
Parallel Algorithms for the Execution
of Relational Database Operations

DINA BITTON, HARAN BORAL, DAVID J. DEWITT, and W. KEVIN WILKINSON

University of Wisconsin

This paper presents and analyzes algorithms for parallel processing of relational database operations
in a general multiprocessor framework. To analyze alternative algorithms, we introduce an analysis
methodology which incorporates I/O, CPU, and message costs and which can be adjusted to fit
different multiprocessor architectures. Algorithms are presented and analyzed for sorting, projection,
and join operations. While some of these algorithms have been presented and analyzed previously, we
have generalized each in order to handle the case where the number of pages is significantiy larger
than the number of processors. In addition, we present and analyze algorithms for the parallel
execution of update and aggregate operations. ?

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems-query processing;
H.2.6 [Database Management]: Database Machines

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sorting, projection operator, join operation, aggregate operations,
database machines, parallel processing

1. INTRODUCTION

Research on algorithms for database machines which support massive parallelism
in tightly coupled multiprocessor systems has, for the most part, been
“architecture directed.” That is, database machine designers usually begin by
designing what they consider to be a good architecture and only afterward
develop the algorithms to support database operations using the basic primitives
of their architecture. As an example consider associative disks (or logic-per-track
devices) [14] from which RAP [13], RARES [12], CASSM [16], and to some
extent, DBC [2] are derived. The basic design goal of the associative disk design
was the efficient execution of the selection operation to select records which
satisfy a certain criterion. Given this building block, other relational database
operators such as join, project, and update can be implemented with varying
degrees of success (see [7]). In general, this is done by combining t,he processing
capabilities of the host with those of the back-end database machine. The

This research was supported in part by the National Science Foundation under grant MCS-78-01721
and in part by the United States Army under contracts DAAG29-79-C-0165 and DAAG29-75-C-0024.
Authors’ address: Department of Computer Science, 1210 W. Dayton St., University of Wisconsin,
Madison, WI 53706.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1983 ACM 0362-5915/83/0700-0324 $00.75

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983, Pages 324-353.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319989.319991&domain=pdf&date_stamp=1983-09-01

Parallel Algorithms for Relational Database Operations * 325

designers of RAP recognized the limitations of the pure associative disk design
and added interconnections between the processing elements to facilitate pro-
cessing of certain interrelation operations such as join. On the other hand, the
designers of the DBC started with the recognition that an entire database could
never be stored on logic-per-track devices in a cost-effective manner. Conse-
quently, they concentrated on designing a machine to facilitate the use of indices
so that moving head disks with a processor per head instead of a processor per
track could be utilized efficiently.

It is our thesis that for a database machine design to be “successful,” the
following design procedure must be followed. First, a thorough study of algorithms
for all the operations to be supported by the machine must be undertaken. Next,
the algorithms must be analyzed in terms of primitive operations, such as read a
block of data, send a message, and sort a block of data. Finally, various hardware
organizations must be examined to determine their suitability for the implemen-
tation of the algorithms for all the operations. It will most likely be necessary to
repeat this process so that the final machine organization can be implemented
within certain cost boundaries.

It is certainly the case that this procedure cannot be used by every computer
system designer. It may be the case that a priori information about the makeup
of programs to be executed is not available, or that the information is of such
breadth as to render it useless. However, storage structures used in relational
databases and the relational operators are well understood, thereby enabling
relational database machine designers to follow this proposed course of action.

How are the different algorithms to be evaluated? There are two possible
approaches that one could adopt. The first is to use a general-purpose machine
with capabilities to support any conceivable algorithm. This would enable the
comparison of the various algorithms using a uniform set of assumptions. Alter-
natively, one could specify the “ideal” machine organization for each algorithm.
In this approach each algorithm’s execution would attain its optimal performance.
However, comparing the performance of two algorithms for the same operator
would be considerably more difficult than with the general-purpose machine
approach.

In either case the evaluation of the algorithms must be sensitive to the following
two points:

(1) costs of performing all aspects of the computation, including processing,
communication, and I/O costs;

(2) performance of the algorithms when the number of available processors is
smaller than the desirable number of processors and the amount of “main
memory” available is less than the size of the relations being processed;
examination of performance means that the algorithms must be external.

