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This paper presents and analyzes algorithms for parallel processing of relational database operations 
in a general multiprocessor framework. To analyze alternative algorithms, we introduce an analysis 
methodology which incorporates I/O, CPU, and message costs and which can be adjusted to fit 
different multiprocessor architectures. Algorithms are presented and analyzed for sorting, projection, 
and join operations. While some of these algorithms have been presented and analyzed previously, we 
have generalized each in order to handle the case where the number of pages is significantiy larger 
than the number of processors. In addition, we present and analyze algorithms for the parallel 
execution of update and aggregate operations. ? 
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1. INTRODUCTION 

Research on algorithms for database machines which support massive parallelism 
in tightly coupled multiprocessor systems has, for the most part, been 
“architecture directed.” That is, database machine designers usually begin by 
designing what they consider to be a good architecture and only afterward 
develop the algorithms to support database operations using the basic primitives 
of their architecture. As an example consider associative disks (or logic-per-track 
devices) [14] from which RAP [13], RARES [12], CASSM [16], and to some 
extent, DBC [2] are derived. The basic design goal of the associative disk design 
was the efficient execution of the selection operation to select records which 
satisfy a certain criterion. Given this building block, other relational database 
operators such as join, project, and update can be implemented with varying 
degrees of success (see [7]). In general, this is done by combining t,he processing 
capabilities of the host with those of the back-end database machine. The 
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designers of RAP recognized the limitations of the pure associative disk design 
and added interconnections between the processing elements to facilitate pro- 
cessing of certain interrelation operations such as join. On the other hand, the 
designers of the DBC started with the recognition that an entire database could 
never be stored on logic-per-track devices in a cost-effective manner. Conse- 
quently, they concentrated on designing a machine to facilitate the use of indices 
so that moving head disks with a processor per head instead of a processor per 
track could be utilized efficiently. 

It is our thesis that for a database machine design to be “successful,” the 
following design procedure must be followed. First, a thorough study of algorithms 
for all the operations to be supported by the machine must be undertaken. Next, 
the algorithms must be analyzed in terms of primitive operations, such as read a 
block of data, send a message, and sort a block of data. Finally, various hardware 
organizations must be examined to determine their suitability for the implemen- 
tation of the algorithms for all the operations. It will most likely be necessary to 
repeat this process so that the final machine organization can be implemented 
within certain cost boundaries. 

It is certainly the case that this procedure cannot be used by every computer 
system designer. It may be the case that a priori information about the makeup 
of programs to be executed is not available, or that the information is of such 
breadth as to render it useless. However, storage structures used in relational 
databases and the relational operators are well understood, thereby enabling 
relational database machine designers to follow this proposed course of action. 

How are the different algorithms to be evaluated? There are two possible 
approaches that one could adopt. The first is to use a general-purpose machine 
with capabilities to support any conceivable algorithm. This would enable the 
comparison of the various algorithms using a uniform set of assumptions. Alter- 
natively, one could specify the “ideal” machine organization for each algorithm. 
In this approach each algorithm’s execution would attain its optimal performance. 
However, comparing the performance of two algorithms for the same operator 
would be considerably more difficult than with the general-purpose machine 
approach. 

In either case the evaluation of the algorithms must be sensitive to the following 
two points: 

(1) costs of performing all aspects of the computation, including processing, 
communication, and I/O costs; 

(2) performance of the algorithms when the number of available processors is 
smaller than the desirable number of processors and the amount of “main 
memory” available is less than the size of the relations being processed; 
examination of performance means that the algorithms must be external. 

In this paper we describe and analyze algorithms for the relational operators 
using the general-purpose machine approach. We chose to follow this route for 
two reasons. First, by comparing the algorithms in the general-purpuse machine 
approach we felt that we would develop a better understanding of the strengths 
and weaknesses of the various algorithms. Second, since the machine model we 
selected is very similar to DIRECT [6], this approach gave us an opportunity to 
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compare the performance of the algorithms used by DIRECT with alternative 
algorithms for each of the relational operators without going to the trouble of 
actually implementing these algorithms in DIRECT. 

While we feel that this paper makes a number of contributions to the database 
machine literature, it does, however, have several limitations. First, the use of 
indices as a tool for implementing algorithms for complex relational operators 
has not been explored. While it seems feasible to use indices in a parallel algorithm 
for execution of the selection operation (something which we failed to realize in 
the design and implementation of DIRECT), their use in parallel algorithms for 
complex operations appears to be a very difficult problem. Consider, for example, 
a complex relational query comprised of several selection operations and a join 
operation. If indices are to be used to process the join, these indices must be 
created by the multiple processors being used to execute each of the selection 
operations. The problem of synchronizing access to the index without completely 
serializing the actions of the processors executing in parallel is a very difficult 
problem, one that we have not been able to solve. 

A second limitation is that we have ignored the impact of concurrency control 
and recovery on the performance of the parallel update algorithms described in 
Section 4. This is an area of research we are currently pursuing. 

In Section 2 we describe the properties of the multiprocessor organization used 
for the evaluation of the algorithms. In Section 3 we introduce the analysis 
techniques and assumptions that we use to evaluate the different parallel algo- 
rithms. Parallel algorithms for update, sorting, projection, join, and aggregate 
operations are presented and evaluated in Section 4. Our conclusions and areas 
for future research are discussed in Section 5. 

2. A GENERAL MULTIPROCESSOR ORGANIZATION 

The organization of the multiprocessor used for the evaluation of our parallel 
algorithms consists of the following components: 

(1) a set of general-purpose processors, 
(2) a number of mass storage devices, 
(3) an interconnection device connecting the processors to the mass storage 

devices via a high-speed cache. 

Such an organization is shown in Figure 1. The processors are responsible for 
executing relational database operations and operate independently. Therefore, 
the processors form a multiple instruction stream, multiple data stream (MIMD) 
machine. Since the multiprocessor organization is intended to serve as a back- 
end database machine, one of the processors is chosen to act as an interface to a 
host processor (the processor with which a user interacts). It is the responsibility 
of this processor to also act as controller to coordinate the activities of the other 
processors. After a user submits a query for execution, the host will compile the 
query and send it to the controller for execution on the database machine. 

The memory hierarchy consists of three components. The top level consists of 
the internal memories of all the processors. Each processor’s local memory is 
assumed to be large enough to hold both a compiled query and three pages of 
data. At the bottom level of the memory hierarchy are the mass storage devices 
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Fig. 1. Organization of a generalized multiprocessor. 

used to hold the relations in the database. The middle level of the hierarchy is a 
disk cache which is addressable in page units. A page of a relation is the unit of 
transfer between all levels of the memory hierarchy. 

The bottom two levels of the memory hierarchy are connected together in a 
way that allows for data transfer between each mass storage device and any page 
frame in the disk cache. The top two levels of the hierarchy are connected 
together by an interconnection device with the following two properties. The first 
is that several processors can read or write a different page of the disk cache 
simultaneously. The second is the ability to broadcast the contents of a page 
frame of the disk cache to any number of processors. Note that such an organi- 
zation may not be cost effective and we are not advocating it in this paper. Our 
purpose is merely to use it to describe and evaluate algorithms. 

