj - X. We say that Ri satisfies the uniqueness condition if
for all j # i, the closure (Ri)>-q does not contain any superkey of R;. Note that
the Fis partition F, since there are no distinct relation schemes over the same set
of attributes.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983

Globally Consistent Databases and Their Correct Access Paths * 275

Example 6. For the first database scheme of Example 5, we have R = {A +
BC}, FZ = {B + D}, and F3 = {C + D}. ABC does not satisfy the uniqueness
condition, since CD c (ABC)&..F~ where C is a key of CD and D is another
attribute of CD. In the second database scheme of Example 5, R = {A + BC},
Fz = {B + D}, and F3 = {C + E}. The relation scheme ABC satisfies the
uniqueness condition. In proof, (ABC):-F, = ABCD and ABCD does not contain
any superkey of the relation scheme CE. Similarly, we have (ABC);-F, = ABCE
and ABCE does not contain any superkey of BD.

We now show that the uniqueness condition implies that R t is uniquely derived
(in a sense to be defined soon).

PROPOSITION 1. Suppose that Ri satisfies the uniqueness condition, and Rj c
Rt(j # i). Let X = (R~)&;-F, II Rj. Then X E Kj.

PROOF. First, we observe the following fact.

Fuct 1. During the computation of R: by the algorithm of Figure 1, we use the
FDs of Rj only in the iteration that adds Rj to Y in line 3.

We now show that X must contain a key of Rj. Two cases are considered
depending on whether Rj is added to Y (in line 3) during the computation of R:.

Case 1. Rj is never added to Y in line 3. Thus, R: = (Ri)$-pj, and since Rj s
Rf, a key of Rj is contained in X.

Case 2. Rj is added to Y in line 3. Let Yo be the value of Y at the beginning of
the iteration that adds RI to Y. By Fact 1, YO c (Ri)$-;-F,, and YO contains a key
of Rj (since Yo is the value of Y when Rj is added to it in line 3). Therefore, X
contains a key of Rj.

Since X contains a key of Rj, either X E Kj or X is a superkey of Rj. If X is a
superkey, then the uniqueness condition is violated. Thus, X E Kj. 0

Let X = (Ri)&, n Rj, where R; c Rt. By Proposition 1, X E K;. If B E X, we
say that Rj uses B in Rt (sometimes we say that Rj uses X in Rt). If B E Rj - X,
we say that Rj adds B to R?. We also say that Ri adds all its attributes to Rt and
uses none of them. The following propositions show that if Ri satisfies the
uniqueness condition, then Rf is uniquely derived in the sense that each A E R f
is added by a unique Rj.

PROPOSITION 2. If Ri satisfies the uniqueness condition and Rj c Rt, then
every A E Rj is either used by Rj in Rt or added by Rj to R f (but not both).

PROOF. Immediate from the definitions. Cl

PROPOSITION 3. If Ri satisfies the uniqueness condition, then each A E RF is
added by a unique R, c Rt.

PROOF. Clearly, each A E R? is added by at least one Rj. Suppose that for
some A E Rf there are distinct R, and RP such that both R, and RP add A to R:.
Since R, adds A, there is a key X E Kp such that X c (R~)$-;-F~ and A E R, - X.
Similarly, there is a key Z E Kp such that Z c (Ri)&Fg add A E RP - 2. Consider
a computation of RF by the algorithm of Figure 1.

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

276 * Yehoshua Sagiv

Case 1. q # i and R, is never used in line 3 of the algorithm. Thus, XA c R,
c (Ri)$-FU and so, Ri does not satisfy the uniqueness condition (a contradiction).

Case 2. p # i and RP is never used in line 3. This is similar to Case 1.

Case 3. R, is used in line 3 after RP (this includes the case where p = i, that is,
RP is not used at all in line 3). Let Y’ be the value of Y just before R, is used in
line 3. Since Y’ c (Ri)$-Fy and RP has already been used (i.e., RP c Y’), it follows
that RP C (Ri)$-;-%. But A E R,, and SO, A E (Ri)s-py. Since X c (Ri)$--Fp, X E K,,
andAER,- X, the uniqueness condition is violated by Ri (a contradiction).

Case 4. RP is used in line 3 after R,. This is similar to Case 3.

Since at least one of q and p is different from i, no other case is possible. Cl

4. MAIN THEOREM

Let (RI, KI), . . . , (R,, K,,) be a database scheme, and suppose that the relations
r-1, . . . , r,, of the database are not allowed to have any null values.3 Consider the
following two statements.