In this paper we describe and analyze algorithms for the relational operators
using the general-purpose machine approach. We chose to follow this route for
two reasons. First, by comparing the algorithms in the general-purpuse machine
approach we felt that we would develop a better understanding of the strengths
and weaknesses of the various algorithms. Second, since the machine model we
selected is very similar to DIRECT [6], this approach gave us an opportunity to

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

326 l D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

compare the performance of the algorithms used by DIRECT with alternative
algorithms for each of the relational operators without going to the trouble of
actually implementing these algorithms in DIRECT.

While we feel that this paper makes a number of contributions to the database
machine literature, it does, however, have several limitations. First, the use of
indices as a tool for implementing algorithms for complex relational operators
has not been explored. While it seems feasible to use indices in a parallel algorithm
for execution of the selection operation (something which we failed to realize in
the design and implementation of DIRECT), their use in parallel algorithms for
complex operations appears to be a very difficult problem. Consider, for example,
a complex relational query comprised of several selection operations and a join
operation. If indices are to be used to process the join, these indices must be
created by the multiple processors being used to execute each of the selection
operations. The problem of synchronizing access to the index without completely
serializing the actions of the processors executing in parallel is a very difficult
problem, one that we have not been able to solve.

A second limitation is that we have ignored the impact of concurrency control
and recovery on the performance of the parallel update algorithms described in
Section 4. This is an area of research we are currently pursuing.

In Section 2 we describe the properties of the multiprocessor organization used
for the evaluation of the algorithms. In Section 3 we introduce the analysis
techniques and assumptions that we use to evaluate the different parallel algo-
rithms. Parallel algorithms for update, sorting, projection, join, and aggregate
operations are presented and evaluated in Section 4. Our conclusions and areas
for future research are discussed in Section 5.

2. A GENERAL MULTIPROCESSOR ORGANIZATION

The organization of the multiprocessor used for the evaluation of our parallel
algorithms consists of the following components:

(1) a set of general-purpose processors,
(2) a number of mass storage devices,
(3) an interconnection device connecting the processors to the mass storage

devices via a high-speed cache.

Such an organization is shown in Figure 1. The processors are responsible for
executing relational database operations and operate independently. Therefore,
the processors form a multiple instruction stream, multiple data stream (MIMD)
machine. Since the multiprocessor organization is intended to serve as a back-
end database machine, one of the processors is chosen to act as an interface to a
host processor (the processor with which a user interacts). It is the responsibility
of this processor to also act as controller to coordinate the activities of the other
processors. After a user submits a query for execution, the host will compile the
query and send it to the controller for execution on the database machine.

The memory hierarchy consists of three components. The top level consists of
the internal memories of all the processors. Each processor’s local memory is
assumed to be large enough to hold both a compiled query and three pages of
data. At the bottom level of the memory hierarchy are the mass storage devices
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations * 327

0 1

0

2

0

m

Processors

/

\

-

-

-

-

-

Interconnection

1

2

n-l

n

Shared
Device Disk Cache

-

-

-

-

-

\

/

Interconnection
Device

f

1

.

.

.

-n k

Mass Storage Devices

Fig. 1. Organization of a generalized multiprocessor.

used to hold the relations in the database. The middle level of the hierarchy is a
disk cache which is addressable in page units. A page of a relation is the unit of
transfer between all levels of the memory hierarchy.

The bottom two levels of the memory hierarchy are connected together in a
way that allows for data transfer between each mass storage device and any page
frame in the disk cache. The top two levels of the hierarchy are connected
together by an interconnection device with the following two properties. The first
is that several processors can read or write a different page of the disk cache
simultaneously. The second is the ability to broadcast the contents of a page
frame of the disk cache to any number of processors. Note that such an organi-
zation may not be cost effective and we are not advocating it in this paper. Our
purpose is merely to use it to describe and evaluate algorithms.