A final and very important point is that both the total memory of the processors 
and the size of the disk cache are generally not large enough to contain a whole 
relation. Therefore we cannot assume that a whole relation can be read from 
mass storage to either the processor’s local memory or the disk cache before 
processing begins. Accordingly, I/O costs become a significant factor in the 
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evaluation of the various algorithms. One consequence of this (very realistic) 
assumption is that all the algorithms employed must be external. 

3. ANALYSIS PARAMETERS 

In this section we describe the parameters used in the analyses of the various 
algorithms. We have chosen to represent fixed costs by capital letters. Other 
parameters (for example, the number of pages to be read) are represented by 
lowercase letters. We assume that data are moved and processed by page units. 
A full page contains lz tuples; C is the cost of a simple operation such as comparing 
two attributes or performing an addition; and the cost of moving a tuple inside a 
page is V time units. The basic tasks used in evaluating the performance of our 
algorithms are 

(1) Communication. Cost. In this architecture transfer of pages are considered 
I/O operations. In order to read or write a page, a processor must request a page 
frame number in the cache from the controller. We term messages exchanged for 
this purpose as “I/O related messages.” The cost of such messages is denoted by 
I?,,. The remaining communication cost of an algorithm can be measured by the 
number of control messages sent. Examples of control messages are messages 
necessary to allocate processors to an operation, synchronization messages indi- 
cating the end of a phase, and the initiation of a new phase during the execution 
of an algorithm. Since we feel that the number of control messages is small 
compared with the number of I/O related messages and since these messages are 
short (they contain only a few words of information), we are neglecting them 
when we compare the cost of several algorithms. While this may not be a 
reasonable assumption, the cost of controlling cooperating processors is an 
unexplored (and difficult) area requiring additional research. 

(2) I/O Cost. A read request moves a page into a processor’s memory from the 
cache (fetching it first from mass storage if necessary). A write request always 
moves a page residing in a processor’s local memory to the cache. When a 
processor wants to read or write a page, it sends a request message to the 
controller specifying the relation name and the page number. The controller 
replies by sending to the processor a cache frame number. We denote the cost of 
a mass storage to cache transfer by R, and the cost of a cache to processor 
transfer by R,. An upper bound for the read cost is achieved by assuming that all 
read operations are from the mass storage device (i.e., the cost of any read is R, 
+ R,). A lower bound results from assuming that all read operations are from the 
cache, in which case a read cost is R,. To simplify our analysis we assume a 
certain hit ratio for the cache, denoted by H. Since the entire relation is to be 
referenced in processing a query (recall that there are no indices), the reference 
string is known and pages can be prefetched from the mass storage devices to the 
disk cache. This can result in a high value for H. Given the values for R,, R,, H, 
and Cmsg, we can calculate C,, the average cost of a read, by a processor: 

C, = HR, + (1 - H) (R, + R,) + ZC,,. 

Similarly, in order to calculate the average cost to write a page, we assume that 
H’ is a fraction describing the amount of time a free page frame will be available 
in the cache during a write operation. Thus C,, the average cost of writing a 
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page, is 

C, = H’R, + (1 - H’) (R, + IL) + ZC,,. 

In order to analyze the algorithms in Section 4 we were forced to assume that the 
cache and underlying I/O system have sufficient bandwidth to permit p read or 
write operations to proceed simultaneously. For some number of processors p, 
this assumption probably becomes invalid. An interesting extension to our anal- 
ysis would be to develop a more detailed model of the cache and I/O system 
which would more accurately reflect their impact on the performance of the 
various algorithms. We have performed such an analysis for parallel sorting 
algorithms in [9]. 

(3) Scan Cost. If a page is to be scanned, the scan is sequential. The number 
of tuples in the page is assumed to be K. Thus the scan cost C,, is computed as 

C,c = kC. 

(4) Merge Cost. If two sorted pages are to be merged, the number of tuples in 
each page is assumed to be k. Since all our operations require internally sorted 
pages (see Section 4.1), both pages will already be sorted and thus the worst case 
number of comparisons required to perform the merge of two sorted lists of 
length k is 2k [ll]. The number of tuples to be moved is the same. Thus Cm, the 
cost of merging two pages, is computed as 

Cm = 2k(C! + V). 

(5) Page Reorganization Cost. There are two cases when a page must be 
reorganized to keep the tuples in sorted order. The first case occurs after the 
application of an update operation which modifies the attribute on which the 
page is sorted. We assume that the reorganization consists of both tuple compar- 
isons and movements and expect that, on the average, half of the tuples in the 
page will be affected. As before, a page is assumed to have k tuples. We compute 
C,, the reorganization cost, as follows: 

Cc, = +k(C + V). 

The second case occurs when a buffer containing new tuples (e.g., the result of 
a projection or a page of an intermediate relation) is to be used in a subsequent 
operation. Since all our operations require internally sorted pages, the page must 
be sorted before it is written to disk. We assume that the new page has k tuples 
(though in some cases this number may be smaller) and that, on the average, 
internal sorting of a page would require k log k comparisons and moves.’ Thus 
C,,, the cost to internally sort a page, is 

CL = (k log k)(C + V). 

For our analysis of project, sort, and join algorithms we found it convenient to 
group some of the above parameters and to define the following “2-page opera- 
tion:” 

c; = 2c, + c, + 2c, 

’ Throughout this paper we assume all logs are to the base 2. 
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is the cost of a 2-page operation and consists of reading 2 sorted pages, merging 
them, and writing the resulting sorted block of 2 pages. 

4. PARALLEL ALGORITHMS FOR DATABASE OPERATIONS 

In this section we present and evaluate parallel algorithms for update operations, 
sorting, projection, join, and aggregate operations using the analysis techniques 
described in the previous section. Each algorithm presented is intended to 
handle the general case where the number of pages to be processed is signifi- 
cantly larger than the number of processors available. This implies that the 
operand relation or relations cannot be brought entirely into the processors’ 
memories for processing. Several passes over the data are necessary. Intermediate 
results not used in a pass must be written out to the cache (and possibly the 
disk). We begin with a presentation of a set of update algorithms which maintain 
each page in sorted order. Since sorting will be used as a basic step in the project, 
join, and aggregate operations, it is presented second. Finally, the project, join, 
and aggregate operations are presented. 

4.1 Update Algorithms 

Many of the retrieval algorithms presented in the following sections rely on the 
property that each page is sorted on some attribute or group of attributes. 
Permanent relation pages are sorted on the relation key. It follows then that any 
update algorithm must keep the pages sorted. A second property that must be 
preserved is that no duplicates are introduced as a result of an update. We show 
that our algorithms do indeed preserve these properties. An analysis of one 
algorithm’s complexity is presented in Appendix A. 

We consider three update operations: delete, append, and modify. Each oper- 
ation specifies a relation to be updated and a qualification clause specifying which 
tuples of the relation are to be affected. For example, 

Delete emp where emp.eno < 153. 