(I) For all databases rl, . . . , r,, for (RI, K1), . . . , (Rn, K,,) (i.e., each ri satisfies
Fi), the representative instance satisfies F = L&I Fi.

(II) For all i, the relation scheme Ri satisfies the uniqueness condition.

In this section we prove that I is true if and only if II is true. First, we prove
two lemmas that are needed for the “if” part (which is more difficult to prove).
For this we assume that each R, satisfies the uniqueness condition, and we
consider a database r-1, . . . , r, for (RI, K1), . . . , (R,, K,,). Let r = U~=I au(ri) and
consider the computation of chasep(r). Suppose that p is a tuple of r that has
originated from ri. We say that Rj adds A to p if Rj adds A to Rt. Similarly, Rj
uses A in p if Rj uses A in RF. By the uniqueness condition and Propositions 2
and 3, for each A E R t, there are unique Rj and key X E Kj such that Rjj adds A
to p using X (clearly, A E RI - X).

LEMMA 1. Suppose that all the Ri’s satisfy the uniqueness condition. Let RP
c RF, Y E K,, and A E R,, - Y. If RP either does not add A to R: or does not
use Y in RF, then there is B E Y such that RP adds B to RF.

PROOF. Suppose that RP does not add A to Rt. By Proposition 2, there is a key
VEK,usedbyR,inRtsuchthatAEV.IfY~V,thenYA~V(sinceAEV).
Since A 6Z Y, it follows that the key V properly contains the key Y of RP. But this
is impossible, and so Y - V # 0 and every B E Y - V is added by R, to R [.

Now suppose that RP does not use Y. If RP does not use any key (i.e., p = i),
then RP adds every B E Y. If RP uses another key V E KP , then Y Q V (otherwise,
one key properly contains another key). Therefore, there is B E Y - V that is
added by R,. 0

We assume that chasep(r) is comput,ed by repeatedly applying the FD rules for
the embodied FDs. If an FD rule for Y -+ Ri - Y is applied to tuples ~1 and ~2,
then we also say that ~1 and ~2 are equated using key Y of Ri or, simply, using Ri.

3 In the Appendix, we prove the main result of this section also for databases with nulls.

ACM Transactions on Database Systems, Vol. 8. No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths * 277

LEMMA 2. Suppose that all the R{s satisfy the uniqueness condition. Let r’ be
an intermediate relation in the computation of chaser(r), and let pl, ~2 E r’.

(A) If h,(A) = uz(A) = 6i for some column A, then
(Al) the same Rj adds A to both ~1 and ~2, and the same key X E Kj is

used by Rj in both ~1 and ~2, and
(AZ) ~1 [&I = pz[Rjl.

(B) If PI(A) is nonnull, then pl[Rj] E rj, where Rj is the unique relation
scheme that adds A to pl.

PROOF. Induction on the number of applications of the FD rules that produce
r’ from r.

Basis. Zero applications. That is, r’ = r, and so all null values in r’ are distinct.
Thus, part A is vacuously true. As for part B, let PI be a tuple of r’ that has
originated from r-i. If PI(A) is nonnull, then A E Ri and Ri adds A to ~1. But ~1 [Ri]
E r, , and so part B is true for r ‘.

Induction. Suppose that r” is obtained from r by n - 1 2 0 applications, and
r’ is obtained from r” by a single application. In particular, suppose that r’ is
obtained from r” by equating tuples vl and ~2 using key Y of Rp (i.e., the FD rule
for Y + Rp - Y is applied to v1 and vg in r”). By the inductive hypothesis, the
lemma is true for r”, and we have to show that it is true also for r’.

Part A. Let ~1 and ~2 be tuples of r’ such that PI(A) = pz(A) = Si for some
column A. If ,ul(A) = &A) also in r”, then by the inductive hypothesis, conditions
Al and A2 of the lemma are satisfied in r”, and hence also in r’ (if for some
column B, we have PI(B) =).tz(B) in r”, then p,(B) = u~2(B) also in r’). Thus, we
have to consider only pl, ~2, and an A such that

(1) pl(A) = vi(A) in r”,
(2) uz(A) = vz(A) in r”, and
(3) v,(A) # E?(A) in r” and A E Rp - Y.

(Otherwise, either ,ul(A) = uz(A) in r” or PI(A) # uz(A) in r’.)

Case 1. Rp adds A using Y to both v1 and VZ. Since vi(A) = ul(A) in r” (and
u,(A) is null in r”, since it is null in r’), the inductive hypothesis implies that Rp
adds A using Y also to pl, and

(i) ul[Rp] = vl[R,] in r”.