A final and very important point is that both the total memory of the processors
and the size of the disk cache are generally not large enough to contain a whole
relation. Therefore we cannot assume that a whole relation can be read from
mass storage to either the processor’s local memory or the disk cache before
processing begins. Accordingly, I/O costs become a significant factor in the

ACMTransactionsonDatabase Systems,Vol.8,No.3,September 1983

328 - D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

evaluation of the various algorithms. One consequence of this (very realistic)
assumption is that all the algorithms employed must be external.

3. ANALYSIS PARAMETERS

In this section we describe the parameters used in the analyses of the various
algorithms. We have chosen to represent fixed costs by capital letters. Other
parameters (for example, the number of pages to be read) are represented by
lowercase letters. We assume that data are moved and processed by page units.
A full page contains lz tuples; C is the cost of a simple operation such as comparing
two attributes or performing an addition; and the cost of moving a tuple inside a
page is V time units. The basic tasks used in evaluating the performance of our
algorithms are

(1) Communication. Cost. In this architecture transfer of pages are considered
I/O operations. In order to read or write a page, a processor must request a page
frame number in the cache from the controller. We term messages exchanged for
this purpose as “I/O related messages.” The cost of such messages is denoted by
I?,,. The remaining communication cost of an algorithm can be measured by the
number of control messages sent. Examples of control messages are messages
necessary to allocate processors to an operation, synchronization messages indi-
cating the end of a phase, and the initiation of a new phase during the execution
of an algorithm. Since we feel that the number of control messages is small
compared with the number of I/O related messages and since these messages are
short (they contain only a few words of information), we are neglecting them
when we compare the cost of several algorithms. While this may not be a
reasonable assumption, the cost of controlling cooperating processors is an
unexplored (and difficult) area requiring additional research.

(2) I/O Cost. A read request moves a page into a processor’s memory from the
cache (fetching it first from mass storage if necessary). A write request always
moves a page residing in a processor’s local memory to the cache. When a
processor wants to read or write a page, it sends a request message to the
controller specifying the relation name and the page number. The controller
replies by sending to the processor a cache frame number. We denote the cost of
a mass storage to cache transfer by R, and the cost of a cache to processor
transfer by R,. An upper bound for the read cost is achieved by assuming that all
read operations are from the mass storage device (i.e., the cost of any read is R,
+ R,). A lower bound results from assuming that all read operations are from the
cache, in which case a read cost is R,. To simplify our analysis we assume a
certain hit ratio for the cache, denoted by H. Since the entire relation is to be
referenced in processing a query (recall that there are no indices), the reference
string is known and pages can be prefetched from the mass storage devices to the
disk cache. This can result in a high value for H. Given the values for R,, R,, H,
and Cmsg, we can calculate C,, the average cost of a read, by a processor:

C, = HR, + (1 - H) (R, + R,) + ZC,,.

Similarly, in order to calculate the average cost to write a page, we assume that
H’ is a fraction describing the amount of time a free page frame will be available
in the cache during a write operation. Thus C,, the average cost of writing a
ACM Transactions on Database System, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations l 329

page, is

C, = H’R, + (1 - H’) (R, + IL) + ZC,,.

In order to analyze the algorithms in Section 4 we were forced to assume that the
cache and underlying I/O system have sufficient bandwidth to permit p read or
write operations to proceed simultaneously. For some number of processors p,
this assumption probably becomes invalid. An interesting extension to our anal-
ysis would be to develop a more detailed model of the cache and I/O system
which would more accurately reflect their impact on the performance of the
various algorithms. We have performed such an analysis for parallel sorting
algorithms in [9].

(3) Scan Cost. If a page is to be scanned, the scan is sequential. The number
of tuples in the page is assumed to be K. Thus the scan cost C,, is computed as

C,c = kC.

(4) Merge Cost. If two sorted pages are to be merged, the number of tuples in
each page is assumed to be k. Since all our operations require internally sorted
pages (see Section 4.1), both pages will already be sorted and thus the worst case
number of comparisons required to perform the merge of two sorted lists of
length k is 2k [ll]. The number of tuples to be moved is the same. Thus Cm, the
cost of merging two pages, is computed as

Cm = 2k(C! + V).