However, there may be cases where the selection criteria for an update operation 
is more complex than a simple selection. For example, 

Delete emp where emp.eno < 153 and emp.dno = dept.dno and dept.name # “toy”. 

Here we have to restrict both the employee and department relations according 
to the selection criteria, perform the join, and then apply the delete operation to 
the employee relation using the values produced by the join as the deletion 
criteria. 

We term these two kinds of qualification clauses simple and complex. A simple 
qualification is one that may be applied in a single scan of the relation. A complex 
qualification is one which requires us to perform some interrelation operation or 
operations (e.g., join) in order to determine the tuples to be updated. The 
algorithms presented below handle both simple and complex updates. 

For consistency, we assume that updates are atomic operations; that is, an 
update either successfully terminates, or in the event of a crash or abort, does not 
affect the stored database. One reason for aborting update operations is the 
introduction of duplicates into a relation. 
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4.1.1 Delete. A deletion operation is, in effect, the negation of a selection. If the 
qualification is simple, each processor executing the deletion will examine a 
unique subset of source relation pages. Tuples satisfying the deletion criterion 
are removed from the page and the page is compressed and written to the cache. 
The controller is informed of the size of the new page and stores it as a new page 
of the relation. 

Complex deletes require a preprocessing step to determine the set of tuples to 
be removed. The set produced by this step is a list of database keys henceforth 
referred to as Q, which is produced by executing the qualification clause of the 
update operation. This clause typically consists of a number of retrieval opera- 
tions such as selection and projection. The same processors assigned to execute 
the deletion, perhaps augmented with other processors, first execute the qualifi- 
cation clause. Once Q is produced it must be distributed to the processors which 
perform the deletion. One possibility is to attach Q to the code segment as a data 
structure. This approach is feasible if the size of Q is small (a few database keys). 
Otherwise, Q can be broadcast to all the processors that have pages of the source 
relation. Each processor would then perform a modified merge of its source page 
with every page in Q. The modified merge would consist of deleting a tuple from 
the source relation page if a key value in Q matches the tuple’s key. As in simple 
deletes, modified pages are written out as new pages of the relation replacing the 
corresponding source page. 

4.1.2 Append. A simple append is one in which a small number of tuples are to 
be appended to a relation. The simple append begins with the controller deciding 
where to add the additional tuples, based on the density of the pages in the 
relation. The processors first search for duplicates of those tuples to be appended. 
If duplicates are found by any of the processors, the controller is informed, the 
operation aborted, and the relation restored to its pre-append state. If no 
duplicates are found, tuples are then added to the pages designated by the 
controller. A page chosen for appending will have to undergo reorganization to 
preserve its sort order. 

Complex appends are executed in a similar manner to complex deletes. After 
the list of tuples to be appended has been generated, the processors search for 
duplicates using the modified merge described above. If the number of new tuples 
is small, they are added to designated pages. Otherwise, the new pages are added 
to the relation’s page table at the end of the operation. 

4.1.3 Modify. There are two cases to consider for the modify operation. In the 
case that the modified attribute or attributes does not contain the relation key 
(or part of it), we are assured that no duplicate tuples will result from the modify. 
In this case each processor executes the same code as the simple delete, applying 
the modification to matching tuples rather than deleting them. The same analogy 
holds for a complex, nonkey modify. Note that no page reorganization is required 
since the page is sorted on the relation key which is unaffected. 

In cases where the query modifies some part of the key, the algorithm must 
check for duplicates. To do this we must have a list of the new key values and 
check the source relation for duplicates using this list before we apply the update. 
Our algorithm works in a similar manner to the algorithm for nonkey modifies 
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with one exception. When a tuple to be modified is found, the processor deletes 
that tuple from the page and writes the modified tuple into a separate buffer. 
After all the pages of the relation have been scanned, each page containing 
modified tuples is sorted on the relation key. The new pages are then broadcast 
to all processors that contain source relation pages to check for du,plicates. As in 
the other update operations, if duplicates are found the operation is aborted. 
Otherwise, the new pages are added to the source relation page table. 

As the update algorithms are all quite similar, we provide a performance 
analysis of only one of them. We chose to analyze the simple key modify since it 
is one of the more complicated algorithms and since it has elements that appear 
in all the others. This analysis is presented in Appendix A. We conclude this 
section by observing that all the update algorithms (except the key modify) 
operate in linear time. That is, given p processors, each algorithm would be 
executed by the p processors in n/p “basic” time units. (Note that the basic time 
unit used in the algorithm for one operation may differ from that used by the 
algorithm for another operator.) 

4.2 Parallel Sorting Algorithms 

In this section we present two parallel sorting algorithms and analyze the 
performance of each. The algorithms, the “parallel binary merge” sort and the 
“block bitonic” sort, were only two of a number examined. Our analysis has 
shown that the performance of the second algorithm is generally better. 

Unlike other analyses of parallel sorting algorithms [4, 171, we do not assume 
that the relation to be sorted initially resides in the processor’s main memory, or 
that the algorithm may terminate when the sorted relation can be obtained by 
gathering, in a specific order, the blocks of data from these memories. We assume 
that the number of processors allocated to the sorting operationp will, in general, 
be much less than the number of pages in the relation n and that n is larger than 
the total memory of the processors and the size of the disk cache.2 Therefore, we 
only consider external parallel sorting algorithms (i.e., algorithms where the 
relation is read in successive blocks and sorting is done in a number of phases, 
each of which terminates with its output in temporary buckets). 

The relation to be sorted is stored as a set of pages, each of which is individually 
sorted with respect to a prespecified key (see Section 4.1). Generally the relation 
resides on one or more mass storage devices when the sort is initiated. However, 
portions of it may be in the disk cache at that time owing to the relation’s use in 
another, concurrent, operation. Similarly, when the algorithm terminates, the 
relation is returned to the mass storage device. During intermediate phases of the 
algorithm, temporary relations are created, and pages of these relations are 
transferred to the processors under the controller’s supervision. 

Each processor merges two ordered sequences (termed runs) of i pages each 
into a run of 2i pages. Since we assume that the size of each processor’s main 
memory is only 3 pages, this operation requires that the processor must execute 
an external merge. For this case, the controller must maintain control tables 
which enable it to transfer entire runs, 1 page at a time, to a processor in the 
order necessary for a 2-way merge of 2 runs. The controller supervises and 

’ To simplify the analyses of both algorithms, we have assumed that n and p are both powers of 2. 
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coordinates the reading and the writing of single pages by the processors. Thus, 
at any time, a processor merges 2 pages residing in its 2 input buffers into a single 
page output buffer. When one of the input buffers has been completely scanned, 
the processor reads into this same buffer the next page of the appropriate run. 
When the output buffer fills up, the processor requests from the controller a “new 
page” and transfers the contents of the output buffer to the cache. The new page 
is an appropriately numbered page of a temporary relation. This page will serve 
either as an input for the next phase of the sort or as a page of the result (sorted) 
relation. It follows from the above argument that a processor can merge sort 2 
runs of i pages each in i C”, operations (using the notation defined in Section 3). 