Similarly, Rp adds A using Y also to p2 and

(ii) pp[Rp] = v2[R,] in r”.

It remains to be shown that pl [Rp] = ,u2[Rp] in r’. Suppose that vi(B) is nonnull
in r” for some B E Rp - Y. Since Rp adds B to vl, part B of the inductive
hypothesis implies that vl[R,] E r, in r”. By (i), pl[Rp] E r, in r”, and so u,(A)
is nonnull in r’, contrary to assumption. Therefore, VI(B) is null in r” for all B E
Rp - Y, and similarly for VZ. Since v1 and vz are equated using key Y of Rp, it
follows that vl[Rp] = v2[Rp] in r’. By (i) and (ii), pl[Rp] = p2[Rp] in r’.

Case 2. R,, does not add A to vl, We show that that this case cannot actually
occur. Let rk be the relation from which v1 has originated. By [8, lemma 1.33, Rp

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

278 * Yehoshua Sagiv

_C Rk+ (since v1 is equated with a9 using R,). Lemma 1 implies that there is B E Y
that is added by RP to vl, because A is not added by RP and A E RP -. Y (by (3)).
Since vl and vz are equated using key Y of RP, it follows that vi(B) = vz(B) in r”.
If VI(B) is null in r”, then by part A of the inductive hypothesis, v,(A) = E?(A) in
r”, contrary to condition (3). If VI(B) is nonnull in r”, then by part B of the
inductive hypothesis, ul[RP] E r, in r”, and, by condition (l), ,ul(A) is nonnull in
r’, contrary to assumption. Thus, u](B) is neither null nor nonnull in r”, and,
consequently, this case cannot occur.

Case 3. RP does not add A to VZ. This is similar to case 2.

Part B. We have to show that if PI(A) is nonnull in r’, then ~1 [Rj] E rj, where
Rj adds A to ~1. If pl (A) is also nonnull in r “, then by the inductive hypothesis,
pl[Rj] E r, in r”, and so pl[Ri] is the same in r” and r’ (since all the columns of
,ul[Rj] in r” are nonnull and cannot be changed). Thus, we have to consider only
the following case:

(a) v*(A) is nonnull in r”,
(b) v2 (A) is null in r “,
(c) p,(A) = vz(A) in r”, and
(d) ul and v2 are equated using key Y of RP and A E RP - Y.

CLAIM 1. vl[RP] E r, in r” (and, hence, also in r’).

PROOF

Case 1. RP adds A to vl. Since vi(A) is nonnull in r” (by (a)), the inductive
hypothesis implies that vl[RP] E r, in r”. Therefore, vl[RP] is nonnull in r”, and
hence, it is the same in r” and r’.

Case 2. RP does not add A to ul. By (d) and Lemma 1, there is a B E Y that is
added by RP to vl. Suppose that vi(B) is null. Since vi(B) = vz(B) in r” (by (d)),
part A of the inductive hypothesis implies that VI(A) = VP(A) in r “. This is
contrary to (a) and (b), and therefore, v](B) is nonnull in r”. By part B of the
inductive hypothesis, vl[RP] E r, in r”. 0

CLAIM 2. RP uses Y in VZ.

PROOF. Suppose that RP does not use Y in ~2. By Lemma 1, there is a B E Y
such that RP adds B to ~2. By (d), YZ(B) = v,(B) in r”, and by claim 1, vl[RP] E
r,; hence, v2(B) is nonnull in r”. By part B of the inductive hypothesis, v2[4,] E
r, in r “. But this is impossible, since v2 (A) is null in r “. 0

By claim 2 and (d), RP adds A to v2 using Y. Therefore, part A of the inductive
hypothesis and (b) and (c) imply that RP adds A to PI using Y, and pl[RP] =
v2[RP] in r”. If 29(C) is nonnull in r” for some C E R,, - Y, then by claim 2 and
part B of the inductive hypothesis, v2(A) is nonnull, contrary to (b). Hence, v2(C)
is null in r” for all C E RP - Y and, by (d) and the FD rule for Y + RP - Y, we
have VI[R,] = vz[R,,] in r’. Thus, pl[R,,] = v2[R,,] = vl[RP] E r, in r’. 0

COROLLARY 1. Suppose that during the computation of chaseF(r), the null in
column A of PI is replaced with a nonnull as a result of equating v1 and u2 using
key Y of R,,. Then RP adds A to pl using Y.
ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths * 279

PROOF. Let ul , VZ, and p1 be the same as in part B of the proof of Lemma 2. We
have shown that R, adds A to pi using Y. q

THEOREM 1. Let (RI, K1), . . . , (R,, K,,) be a database scheme, and suppose
that the relations rl, . . . , r,, of the database do not have any nulls. Then the
following are equivalent:

(I) For all databases rl , . . . , r,, for (RI, K1), . . . , (R,, Kn), the representative
instance satisfies F.