(5) Page Reorganization Cost. There are two cases when a page must be
reorganized to keep the tuples in sorted order. The first case occurs after the
application of an update operation which modifies the attribute on which the
page is sorted. We assume that the reorganization consists of both tuple compar-
isons and movements and expect that, on the average, half of the tuples in the
page will be affected. As before, a page is assumed to have k tuples. We compute
C,, the reorganization cost, as follows:

Cc, = +k(C + V).

The second case occurs when a buffer containing new tuples (e.g., the result of
a projection or a page of an intermediate relation) is to be used in a subsequent
operation. Since all our operations require internally sorted pages, the page must
be sorted before it is written to disk. We assume that the new page has k tuples
(though in some cases this number may be smaller) and that, on the average,
internal sorting of a page would require k log k comparisons and moves.’ Thus
C,,, the cost to internally sort a page, is

CL = (k log k)(C + V).

For our analysis of project, sort, and join algorithms we found it convenient to
group some of the above parameters and to define the following “2-page opera-
tion:”

c; = 2c, + c, + 2c,

’ Throughout this paper we assume all logs are to the base 2.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

330 l D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

is the cost of a 2-page operation and consists of reading 2 sorted pages, merging
them, and writing the resulting sorted block of 2 pages.

4. PARALLEL ALGORITHMS FOR DATABASE OPERATIONS

In this section we present and evaluate parallel algorithms for update operations,
sorting, projection, join, and aggregate operations using the analysis techniques
described in the previous section. Each algorithm presented is intended to
handle the general case where the number of pages to be processed is signifi-
cantly larger than the number of processors available. This implies that the
operand relation or relations cannot be brought entirely into the processors’
memories for processing. Several passes over the data are necessary. Intermediate
results not used in a pass must be written out to the cache (and possibly the
disk). We begin with a presentation of a set of update algorithms which maintain
each page in sorted order. Since sorting will be used as a basic step in the project,
join, and aggregate operations, it is presented second. Finally, the project, join,
and aggregate operations are presented.

4.1 Update Algorithms

Many of the retrieval algorithms presented in the following sections rely on the
property that each page is sorted on some attribute or group of attributes.
Permanent relation pages are sorted on the relation key. It follows then that any
update algorithm must keep the pages sorted. A second property that must be
preserved is that no duplicates are introduced as a result of an update. We show
that our algorithms do indeed preserve these properties. An analysis of one
algorithm’s complexity is presented in Appendix A.

We consider three update operations: delete, append, and modify. Each oper-
ation specifies a relation to be updated and a qualification clause specifying which
tuples of the relation are to be affected. For example,

Delete emp where emp.eno < 153.

However, there may be cases where the selection criteria for an update operation
is more complex than a simple selection. For example,

Delete emp where emp.eno < 153 and emp.dno = dept.dno and dept.name # “toy”.

Here we have to restrict both the employee and department relations according
to the selection criteria, perform the join, and then apply the delete operation to
the employee relation using the values produced by the join as the deletion
criteria.

We term these two kinds of qualification clauses simple and complex. A simple
qualification is one that may be applied in a single scan of the relation. A complex
qualification is one which requires us to perform some interrelation operation or
operations (e.g., join) in order to determine the tuples to be updated. The
algorithms presented below handle both simple and complex updates.

For consistency, we assume that updates are atomic operations; that is, an
update either successfully terminates, or in the event of a crash or abort, does not
affect the stored database. One reason for aborting update operations is the
introduction of duplicates into a relation.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations 331

4.1.1 Delete. A deletion operation is, in effect, the negation of a selection. If the
qualification is simple, each processor executing the deletion will examine a
unique subset of source relation pages. Tuples satisfying the deletion criterion
are removed from the page and the page is compressed and written to the cache.
The controller is informed of the size of the new page and stores it as a new page
of the relation.