4.2.1 Parallel Binary Merge Sort 

Description. In this section we describe a merge-sort algorithm which utilizes 
both parallelism during each phase and pipelining between the phases to enhance 
performance. In [5], a binary merge sort without pipelining of the phases was 
analyzed. The parallel binary sort algorithm presented below represents a sig- 
nificant improvement. 

Execution of this algorithm is divided into three stages, as shown in Figure 2. 
We assume that there are at least twice as many pages as processors. The 
algorithm begins execution in a suboptimal stage in which sorting is done by 
successively merging pairs of longer and longer runs until the number of runs is 
equal to twice the number of processors. During the suboptimal stage the 
processors operate in parallel, but on separate data. First, each of thep processors 
reads 2 pages and merges them into a sorted run of 2 pages. This step is repeated 
until all single pages have been read. If the number of runs of 2 pages is greater 
than 2p, each of the p processors proceeds to the second phase of the suboptimal 
stage in which it repeatedly merges 2 runs of 2 pages into sorted runs of 4 pages 
until all runs of 2 pages have been processed. This process continues with longer 
and longer runs until the number of runs equals 2p. 

When the number of runs equals 2p, each processor will merge exactly 2 runs 
of length n/2p. We term this phase the optimal stage. At the beginning of the 
postoptimal stage the controller releases one processor and logically arranges the 
remainder as a binary tree (see Figure 2). During the postoptimal stage parallelism 
is employed in two ways. First, all processors at the same level of the tree (Figure 
2) execute concurrently. Second, pipelining is used between levels. By pipelining 
data between levels of the tree, a parent is able to start its execution a single time 
unit after both of its children (i.e., as soon as its children have produced 1 output 
page). Therefore, the cost of the postoptimal stage will be a 2-page operation for 
each level of the three plus the cost of the root processor to merge 2 runs of 
length n/2. 

Analysis. If p = n/2, there is no suboptimal stage and the processor at the top 
of the binary tree waits log(n/2) units of time before it starts merging 2 runs of 
size n/2. Therefore, the algorithm terminates in log(n/2) + (n/2) Ci operations. 

If p c n/2, then during each of the log(n/2p) phases of the suboptimal stage 
each processor executes a total of n/p page operations (i.e., (n/2p) Ct operations). 
In phase i the runs are one-half the size of the runs of phase i + 1, but each of the 
p processors performs twice as many merge operations in order to exhaust the 
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Fig.2. Parallel binary merge with 4 processors and 16 pages. 

runs. During the optimal stage, each of the p processors reads 2 runs of length 
n/2p. Therefore, there are n/2p parallel e-page operations. Finally, for the 
postoptimal phases, the number of 2-page operations is equal to (log p - 1) + 
n/2 where (logp - 1) represents the time for the first page of both runs to reach 
the top processor. After this point the top processor must merge 2 runs of length 
n/2. Therefore, the total execution time of the algorithm expressed in CZ, units is 
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Fig. 3. Block bitonic sort with 2 processors and 4 runs of 2 pages each. 

which can be expressed as 

n log n 
-+;- g-1 (logp)-1. 

2P ( ) 
4.2.2 Block Bitonic Sort 

Description. Batcher’s bitonic sort algorithm sorts n numbers with n/2 com- 
parator modules in 3 log n(log n + 1) steps [3]. Each step consists of a parallel 
comparison-exchange and a transfer. Execution of this algorithm requires that 
the comparison-exchange units be interconnected with a perfect shuffle intercon- 
nection scheme [ 151. 

As first suggested in [4], if a comparator module is replaced with a processor 
which can merge 2 pages of data and then separately output the “lower” and the 
“higher” pages of the sorted a-page block, then we have a block parallel algorithm 
which can sort n pages with n/2 processors in 3 log n(log n + 1) 2-page operations. 
Execution of this algorithm using two processors is illustrated in Figure 3. We 
further generalize this idea to obtain an “external bitonic sort” scheme. The basic 
instruction performed by a processor is an external 2-way merge sort of 2 sorted 
streams each of size n/2p. 

Because the block bitonic algorithm can process at most 2p blocks (runs) with 
p processors, a preprocessing stage is necessary when the number of pages to be 
sorted exceeds 2p. The function of this preprocessing stage is to produce 2p sorted 
blocks of size n/2p pages each. We have identified two ways of performing this 
preprocessing stage. The first is to use a parallel 2-way merge sort to create 2p 
sorted blocks (runs) of n/2p pages each. The second is to execute a bitonic sort 
in several phases with blocks of size 1, 2p, (2p)‘, . , . , until blocks of size n/2p 
pages are produced. We have analyzed both approaches and have discovered that 
the first approach is approximately twice as fast as the second for large n and 
relatively small p. Therefore, we present below only an analysis of the first. 

Analysis. The first part of the algorithm is identical to the suboptimal phase 
of the parallel binary merge and completes in (n/2p)log(n/2p)C% time units. 
Then, an external bitonic sort algorithm is applied to the 2p blocks of size n/2p. 
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This step requires 

n log 2p 
- - (log 2p + l)C2, 
2P 2 

operations. 

The total cost is thus 

& 
( 

logn + 
log2 2p - log 2p 

2 ) 

C2 
P’ 

4.2.3 Performance Comparison of the 2 Sorting Algorithms. Since both algo- 
rithms presented in this section execute essentially in n log(n/2p)CE time units, 
when 0 (p) < 0 (log n) each achieves the optimal speedup ofp over a umprocessor 
external merge sort. Indeed, when O(p) c O(log n), the other factors in the 
formulas established for the algorithms (Sections 4.2.1 and 4.2.2) are linear in n. 
In Figure 4 we have plotted the performance of both algorithms for a fEed 
number of processors and a varying number of pages to be sorted. As established 
by these graphs, the block bitonic sort outperforms the parallel binary merge 
(this fact can be proven analytically by comparing the formulas). 

4.3 The Project Operation 

The projection of a relation with domains dl, d2, , . . , dn on a subset of domains 
di, dj, . . . , dm requires the execution of two distinct operations. First the source 
relation must be reduced to a “vertical” subrelation by discarding all domains 
other than di, dj, . . . , dm. Since discarding attributes may introduce duplicate 
tuples, the duplicates must be removed in order to produce a proper relation. 

While the first operation can be performed very efficiently, the second is much 
more complex and requires nonlinear (with respect to the number of tuples) time 
on a single processor. One could argue that, if the result of the projection is going 
to only be used in a subsequent operation and not become a permanent relation 
in the database, it is unnecessary to perform the duplicate removal. However, if 
there are a large number of duplicates in the result relation (e.g., if the relation 
is projected on a nonkey attribute), the execution time of the complete query 
could be considerably slower (possibly orders of magnitude slower) without re- 
moval of the duplicates. 

On a single processor, the complexity of eliminating duplicates is essentially 
the same as the complexity of sorting the relation. However, in a multiprocessor 
organization, we may either sort or make use of parallelism to eliminate duplicates 
without sorting. Since parallel sorting was considered in the previous section, in 
this section we present and analyze a method to eliminate duplicates which does 
not require sorting. The method relies on a hardware broadcast facility. 