(II) For all i, the relation scheme Ri satisfies the uniqueness condition.

PROOF. (II) implies (I). Suppose that some FD X + Y E Fi is violated in the
representative instance. That is, there are tuples ~1 and ~2 in the representative
instance such that for some A E Y

(1) pl[Xl = ~z[X], and
(2) pl(A) and ~LZ(A) are distinct nonnulls.

CLAIM 1. pl[Ri] E ri and pZ[Ri] E r-i.

PROOF. We prove that ~1 [Ri] E ri (proving that pLp[Ri] E ri is similar).

Case 1. Ri adds A to ~1. By Lemma 2, part B, /pi [Ri] E ri.

Case 2. R; does not add A to ~1. By Lemma 1, there is B E X such that B is
added by Ri to ~1. Suppose that PI(B) is null. By Lemma 2, part A2, PI(A) =
p2(A), since PI(B) = pz(B). This contradiction implies that pl(B) is nonnull and,
by Lemma 2, pl[Ri] E ri. •i

By Claim 1 and condition (1) above, PI(A) = pz(A), since ri satisfies Fi. But this
is contrary to condition (2), and so II implies I.

I implies II. Suppose that some Ri does not satisfy the uniqueness condition.
That is, there is an Rj(j # i), a key X E Kj, and an attribute A E Rj - X such that
XA _C (RI)&r,. We have to show that there are relations rl , . . . , r, (without nulls)
that satisfy R, . . . , F,, respectively, such that the representative instance does
not satisfy F. We choose rl, . . . , r,, as follows. For k # j, each rk has exactly one
tuple that maps all the attributes of Rk to 1. The relation rj has exactly one tuple
that maps A to 2 and each attribute in Rj - A to 1. Let r = U&l (Y&k), and let
pk be the tuple of r that has originated from rk. We apply the chase process to r
using only the FD rules for F - F; and tuples)& such that k # j. Let r’ be the
resulting relation. In r’ we have pi(B) = 1 for all B E (Ri)$-r,. Therefore, tuples
pz and pj of r’ violate X + A. Clearly, if we have a violation of X -+ A in r’, then
this violation exists also in the representative instance, and so the proof is
complete. 0

5. COMPUTING TOTAL PROJECTIONS OF THE REPRESENTATIVE
INSTANCE

Suppose that (RI, K1), . . . , (R,, K,) is a database scheme such that each Ri
satisfies the uniqueness condition, and let X be a set of attributes. (We still
assume that the relations of the database do not have null values.) In this section
we show how to construct in polynomial time an expression E whose value is the
X-total projection of the representative instance. The expression E is of the form

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

280 - Yehoshua Sagiv

U; rx(Ej), where each E; is an extension join. Among all the expressions of this
form whose value is the X-total projection of the representative instance, the
expression E is minimal in both the number of extension joins and the total
number of join operators.

Let r = UiZI au(r),), and 1-1 E chaseF(r) be a tuple that has originated from ri.
Consider the set

S = {Rj 1 Rj adds A to p and p(A) is nonnull}.

By Lemma 2, the tuple p is nonnull exactly in the columns of P = Rji . . . Rjm,
whereS= {Rj,,..., Rj,,) . Let R/, and Rjq be distinct members of S. Hy Corollary
1 and Lemma 2, the columns of or. for the attributes added by RjO become nonnull
as a result of a single application of an FD rule for some FD of Ri,, and similarly
for Rjq. Therefore, the columns of both Rj, and Rjq cannot become nonnull
simultaneously (because Rjn and RjV add distinct attributes). Consequently, let

Rj,, Rjl, . . . 7 Rj”, be an ordering of the elements of S such that ifp < q, then /.l[Rj,S]
becomes nonnull before p[Rjq]. Note that j, = i.

LEMMA 3. w?=~ Rj& is an extension join of Ri, and p[P] E wF=:=~ Rj&.

PROOF. Consider p just before p[Rj,] (for some 1 < p 5 m) becomes nonnull.
Let p(B) be nonnull, and suppose that Rj, adds B to R:. By Lemma 2, p[Rjq] is
nonnull, and, so, q < p. Therefore, the nonnull columns of p are Rj . . . Rjp-, . By
Corollary 1, p[Rjp] becomes nonnull as a result of applying some FD rule for an
FDofRjP,andsoYcRj,... Rjn-, for some key Y of Rjp. Thus, wF=:=~ Rjfi is an
extension join (of Ri).