Complex deletes require a preprocessing step to determine the set of tuples to
be removed. The set produced by this step is a list of database keys henceforth
referred to as Q, which is produced by executing the qualification clause of the
update operation. This clause typically consists of a number of retrieval opera-
tions such as selection and projection. The same processors assigned to execute
the deletion, perhaps augmented with other processors, first execute the qualifi-
cation clause. Once Q is produced it must be distributed to the processors which
perform the deletion. One possibility is to attach Q to the code segment as a data
structure. This approach is feasible if the size of Q is small (a few database keys).
Otherwise, Q can be broadcast to all the processors that have pages of the source
relation. Each processor would then perform a modified merge of its source page
with every page in Q. The modified merge would consist of deleting a tuple from
the source relation page if a key value in Q matches the tuple’s key. As in simple
deletes, modified pages are written out as new pages of the relation replacing the
corresponding source page.

4.1.2 Append. A simple append is one in which a small number of tuples are to
be appended to a relation. The simple append begins with the controller deciding
where to add the additional tuples, based on the density of the pages in the
relation. The processors first search for duplicates of those tuples to be appended.
If duplicates are found by any of the processors, the controller is informed, the
operation aborted, and the relation restored to its pre-append state. If no
duplicates are found, tuples are then added to the pages designated by the
controller. A page chosen for appending will have to undergo reorganization to
preserve its sort order.

Complex appends are executed in a similar manner to complex deletes. After
the list of tuples to be appended has been generated, the processors search for
duplicates using the modified merge described above. If the number of new tuples
is small, they are added to designated pages. Otherwise, the new pages are added
to the relation’s page table at the end of the operation.

4.1.3 Modify. There are two cases to consider for the modify operation. In the
case that the modified attribute or attributes does not contain the relation key
(or part of it), we are assured that no duplicate tuples will result from the modify.
In this case each processor executes the same code as the simple delete, applying
the modification to matching tuples rather than deleting them. The same analogy
holds for a complex, nonkey modify. Note that no page reorganization is required
since the page is sorted on the relation key which is unaffected.

In cases where the query modifies some part of the key, the algorithm must
check for duplicates. To do this we must have a list of the new key values and
check the source relation for duplicates using this list before we apply the update.
Our algorithm works in a similar manner to the algorithm for nonkey modifies

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

332 * D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

with one exception. When a tuple to be modified is found, the processor deletes
that tuple from the page and writes the modified tuple into a separate buffer.
After all the pages of the relation have been scanned, each page containing
modified tuples is sorted on the relation key. The new pages are then broadcast
to all processors that contain source relation pages to check for du,plicates. As in
the other update operations, if duplicates are found the operation is aborted.
Otherwise, the new pages are added to the source relation page table.

As the update algorithms are all quite similar, we provide a performance
analysis of only one of them. We chose to analyze the simple key modify since it
is one of the more complicated algorithms and since it has elements that appear
in all the others. This analysis is presented in Appendix A. We conclude this
section by observing that all the update algorithms (except the key modify)
operate in linear time. That is, given p processors, each algorithm would be
executed by the p processors in n/p “basic” time units. (Note that the basic time
unit used in the algorithm for one operation may differ from that used by the
algorithm for another operator.)

4.2 Parallel Sorting Algorithms

In this section we present two parallel sorting algorithms and analyze the
performance of each. The algorithms, the “parallel binary merge” sort and the
“block bitonic” sort, were only two of a number examined. Our analysis has
shown that the performance of the second algorithm is generally better.

Unlike other analyses of parallel sorting algorithms [4, 171, we do not assume
that the relation to be sorted initially resides in the processor’s main memory, or
that the algorithm may terminate when the sorted relation can be obtained by
gathering, in a specific order, the blocks of data from these memories. We assume
that the number of processors allocated to the sorting operationp will, in general,
be much less than the number of pages in the relation n and that n is larger than
the total memory of the processors and the size of the disk cache.2 Therefore, we
only consider external parallel sorting algorithms (i.e., algorithms where the
relation is read in successive blocks and sorting is done in a number of phases,
each of which terminates with its output in temporary buckets).