We assume that pages have already been reduced to a vertical form by the 
previous operation and that there are no intrapage duplicates. Each processor 
reads one page. Let a processor be labeled by the number of the page it has read 
(that is, the processor that has read page i is known as Pi). For i= p, p - 1, 
p - 2,. ..) 2, page number i is broadcast to processors Pi-l, Pi-z, . . . , PI. When 
page i is broadcast, Pi is released. When processor Pj (j < i) receives page i, it 
compares page i and page j and eliminates any duplicates from its page. Note 
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Fig. 4. Comparison of the two sorting algorithms. 

that Pj will not see page i if i < j. Consequently it is guaranteed that only one 
copy of each tuple will remain in the relation (that copy will reside in the highest 
numbered page of all the pages that had a copy of it). The broadcast step is 
shown in Figure 5. 

In the general case when p, the number of processors, is smaller than n, the 
number of pages, the algorithm works in a number of distinct phases. Each phase 
produces p projected pages and sees p fewer pages than the previous phase. In 
phase i there are (i - 1)p pages that have already been projected, p pages in the 
processors’ memories, and n - (ip) nonprojected pages. The phase begins by 
broadcasting the n - (ip) nonprojected pages to the p processors for duplicate 
removal. After this step has completed, Pp broadcasts its page and exits. The 
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Fig. 5. Projection by broadcast. 

remaining processors follow suit. The cost of phase i is thus 

c, + (n - ip)(C, + C,) + (p - l)(C, + c, + CL) + c,. 

If n = pm, there are m phases and the total cost of the algorithm is 

mC, + 
m(m - Up 

2 
(Cr + Cm) + m(p - l)(C, + Cm + W + mCW. 

This may be rewritten as 

( ) 
$+S (cr+cm) -%m+nCw 

P 

which is of the order of n2/2p page operations. Note that if n is not an exact 
multiple ofp, the last phase would use only n modp processors and thus terminate 
faster. 

One may think of reducing the number of pages before starting the broadcast 
steps. For this modified version of the algorithm, each processor reads as many 
pages as it can, eliminating duplicates as it goes along. This modification may 
considerably improve the performance of the algorithm in the case of a high 
duplication factor. For example, if a tuple is duplicated 10 times on the average 
and the duplicates are uniformly distributed among the pages, up to 10 pages 
may be merged by each processor before the sequential broadcast algorithm is 
initiated. A second improvement to the algorithm would be to perform such a 
compression, at least once, of all the source relation pages before the broadcast 
step is initiated. Thus, when the number of duplicates is expected to be large, a 
broadcast method with a priori compression would perform much more efficiently 
than the analytical upper bound of O(n2/2p) page operations. On the other hand, 
if the number of duplicates is expected to be small, and if n >> p, it is probably 
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more efficient to use one of the sorting algorithms which perform in O(n log n/ 
2p) page operations rather than O(n2/2p). 

A comparison of the performance of these two algorithms is unfortunately 
beyond the scope of this paper. An accurate evaluation of these two algorithms 
requires the application of statistical tools since the distribution of the duplicates 
will have a significant effect both on the number of compression steps of the 
modified broadcast algorithm and the lengths of runs in the sorting algorithms. 
We are currently engaged in such an effort. 

4.4 Join Algorithms 

In this section we present two parallel algorithms for the relational join operation: 
a parallel “nested-loops” algorithm and a parallel “merge-sort” algorithm. The 
nested-loops join algorithm relies heavily on a broadcast facility, while the merge- 
sort algorithm requires sorting of the two source relations with respect to the join 
attribute. A third strategy based on hashing techniques has been recently inves- 
tigated in [l, lo]. A performance comparison of the hashing strategy with either 
the nested-loops or the merge-sort joins is beyond the scope of this paper, but we 
plan to incorporate it in future work. 

4.4.1 The Parallel Nested-Loops Join Algorithm. Given two relations R and 
T, the “smaller” relation (i.e., the one with fewer pages) is chosen as the inner 
relation, and the larger (say R) becomes the outer relation. The first step is for 
the processors to each read a different page of the outer relation. Next, all pages 
of the inner relation Tare sequentially broadcast to the processors. As each page 
of T is received by a processor, it joins the page with its page from R. Clearly, this 
algorithm is a block parallel version of the most inefficient uniprocessor join 
algorithm since each tuple of relation R is compared with each tuple of relation 
T. However, since it achieves a high degree of parallelism for the duration of its 
execution (limited only by the number of pages in R), it may outperform more 
sophisticated join algorithms. 

Let n and m be the sizes, in pages, of the relations R and R’ and suppose 
n L m. Let p be the number of processors assigned to perform the join of R and 
R’. S is the join selectivity factor and indicates the average number of pages 
produced by the join of a single page of R with a single page of R’. If p = n, the 
execution time of this algorithm is 

T nested ~~~~~ = T(read a page of R) 

+ mT(broadcast a page of R’) 

+ mT( join 2 pages). 

It is important to notice that joining 2 pages consists of the following operations. 
The 2 pages are joined by merging, then the output page is sorted on the join 
attribute of the subsequent join (if there is one), and finally the output page is 
written out. The number of output pages written depends on the join selectivity 
factor S defined by 

s = size(R join T) 
mn 
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If p c n, the same process must be repeated n/p times, yielding 

T nested loops = - ; {Cr + m[Cr + cm + S(Cao + Cw)l>* 

In the case that either the subsequent join is to use the same join attribute or 
the result of the join is to be displayed on a screen, the output pages need not be 
internally sorted. 

4.4.2 Merge-Sort. This algorithm is performed by first doing a parallel sort on 
both relations to be joined (assuming that they are not both already sorted on 
the join attribute). After both relations have been sorted, they are joined, and the 
result relation pages are sorted on the attribute used by the subsequent operation. 
The merge operation is executed by a single processor. If the sort steps are 
performed using our block bitonic algorithm, the join cost is 

T- 
m+m 

&logn+$logm+ (log22p-log2p)- 
4P 1 C”, 

+ (n + m)C, + max(n, m)C, + mnS(C,, + CL). 

One improvement to this algorithm is to leave the pages of the output relation 
unsorted. Then the p processors participating in the subsequent operation can 
perform the internal sort in parallel rather than the sequential sort done now. 

It should be noted that by using a merge-sort algorithm to perform the join, 
we obtain a relation sorted with respect to the join attribute. This property is 
desirable if the output relation is the final result of a query or if it becomes the 
source relation for a subsequent operation using the same joining attribute. 

4.4.3 Comparison. Using the formulas developed in the previous two sections, 
we have compared the performance of these two join algorithms. Our results are 
presented in Figures 6 and 7. Our assumptions about the processors’ capabilities 
are specified in Appendix B. 