Now consider p at the end of the chase process. By Lemma 2, p[Rj&] E rjh for
every 1 5 k 5 m, and p is nonnull exactly in the columns of P= Rj, . . . Rj”, .
Therefore, p[P] E MT, Rj*. Cl

Lemma 3 states that the nonnull portion of any tuple in the representative
instance is in some extension join. Conversely, if w$, Ri, is any extension join and
p E w:=l Ri,, then there is a tuple v in the representative instance such that v[Ril
. . . Ri,] = p. Therefore, we have the following corollary.

COROLLARY 2. If all the Ri’s satisfy, the uniqueness condition, then the X-total
projection of the representative instance is given by the expression Uj ox,
where each Ej is an extension join over a set of attributes containing X.

In the sequel, an extension join over a set of attributes containing X is called an
extension join spanningx. The expression E of Corollary 2 might have redundant
subexpressions. We now show how to minimize it. Clearly, there is an extension
join spanning X of Rj, only if X c RA. Furthermore, if El and Ez are two extension
joins spanning X such that every operand of E, is also an operand of Ez, then
TX(E~) c TX(E~). Therefore, we need to consider only minimal extension joins
spanning X of Rj,, that is, extension joins 14~~ Rj, spanning X such that the
following is true. There is no extension join spanning X of Rj, whose set of
operands is a proper subset of (Rj,, . , . , Rj”,}.

LEMMA 4. If X c R f, and RI, . . . , R, satisfy the uniqueness condition, then
the minimal extension join spanning X of Ri is unique and can be found in
linear time.
ACM Transactions on Database Systems, Vol. 8, No. 2. June 1983.

Globally Consistent Databases and Their Correct Access Paths 281

begin
(1) s:=ca;

(2) Y:=x;
(3) while there is an R, such that R, P S and R, adds some A E Y to R: do

begin
(4) s := s u (R,);
(5) Y := YR,

end
end

Figure 2

PROOF. The algorithm of Figure 2 computes a set S of relation schemes that
must be included in any extension join spanning X of Ri. The idea is that S must
contain any Rj that adds an attribute A E X to Rt and, recursively, if Rh E S,
then S includes also every R, that adds an attribute of Rh. Now consider an
ordering Rj,, . . . , RjP of the elements of S such that if k < m, then RI,< is used
before Rj”, in line 3 of Figure 1 during the computation of Rt. (Note that j, = i.)

CLAIM 1. w”,=, Rjh is an extension join (of R,).

PROOF. Let V = Rj, . . . Rj*,, and let Y be the key used by Rj”,+, in Rf (1 5 m
c p). Consider an attribute B E Y, and suppose that R, adds B to Rt. R, must
have been added to S in line 4 of Figure 2, since Rjm,,, E S. Further, R, must be
used before Rjm2+, during the computation of R:. Therefore, if B E Y, then B E V
and, so, wf=l Ri, is an extension join. 0

The algorithm of Figure 2 can be implemented in linear time using a data
structure similar to that used in [5]. Similarly, the ordering of the elements of S
can be determined in linear time.

We have shown that we need to consider only minimal extension joins spanning
X of those Rj such that X c Rf. NOW suppose that Ei and Ej are minimal
extension joins spanning X of Ri and Rj, respectively. The following lemma
implies that if Ri is an operand of Ej then rx(Ej) s nx(E(~i).

LEMMA 5. If Ri is an operand of Ej, then every operand of Ei is also an
operand of Ej.

PROOF. Apply the algorithm of Figure 2 to X and Ri, and let Ri,, . . . , R,P be the
order in which the elements of S are added in line 4. We prove by induction on
k that XRi, * * 4 Ri, c V and Ri, is an operand of Ej, where V is the set of attributes
in Ej.

Basis. k = 0. Obvious.

Induction. Suppose that R, is not an operand of Ej (i.e., ik # i), and denote ik
by q. Since R, is added after Ri,, . . . , Ri,-, in line 4, R, adds some B E XRi, . . .
Ri,-, to Rt using a key Y, that is

Yc(Ri)$-F, and BER,- Y. (1)

By the inductive hypotheses, B E V. Since Ej is an extension join of Rj that does
not include R, as an operand, it follows that

V C (Rj)&F, (2)
ACM Transactions on Database Systems. Vol. 8. No. 2, June 1983.