The relation to be sorted is stored as a set of pages, each of which is individually
sorted with respect to a prespecified key (see Section 4.1). Generally the relation
resides on one or more mass storage devices when the sort is initiated. However,
portions of it may be in the disk cache at that time owing to the relation’s use in
another, concurrent, operation. Similarly, when the algorithm terminates, the
relation is returned to the mass storage device. During intermediate phases of the
algorithm, temporary relations are created, and pages of these relations are
transferred to the processors under the controller’s supervision.

Each processor merges two ordered sequences (termed runs) of i pages each
into a run of 2i pages. Since we assume that the size of each processor’s main
memory is only 3 pages, this operation requires that the processor must execute
an external merge. For this case, the controller must maintain control tables
which enable it to transfer entire runs, 1 page at a time, to a processor in the
order necessary for a 2-way merge of 2 runs. The controller supervises and

’ To simplify the analyses of both algorithms, we have assumed that n and p are both powers of 2.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations * 333

coordinates the reading and the writing of single pages by the processors. Thus,
at any time, a processor merges 2 pages residing in its 2 input buffers into a single
page output buffer. When one of the input buffers has been completely scanned,
the processor reads into this same buffer the next page of the appropriate run.
When the output buffer fills up, the processor requests from the controller a “new
page” and transfers the contents of the output buffer to the cache. The new page
is an appropriately numbered page of a temporary relation. This page will serve
either as an input for the next phase of the sort or as a page of the result (sorted)
relation. It follows from the above argument that a processor can merge sort 2
runs of i pages each in i C”, operations (using the notation defined in Section 3).

4.2.1 Parallel Binary Merge Sort

Description. In this section we describe a merge-sort algorithm which utilizes
both parallelism during each phase and pipelining between the phases to enhance
performance. In [5], a binary merge sort without pipelining of the phases was
analyzed. The parallel binary sort algorithm presented below represents a sig-
nificant improvement.

Execution of this algorithm is divided into three stages, as shown in Figure 2.
We assume that there are at least twice as many pages as processors. The
algorithm begins execution in a suboptimal stage in which sorting is done by
successively merging pairs of longer and longer runs until the number of runs is
equal to twice the number of processors. During the suboptimal stage the
processors operate in parallel, but on separate data. First, each of thep processors
reads 2 pages and merges them into a sorted run of 2 pages. This step is repeated
until all single pages have been read. If the number of runs of 2 pages is greater
than 2p, each of the p processors proceeds to the second phase of the suboptimal
stage in which it repeatedly merges 2 runs of 2 pages into sorted runs of 4 pages
until all runs of 2 pages have been processed. This process continues with longer
and longer runs until the number of runs equals 2p.

When the number of runs equals 2p, each processor will merge exactly 2 runs
of length n/2p. We term this phase the optimal stage. At the beginning of the
postoptimal stage the controller releases one processor and logically arranges the
remainder as a binary tree (see Figure 2). During the postoptimal stage parallelism
is employed in two ways. First, all processors at the same level of the tree (Figure
2) execute concurrently. Second, pipelining is used between levels. By pipelining
data between levels of the tree, a parent is able to start its execution a single time
unit after both of its children (i.e., as soon as its children have produced 1 output
page). Therefore, the cost of the postoptimal stage will be a 2-page operation for
each level of the three plus the cost of the root processor to merge 2 runs of
length n/2.

Analysis. If p = n/2, there is no suboptimal stage and the processor at the top
of the binary tree waits log(n/2) units of time before it starts merging 2 runs of
size n/2. Therefore, the algorithm terminates in log(n/2) + (n/2) Ci operations.

If p c n/2, then during each of the log(n/2p) phases of the suboptimal stage
each processor executes a total of n/p page operations (i.e., (n/2p) Ct operations).
In phase i the runs are one-half the size of the runs of phase i + 1, but each of the
p processors performs twice as many merge operations in order to exhaust the

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

334 ’ D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

q
d
El
El

BP1pj

?