Figure 6 presents the results for a selectivity factor of 0.001 with no sorting of 
output pages. We assumed that each page contained three hundred, 55-byte 
tuples, but we found very similar results for pages composed of one hundred, 165 
byte tuples. The results indicate that when two relations of a similar size are 
joined, the merge-sort algorithm should be employed, unless the number of 
processors available is close to the larger relation size. However, if the ratio 
between the relation sizes is significantly different from 1, the nested-loops 
algorithm outperforms the merge-sort (except for a small numbers of processors). 
For lower selectivity factor values, the merge-sort algorithm performs better than 
the nested-loops algorithm because the merge step (handled by a single processor) 
has to output fewer pages. Since in the nested-loops algorithm the output relation 
is divided among all the processors, a reduction in its size has very little effect on 
the total execution time. Figure 7 shows a similar result for the same joins with 
a selectivity factor of 0.001 with sorting of output pages. 

4.5. Aggregate Operations 

In contrast to the relational operations join, project, select, etc., there is no 
commonly accepted set of aggregate operations among existing relational data- 
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983 
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16384 Pages Join 1024 Pages 
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Unsorted Output Pages 
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log2 processors 

Fig. 6. Comparison of the two jo& algorithms. 

base systems. For our purposes, we adopt the facilities provided by INGRES [ 181 
as being representative and develop algorithms to process them (see [8] for a 
presentation of algorithms for processing aggregates in a uniprocessor environ- 
ment). We distinguish “scalar” aggregates from aggregate “functions.” Scalar 
aggregates are aggregations (average, max, etc.) over an entire relation. Aggregate 
functions fist divide a relation into nonintersecting partitions (based on some 
attribute value, e.g., sex) and then compute scalar aggregates on the individual 
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partitions. Thus, given a source relation, scalar aggregates compute a single result, 
while aggregate functions produce a set of results (i.e., an output relation). The 
two types of aggregates have the following form: 

scalar agg-op (agg_att where qual) 
function agg-op (agg-att by-list where src-qual) where by-.qual 
by-list by att-1 by att-2 by . . . by att-n 

agg-op sum, avg, count, max, min, sumu, avgu, countu 
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Name 

Smith 

Miller 

Jones 

Brown 

Department Task SdarY 

Toys Clerk 300.00 

Shoes Buyer 650.00 

Books Acct 550.00 

Shoes Clerk 400.00 

countu(Empbyee Department) = 3 

Manager 

Johnson 

Bergman 

Hanis 

Conners 

Fig. 8. Example of a “unique” scalar aggregate. 

The agg-att is the attribute over which the aggregate is being computed. The 
aggregate operators (agg-op above) are self-explanatory except for those with 
the “u” suffix. The u denotes “unique” and implies that duplicates (tuples which 
match on the agg-att) will be eliminated before the aggregate is computed (see 
Figure 8). 

Qualifications may be added (“where qual”) to compute an aggregate over a 
subset of tuples in a relation. For aggregate functions, the partitioning attributes 
are specified with the by-list. Note that relations may be partitioned on more 
than one attribute (e.g., partitioning employees by department and task within 
department). Also note that the result of an aggregate function may depend on 
qualifications outside the aggregate (by-q&) (this is discussed in more detail 
later). In contrast, scalar aggregates are “self-contained” and are not affected by 
the rest of the query. Finally, as with update operations, we distinguish “simple” 
qualifications from “complex” qualifications. Simple qualifications can be pro- 
cessed in a single scan of the relation and may be applied at the same time that 
the aggregate is being computed. Complex qualifications require interrelation 
operations so the relation must be preprocessed before computing the aggregate. 

The compute a scalar aggregate, a processor maintains two fields: a count field, 
and the aggregate value itself. The count field specifies the number of tuples 
contributing to the aggregate value and is used in averaging and initialization. 
When processing aggregate functions, a third field is also required to identify the 
partition (since a processor may be accumulating aggregate values for more than 
one partition at the same time). The analyses of the algorithms described below 
are presented in Appendix C. 

4.5.1 Scalar Aggregates. Scalar aggregates may be processed in a single pass 
over a relation. We consider only the obvious algorithm. Thep processors request 
pages of the source relation from the controller and compute an aggregate value 
for the pages they see. When the pages are exhausted, we have p partial results, 
and a single processor must combine them to produce the final value. A simple 
qualification is applied at the same time the processors are accumulating their 
partial results. Complex qualifications require preprocessing of the source relation 
since interrelation operations are involved. If the aggregate operator is a “unique” 
operator, the source relation must be projected on the agg-att so that duplicate 
tuples are eliminated. 

45.2 Aggregate Functions. In this section we describe two algorithms for 
processing aggregate functions. Recall that we must consider two types of quali- 
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fications. To see why, consider the following example: 

count(emp.name by emp.mgr where emp.sal > 500) 

This query requests, for each manager, a count of the number of employees 
earning more than $500. However, even if a manager does not have any employees 
making more than $500, he should not be excluded from the list and his count 
should be set to 0. If we applied the qualification first and then computed the 
aggregate function on the result, we would miss those managers since all his 
employees were removed by the qualification. As another example, consider 

count(emp.name by emp.mgr where emp.sal > 500) where emp.mgr # “Smith” 

Clearly, in this case we want to include the count for all managers other than 
Smith. Thus, we need to distinguish restrictions on the source tuples from 
restrictions on the set of possible partitions. This is why we allow for two different 
types of qualifications in aggregate functions. Qualifications inside the aggregate 
(the “src-qual”), in addition to selecting a subset of the source relation, may 
have the undesirable side effect of removing desired partitions (e.g., manager 
Johnson in Figure 8). On the other hand, qualifications outside the aggregate 
(the “by-qual”) ,are used to eliminate unwanted partitions. (e.g., manager Smith 
above). 

When an aggregate function contains an src-qual, any algorithm for processing 
the aggregate must begin by determining the set of desired partitions so that any 
partitions which are removed by applying the src-qual (e.g., managers with zero 
counts, above) can be included in the result of the query. Determining the set of 
desired partitions occurs in one or two steps depending on whether the query 
contains a by-qual. If the query does contain a by-q& (whether simple or 
complex), it is applied to the source relation in order to eliminate “unwanted” 
partitions. Then, the resulting relation (or the source relation if the relation did 
not contain a by-q& is projected on the by-list attributes to determine the 
“names” of the desired partitions. 

Algorithm 1: Subqueries with aparallel merge. Our first algorithm is similar 
to the scalar aggregate algorithm and works best when the number of partitions 
is small. In the first stage, each processor reads its source relation pages, but 
instead of accumulating a single aggregate value, it produces one aggregate value 
for each partition it sees. This results in a number of pages containing partial 
results which must be combined. The second stage is a parallel “merge” of the 
pages produced in the first stage. 

When qualifications are included in a query, several additional steps are needed 
to extract the correct partitions. First, the by-qual (if the query has one) must 
be applied to eliminate unwanted partitions. If the query has an src-qual, three 
additional steps must be performed. First, the set of desired partitions must be 
determined by projecting the source relation (or the relation produced by exe- 
cuting the by-qual) on the byAist. This step will produce a temporary result 
relation (denoted R ‘) with the result and count values for each partition initialized 
to 0. Next, the src-qual must be applied. If the query has a simp1.e src-qual, it 
may be processed at the same time the aggregate is computed; otherwise, it is 
performed as a separate operation before the aggregate is computed. The final 
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stage required when an src-qual is specified is for one processor to merge R’ 
with its run of t pages before the parallel merge is initiated. 