282 - Yehoshua Sagiv

begin
(1) w:=ca;

Figure 3

(2) Let T = {R, 1 X C R:);
(3) for every R, E Tdo

begin
(4) let E, be the minimal extension join spanning X of R,;
(5) if there is no R, E T(j # i) that is an operand of E, then
(6) add E, to W
(7) else remove R, from 2’

end,
(8) let W=(E,,...,E,};
(9) return the expression UF 1 T,Y (E,)

end

and so B E (Rj)$-Tq. In order to derive a contradiction, it remains to be shown
that Y c (Rj)$-F*, since it implies that RJ violates the uniqueness condition. Since
Ri is an operand of Ej, we have Ri c V, and it follows from eq. (2) that Ri G
(Rj)$-Fq. Therefore, we also have

(J&)&F, c (Rj)S-Fg (3)

and by eq. (l), Y c (R~)&F~. q

THEOREM 2. Let (RI, KI), . . . , (R,, K,,) be a database scheme such that each
Ri satisfies the uniqueness condition, and suppose that the relation rl, . . . , r, of
the database do not have any nulls. An expression whose value is the X-total
projection of the representative instance can be found in O(n2) time, where n is
the space needed to write down the database scheme.

PROOF. The algorithm for constructing the expression is given in Figure 3. For
a given value of Z’, we define E(7’) = {Ek 1 Ek is the minimal extension join
spanning X of Rk and Rk E 2’). Let F(T) be the union of all extension joins in
E(T) after projecting them onto X. Using Lemma 5, we can easily prove by
induction that for all values of T obtained in line 3, F(T) = F(TO), where To is the
initial value of T. By Corollary 2 and Lemma 4, the value of F(TO) is equal to the
X-total projection of the representative instance. The expression returned by the
algorithm of Figure 3 is F(Tf), where Tf is the final value of T. Thus the algorithm
returns an expression whose value is the X-total projection of the representative
instance.

By Lemma 4 and [5], the algorithm of Figure 3 can be implemented to run in
O(n2) time. Cl

An SPJ expression is any relational expression consisting only of the operators
select, project, and join. A union of SPJ expressions is any relational expression
of the form Uj=l Pi, where each Pj is an SPJ expression.

COROLLARY 3. Among all unions of SPJ expressions whose value is the X-
total projection of the representative instance, the expression returned by the
algorithm of Figure 3 is minimal in both the number of union operators and the
total number of join operators.
ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths - 283

PROOF. The expression returned in line 9 is nonredundant in the sense that if
any subexpression of the form ~r((Ej) is removed from the union, then we can
find relations rl, . . . , r, for which the value of the resulting expression is not the
X-total projection of the representative instance. In proof, consider the following
r-l,..., r,. For each operand Ri of Ej, the relation ri has exactly one tuple with 1
in every column; all the other relations are empty. Clearly, the value of Ej is a
relation with exactly one tuple that has 1 in every column. All the other extension
joins have at least one empty relation, and so their value is the empty relation.
Thus, removing n-x(Ej) changes the value of the expression from a relation with
one tuple to the empty relation. By [23, theorem 51, if U>I rx(Ej) is nonredun-
dant, then it is minimal in the number of union operators. The same theorem of
[23] also implies that UFI nx (Ej) is minimal in the total number of join operators,
since each rx(Ej) is a minimal SPJ expression (because each relation scheme has
at most one occurrence in Ej, and the relation ri for each Ri can be chosen
independently of the other relations). 0

Example 7. Suppose that the attributes are P(project), D(department),
M(manager), L (location), and A (assistant), and the database scheme is (LDP,
{LDI), @PM, VW), GM4 {LW).

Intuitively, the database scheme describes an appliction in which each project
belongs to several departments and is carried out in several locations, but a
department can have only one project in each location. In each department
participating in a project, there is a manager responsible for that project. Each
manager has an assistant in each location. These relation schemes satisfy the
uniqueness condition.

Suppose we want to compute the total projection of the representative instance
onto LM. After line 2 of Figure 3 is executed, T = (LDP, LMA). The minimal
extension join spanning LM of LDP is LDP w DPM, and this extension join is
added to Win line 6. The minimal extension join spanning LM of LMA is LMA,
and it is also added to W in line 6. Thus, the expression for the LM total
projection of the representative instance is ?V,M(LDP W DPM) U TLM(LMA).

The result of the above expression is all tuples (I, m) such that either manager
m has an assistant in location 1 or manager m manages some project in location
1. Considering the fact that there might be partial information (e.g., a manager
with a project in a location where he does not have an assistant, or a manager
with an assistant in a location where he does not have a project), the correct
answer is indeed given by the above expression.

6. CONCLUSIONS

We have proposed the representative instance as a measure of the data stored in
the database, and we have characterized, in terms of the uniqueness condition,
the database schemes for which the representative instance always satisfies the
functional dependencies. The uniqueness condition can be viewed as an extension
of Boyce-Codd normal form, since it removes interrelation anomalies in the sense
that each relation can be updated independently of the contents of the other
relations without violating global consistency. (It is an extension of Boyce-Codd
normal form, since a relation scheme that satisfies the uniqueness condition is

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

284 l Yehoshua Sagiv

also in Boyce-Codd normal form.) This condition is much less restrictive than
the one given in [7], and we believe that many practical applications satisfy it.
We have also shown how to efficiently compute total projections of the repre-
sentative instance if the uniqueness condition is satisfied.

In [22] we have dealt with database schemes that do not satisfy the uniqueness
condition. We have shown that the representative instance can be guaranteed to
satisfy the functional dependencies if the modified foreign-key constraint is
imposed on the database. The modified foreign-key constraint is less restrictive
and semantically more meaningful than imposing the existence of a universal
instance. Under the modified foreign-key constraint, total projections of the
representative instance can be computed by performing the union of several
extension joins.

APPENDIX. DATABASES WITH NULLS

We now consider databases that may have (marked) nulls. Each null 8~ may
appear in several relations, in each relation 8k may appear in several tuples, and
in each tuple & may appear in several columns. When null values are allowed in
the relations rl, . . . , r, of the database, we should compute chaseF,(ri) (for all i)
after every update in order to check that each ri satisfies Pi. However, if 6k

appears in more than one relation and during the chase process it has to be
replaced with another symbol s, then all occurrences of Sk (in all the ri)s) must be
replaced with s. Therefore, chasep, (r,), . . . , chaseF” (m) must be computed simul-
taneously in the following way. We start with rl, . . . , r,, and as long as there is
an FD rule for some Fi that can be applied to ri, we apply that FD rule as follows.
If the FD rule implies that & should be replaced by the symbol s, then all
occurrences of 6k in all the ri)s are replaced with s. The chase process terminates
when for all i, no FD rule for Fi can be applied to ri. We still denote the relation
ri at the end of this process by chaseFz(ri). Our definition for the satisfaction of
functional dependencies still holds, that is, r, satisfies Fi if chaseF,(ri) satisfies Fi.
Essentially, this definition means that the following two statements are equiva-
lent.

(1) For all i, the relation ri satisfies Fi.
(2) There is a way to replace in rl, . . . , r, all occurrences of each & by some

constant c and obtain relations r:, . . . , rk (without nulls) such that for all
i, the relation rl satisfies Fi.

THEOREM 3. Let (R,, K1), (R,, K,,) be a database scheme. Then the
following are equivalent:

(I) For all databases r~, . . . , r,, for (RI, Kl), . . . , (R,, K,,) (i.e., each ri
satisfies Fi), the representative instance satisfies F.

(II) For all i, the relation scheme Ri satisfies the uniqueness condition.

PROOF. The proof of 1 implies II is the same as that of Theorem 1. For the
proof of II implies I, we observe the following. If we replace each ri by chaser (ri),
and then replace all occurrences of each null value by a new distinct constant
(that appears nowhere else) then, by Theorem 1, the new representative instance
does not violate any FD. In the new representative instance we can replace back

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

Globally Consistent Databases and Their Correct Access Paths * 285

each new constant by its corresponding null value, and the result is the repre-
sentative instance of the original database (which, of course, does not violate any
FD). 0

When null values are allowed in the relations of the database, it is not clear
anymore that an X-total projection of the representative instance should be
computed in response to a query. The nulls that are stored in the database by the
user seem to convey information that might be of interest to the user (especially
if the same null appears in many places). Therefore, we modify our definition of
the X-total projection to include all tuples in the projection onto X consisting of
either constants or nulls that appear in the relations of the database. With the
new definition in mind, we can now use the results of Section 5 to compute an
expression for the X-total projection of the representative instance.

REFERENCES

1. AHO, A.V., BEERI, C., AND ULLMAN, J.D. The theory of joins in relational databases. ACM
Trans. Database Syst. 4,3 (Sept. 1979), 297-314.

2. AHO, A.V., SAGIV, Y., AND ULLMAN, J. D. Efficient optimization of a class of relational
expressions, ACM Trans. Database Syst. 4, 4 (Dec. 1979), 435-454.