Finally, note that unique aggregates require a separate preprocessing step in 
which the source relation is sorted on the by-list in order to eliminate duplicates. 

Algorithm 2: Project by-list and broadcast source relation. This algorithm 
exploits the ability of our architecture to broadcast pages to multiple processors. 
The idea is to first project the source relation on the by-list domains to 
determine the partitions. This gives us a list of partitions which we will distribute 
among p processors. The pages of the source relation are then broadcast to all 
processors and each processor computes the aggregate value for its set of parti- 
tions. If the space occupied by the list of partitions exceeds the combined buffer 
space of the processors, then the source relation will have to be broadcast more 
than once. If the query has a simple src-qual, it may be processed at the same 
time the aggregate is computed. If a unique aggregate is specified, the source 
relation must be sorted on its by-list (as the major field) and the agg-att (as 
the minor field). Then, duplicates will be eliminated by the processors which will 
compare tuples with the previous tuple received for that partition. 

Comparison. In order to compare the performance of these two algorithms, we 
selected two queries, one with an src-qual and one without an src-qual. In 
Figures 9 and 10, we have plotted the execution time for both algorithms for 32 
processors, 1000 partitions, and varying relation sizes. (The assumptions made 
with regard to I/O costs and processor speeds are described in Appendix B; the 
curves are based on formulas derived in Appendix C.) Figure 9 shows that 
Algorithm 1 is significantly superior to Algorithm 2 (up to two orders of magni- 
tude) when the query does not contain an src-.qual. However, as shown in Figure 
10, when the query contains an src-qual, Algorithm 2 is better except when the 
relation is very large. Furthermore, the performance of Algorithm 1 is sensitive 
to the number of partitions. Since both algorithms process by-qualifications in 
the same way, the results presented are representative whether or not the query 
contains a by-qual. Similar results were obtained with both different numbers 
of processors and processors of varying speeds. 

In addition to the two parallel aggregate function algorithms which we have 
presented, we also developed and evaluated another algorithm which employed 
a parallel binary merge sort to divide the source relation into one subrelation for 
each partition. As each subrelation was produced by the sort, another processor 
immediately read the subrelation and computed its aggregate value. While this 
algorithm initially looked promising, our analysis showed that is was always 
inferior to the other two algorithms except when the relation was partitioned on 
a key (an unlikely event). 

5. CONCLUSIONS AND FUTURE RESEARCH 

This paper has presented and analyzed algorithms for parallel processing of 
relational database operations. We have concentrated on those operations which 
cannot be processed in a single pass over the relation. To analyze alternative 
algorithms, we have introduced an analysis methodology which incorporates I/O, 
CPU, and message costs. 
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Fig. 9. Comparison of two aggregate algorithms. 

Parallel sorting has been used as a basic building block in the design of 
algorithms for relational database operations. Although an extensive literature 
on parallel sorting exists, none of the algorithms appear feasible. We have 
discussed two algorithms for parallel sorting of large relations residing on mass 
storage devices. We did not rely on an asymptotic complexity analysis to derive 
the “optimal” algorithm because I/O time and communication overhead must be 
incorporated for a more accurate analysis. For example, despite the theoretical 
complexity of O(n) and O(log2 n), the parallel binary sort and parallel block 
bitonic sort show a comparable performance (see Figure 4). 
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Fig. 10. Comparison of the two aggregate algorithms. 

Our analysis of algorithms for parallel join operations indicates that when the 
sizes of the two relations to be joined are approximately the same, the parallel 
merge-sort algorithm is superior to the parallel nested-loops algorithm. However, 
when one relation is larger than the other (as is frequently the case when joining 
a relation describing an entity set with a relation describing a relationship), the 
parallel nested-loops algorithm is faster. 

We have presented two algorithms for the project operation: one based on 
sorting and the other based on broadcasting. The results presented are inconclu- 
sive since the analyses do not incorporate the effect of duplicate tuples on the 
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performance of the two algorithms. Our feeling is that elimination of duplicates 
through sorting is probably faster except when there is a high duplication factor. 
The extension of these analyses to handle the effect of duplicates is currently 
under investigation. 

Our model of a shared memory multiprocessor architecture has enabled us to 
examine a wide range of algorithms without being constrained by the limitations 
of a specific interconnection scheme. On the other hand, it has forced us to make 
simplifying assumptions. In particular, we have not clearly differentiated between 
the I/O and inter-processor communication costs. Also, we have assumed that the 
processors were synchronized by their page requests to the controller. Despite 
these limitations, we believe this study to be a first important step in the design 
and analysis of parallel algorithms for database machines. A strong argument to 
be made in favor of this approach is that it has enabled us to proceed with the 
implementation of update, sorting, and aggregate operations on DIRECT. 

This paper leaves open several other areas for future research. First the 
addition of “logic-per-track” devices to the multiprocessor organization would 
permit the development of additional algorithms for join, projection, and aggre- 
gate operations. A second area for future research is the design and analysis of 
parallel algorithms for database operations which employ indices. If algorithms 
can be developed that allow the efficient processing of indices in a multiprocessing 
environment, these algorithms could also be utilized to develop parallel algorithms 
for the selection operation whose performance can then be compared with the 
performance of “logic-per-head” devices. Another area that needs further explo- 
ration is the development of techniques for evaluating the cost of controlling 
multiple processors on complex algorithms (such as the parallel merge-sort join). 
While it may be the case that the control cost is dominated by the I/O cost (and 
hence the relative performance of the algorithms is unchanged), this topic merits 
further investigation. In addition, the performance of each of these algorithms in 
the context of a complete query should be analyzed since the choice of an 
algorithm for each operation may be affected by the other operations in the 
query. Finally, an interesting extension would be to consider a cost/performance 
evaluation of these algorithms in which architectural costs were incorporated. 

APPENDIX A. ANALYSIS OF THE PARALLEL KEY MODIFY ALGORITHM 

In this appendix we analyze the performance of the parallel key modify algorithm 
described in Section 4.1.3. The execution time of the simple key modify by p 
processors is given by the following formula: 

where 

Tp =; ([T:] + [Tf] ) 

stage1 stage2 

and 

T: = C, + C,, + C, + C, + $ (C,, + C,) 

T:: = C, + z(C, + Cm). 

In stage1 each processor examines n/p source relation pages, looking for tuples 
matching the qualification (G + C,,). We assume that on the average j such 
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tuples exist in each source relation page. Each page containing qualifying tuples 
needs to be reorganized (CJ and written out (G) after the matching tuples have 
been moved to the buffer. Finally, the new tuples need to be sorted ((j/k)&) 
and written out ((j/k)&). 

In stage2 the processors search for the possible introduction of duplicates into 
the relation. Let z denote the number of pages containing modified source tuples. 
Then each processor reads a page of the source relation and all of the z pages. 
The processor performs the modified merge described above. Finally, if no 
duplicates are found, the z new pages are added to the source relation page table. 