3. AHO, A.V., SAGIV, Y., AND ULLMAN, J.D. Equivalences among relational expressions. SIAM. J.
Cornput. 8, 2 (May 1979), 218-246.

4. ARMSTRONG, W.W. Dependency structures of database relationships. In Proc. ZFZP 74, North
Holland, Amsterdam, 1974, pp~ 580-583.

5. BERRI, C., AND BERNSTEIN, P.A. Computational problems related to the design of normal form
relational schemas. ACM Trans. Database Syst. 4, 1 (March 1979), 30-59.

6. BERNSTEIN, P.A. Synthesizing third normal form relations from functional dependencies. ACM
Trans. Database Syst. I, 4 (Dec. 1976), 277-298.

7. BERNSTEIN, P.A., AND GOODMAN, N. What does Boyce-Codd normal form do? In Proc. Int.
Conf. on Very Large Data Bases, Montreal, Canada, 1980, pp. 245-259.

8. BISKUP, J., DAYAL, U., AND BERNSTEIN, P.A. Synthesizing independent database schemas. In
Proc. ACM-SIGMOD Int. Conf. on Management of Data, Boston, 1979, 143-151.

9. CODD, E.F., A relational model for large shared data banks. Commun. ACM 23, 6 (June 1970),
377-387.

10. CODD, E.F. Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4,4 (Dec. 1979), 397-434.

11. FAGIN, R., MENDELZON, A.O., AND ULLMAN, J.D. A simplified universal relation assumption
and its properties. ACM Trans. Database Syst. 7,3 (Sept. 1982), 343-360.

12. HONEYMAN, P. Extension joins. In Proc. Znt. Conf. on Very Large Data Bases, Montreal,
Canada, 1980, pp. 239-244.

13. HONEYMAN, P. Testing satisfaction of functional dependencies. J. ACM 29, 3 (July 1982), 668-
677.

14. HONEYMAN, P., LADNER, R.E., AND YANNAKAKAIS, M. Testing the universal instance assump-
tion. Znf Proc. Lett. 20, 1 (Feb. 1980), 14-19.

15. KORTH, H.F. A proposal for the SYSTEM/U query language. Unpublished memorandum,
Stanford Univ., Stanford, Calif., 1980.

16. KORTH, H.F., AND ULLMAN, J.D. System /II: A database system based on the universal relation
assumption. In Proc. XPZ Conf, Stony Brook, N.Y., June 1980.

17. LIEN, Y.E. Multivalued dependencies with null values in relational data bases. In Proc. 5th Znt.
Conf: on Very Large Data Bases, Rio de Janeiro, Brazil, 1979, pp. 61-66.

18. MAIER, D. Discarding the universal instance assumption: Preliminary results. In Proc. XPZ
Conf., Stony Brook, N.Y., June 1980.

19. MAIER, D., MENDELZON, A.O., AND SAGIV, Y. Testing implications of data dependencies. ACM
Trans. Database Syst. 4,4 (Dec. 1979), 455-469.

20. MAIER, D., AND ULLMAN, J.D. Maximal objects and the semantics of universal relation data-

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

286 - Yehoshua Sagiv

bases. Tech. Rep. 80-016, Dept. Computer Science, State Univ. New York at Stony Brook, Stony
Brook, N.Y., Nov. 1980.

21. OSBORN, S.L. Towards a universal relation interface. In Proc 5th Int. Conf. on Very Large Data
Bases, Rio de Janeiro, Brazil, 1979, pp. 52-60.

22. SAGIV, Y. Can we use the universal instance assumption without using nulls? In Proc. ACM-
SIGMOD ht. Conf. on Management of Data, Ann Arbor, Mich., April 1981, pp. 108-120.

23. SAGIV, Y., AND YANNAKAKIS, M. Equivalences among relational expressions with the union and
difference operator. J. ACM 27,4 (Oct. 1980), 633-655.

24. SCIORE, E. The universal instance and database design, Tech. Rep. TR 271, Dept. Elec. Eng.
and Comp. Sci., Princeton Univ., Princeton, N.J., June 1980.

25. VASSILIOU, Y. A formal treatment of imperfect information in database management. Tech.
Rep. CSRG-123, Univ. Toronto, Nov. 1980.

26. VASSILIOU, Y. Functional dependencies and incomplete information. In Proc. ht. Conf. on Very
Large Data Bases, Montreal, Canada, 1980, pp. 260-269.

Received August 1981; revised August 1982; accepted August 1982

ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983.