APPENDIX B. PROCESSOR CAPABILITIES ASSUMPTIONS 

In this appendix we outline our assumptions about the capabilities of processors 
used in our evaluation of the join and aggregate algorithms (see Sections 4.4 and 
4.5). 

Page size is 16 kbytes. 
C, the time to compare two attributes, is 10 ps. 
V, the time to move a tuple, is based on the cost of 1.5 ps to move a single 

word. Thus, for a tuple length of 150 bytes, Vis 225 KS. 
R,, the time to transfer a page between mass storage and the cache is 28 ms. 

This is based on a transfer time of 20 ms, a latency time of 8 ms, and a negligible 
track seek time. 

R,, the time to transfer a page from the cache to the processor’s memory is 16 
ms, based on a processor bus bandwidth of approximately 1 Mbyte per second. 

The cache hit ratios H and H’ were assigned the values 0.85 and 0.35, 
respectively. 

The cost to process a message Cmsg, including the sending, transfer time, and 
receiving, was picked to be 15 ms. 

Finally, it should be noted that each experiment was subsequently performed 
with slower processor speeds (about half as fast), and that similar results were 
obtained. 

APPENDIX C. ANALYSIS OF THE PARALLEL AGGREGATE ALGORITHMS 

In this appendix we analyze the performance of the parallel aggregate algorithms 
described in Section 4.5. In the following discussion, we assume these parameters: 

n number of pages in source relation 
P number of processors to process aggregate 
m for aggregate functions, number of partitions 
r for aggregate functions, number of result tuples per page 
q number of operations to apply for a simple qualification (if query has one); 

else 0. 

Scalar aggregates are as follows: 

Tsc-agg = T(exec qual) (if complex qual) 
+ T(project) (if unique agg-op) 
+ T(partial results) 
+ T(combine p part&) 
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We are concerned with the time needed to produce and combine the partial 
results since the time required to execute the qualification and to project the 
source relation have been covered by other sections of this paper. 

T(partial results) = 2 p [Cr + (4 + W~CI + c,,. 

Each processor sees n/p pages. To process the page it must read it, apply a 
qualification to it (if simple), and update the partial result. Thus, each tuple 
requires a number of comparisons for the qualification plus an additional opera- 
tion (e.g., add) to process the aggregate. The time to send the partial result is just 
the cost of a message. The processor which combines the partial results simply 
reads p messages and performs p arithmetic operations (note, the cost of the 
message is accounted for by the partial results formula). Thus, T(combine 
part&) = PC. The final formula is thus 

Tsc-agg = T(exec qual) 
+T(project) 
+ WP)[Cr + (q + l)CX] + CIna, 
+pC 

(if qualification) 
(if unique aggregate) 

Aggregate Functions: Algorithm 1 

The cost of this algorithm (assuming no qualifications and a nonunique aggregate) 
may be computed as 

Z’algl = Z’(produce partial result pages) + T(paralIe1 merge). 

Each processor will read n/p source relation pages. Each tuple in the page must 
be placed in the correct partition and the aggregate value for that partition must 
be updated. If we assume x = min(m, r) partitions and use a binary search, then 
for each of the k tuples in a source page, log x comparisons are required to locate 
the correct partition. After the correct partition is located, the aggregate value 
must be updated. Thus, the cost to process the source relation pages is 

; (Cr + k[(log x) + l]C}. 

We need to estimate the number of output pages produced by one processor. 
An upper bound of [(n/p)k]/r pages occurs when the relation is partitioned on a 
key. This is a pathological case. A lower bound is r(m/p)/rl which occurs when 
the tuples from each partition are seen by only one processor (an equally unlikely 
event). We feel that t = [m/r] is a plausible estimate of the number of output 
pages produced by each processor if one assumes that the partitions are uniformly 
distributed in the relation so that each processor sees all the partitions. Therefore, 
the cost for a processor to output its partial result pages is tC,. 

In addition to accounting for the cost of writing each of the t pages, we must 
also account for the cost of putting each page in sorted order (so that a binary 
search can be utilized). Each time a new, by-list value is encountered (i.e., a new 
partition), the processor must create a new result tuple and add it. to the sorted 
page. For each new partition this step requires, on the average, that one-half the 
result tuples be moved down. For x = min(m, r) partitions, x(x + 1)/4 tuple 
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moves will be required. Thus, the cost to process each of the t pages produced by 
a processor is 

t 
[ 
Jg (x + 1) + c, 

I 
. 

The parallel “merge” we use in the second stage is not a true merge since 2 
partial output pages are combined to form a single output page. First, each 
processor must form a sorted run of the t pages it. has produced. Using a merge 
sort this step requires (t/2) log(t/2) C$ operations. Next a parallel binary merge 
(see Section 4.2.1) is ked to combine thep runs of t pages into one run of t pages. 
The number of stages used is log p. Each processor will read two runs of t pages, 
merge them, and write a run of length t. Let. C,,,, = 2r(C + V) denote the cost of 
a merge of 2 output pages. Then the cost of the parallel merge is 

(t + logp)(2C, + Cd + C,). 

The total cost of the basic algorithm is then 

!ralg1=; {C, + k[(log X) + l]C} + t 
[ 

x(x + 1)V 
4 + CW 1 

+$og ; C;+(t+logp)(2C,+C~~+Cw). 0 
L \‘/ 

The final formula for Algorithm 1 is thus: 

Z’algl = T(execute by-qual) 
+ T(project on by-list) 
+ T(execute src_qual) 
+ T(project) 

process partitions: 

+ (n/p)(G + M(log 4 + W) 
+ (n/p) w%) 
+ t(x(x + l)(V/4) + C,) 

perform parallel merge: 

+ wwg(t/w; 
+ t (2C, + cm, + C,) 
+ (t + logp)(2Cr + cm, + C,) 

Aggregate Functions: Algorithm 2: 

if by-qual 
if srikqual 
if complex srckqual 
if unique aggregate 

x = min(r, m) 
if simple src-qual 
t = [m/r1 

if src-qual 

The cost. of this algorithm (assuming no qualifications and nonunique aggregates) 
may be summarized as 

Z’alg2 = T(project by-list) + T(process partitions). 

A processor sees every page of the source relation (n pages). Each tuple must be 
placed in the correct partition (depending on the number of passes over the 
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source relation, there are either m/p or r possible partitions), and we assume that 
the partitions are sorted so a binary search may be used. When the broadcast is 
complete, the processor must write its result. Let b = [(m/r)/pl denote the 
number of complete broadcasts of the source relation. The cost to process 
partitions is 

T(process partitions) = b{n[C, + (log x)C,] + G} 
where x = min(r, m/p). 

Thus, the total cost for this algorithm is 

Talg2 = T(exec by-qual) 
+ T(project by-list) 
+T(exec src-qual) 
+ T(project source) + bn(C,,) 

process partitions: 

if by-qual 
determine partitions 
if complex src-qual 
if unique aggregate 

+ bMC, + (log x)Cs,) + Cw) 

+ bnqC,, if simple src-qual 
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