8
Pl

/ \

BP21j 15
11

8 P2

17 ci El a
El El El III 14

BP3B

7
14

2

P3

q
q
lo 5 0 1

H"B Q 1

0 P4

SUBOPTIMAL
STAGE

OPTIMAL
STAGE

POSTOPTIMAL
STAGE

Fig.2. Parallel binary merge with 4 processors and 16 pages.

runs. During the optimal stage, each of the p processors reads 2 runs of length
n/2p. Therefore, there are n/2p parallel e-page operations. Finally, for the
postoptimal phases, the number of 2-page operations is equal to (log p - 1) +
n/2 where (logp - 1) represents the time for the first page of both runs to reach
the top processor. After this point the top processor must merge 2 runs of length
n/2. Therefore, the total execution time of the algorithm expressed in CZ, units is

&log 6 + & + logp-1+;
0

suboptimal optimal postoptimal

ACMTransactionsohDatabaseSystems,Vol. &No.3,September1983

Parallel Algorithms for Relational Database Operations 335

4 2 2 1
LO .

a,- LO q
Pl Pl Pl

- HI

-m 6 5
LO

P2 P2
HI - HI

Step 1 Step 2 Step 3

Fig. 3. Block bitonic sort with 2 processors and 4 runs of 2 pages each.

which can be expressed as

n log n
-+;- g-1 (logp)-1.

2P ()
4.2.2 Block Bitonic Sort

Description. Batcher’s bitonic sort algorithm sorts n numbers with n/2 com-
parator modules in 3 log n(log n + 1) steps [3]. Each step consists of a parallel
comparison-exchange and a transfer. Execution of this algorithm requires that
the comparison-exchange units be interconnected with a perfect shuffle intercon-
nection scheme [151.

As first suggested in [4], if a comparator module is replaced with a processor
which can merge 2 pages of data and then separately output the “lower” and the
“higher” pages of the sorted a-page block, then we have a block parallel algorithm
which can sort n pages with n/2 processors in 3 log n(log n + 1) 2-page operations.
Execution of this algorithm using two processors is illustrated in Figure 3. We
further generalize this idea to obtain an “external bitonic sort” scheme. The basic
instruction performed by a processor is an external 2-way merge sort of 2 sorted
streams each of size n/2p.

Because the block bitonic algorithm can process at most 2p blocks (runs) with
p processors, a preprocessing stage is necessary when the number of pages to be
sorted exceeds 2p. The function of this preprocessing stage is to produce 2p sorted
blocks of size n/2p pages each. We have identified two ways of performing this
preprocessing stage. The first is to use a parallel 2-way merge sort to create 2p
sorted blocks (runs) of n/2p pages each. The second is to execute a bitonic sort
in several phases with blocks of size 1, 2p, (2p)‘, . , . , until blocks of size n/2p
pages are produced. We have analyzed both approaches and have discovered that
the first approach is approximately twice as fast as the second for large n and
relatively small p. Therefore, we present below only an analysis of the first.

Analysis. The first part of the algorithm is identical to the suboptimal phase
of the parallel binary merge and completes in (n/2p)log(n/2p)C% time units.
Then, an external bitonic sort algorithm is applied to the 2p blocks of size n/2p.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

336 * D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

This step requires

n log 2p
- - (log 2p + l)C2,
2P 2

operations.

The total cost is thus

&
(

logn +
log2 2p - log 2p

2)

C2
P’

4.2.3 Performance Comparison of the 2 Sorting Algorithms. Since both algo-
rithms presented in this section execute essentially in n log(n/2p)CE time units,
when 0 (p) < 0 (log n) each achieves the optimal speedup ofp over a umprocessor
external merge sort. Indeed, when O(p) c O(log n), the other factors in the
formulas established for the algorithms (Sections 4.2.1 and 4.2.2) are linear in n.
In Figure 4 we have plotted the performance of both algorithms for a fEed
number of processors and a varying number of pages to be sorted. As established
by these graphs, the block bitonic sort outperforms the parallel binary merge
(this fact can be proven analytically by comparing the formulas).

4.3 The Project Operation

The projection of a relation with domains dl, d2, , . . , dn on a subset of domains
di, dj, . . . , dm requires the execution of two distinct operations. First the source
relation must be reduced to a “vertical” subrelation by discarding all domains
other than di, dj, . . . , dm. Since discarding attributes may introduce duplicate
tuples, the duplicates must be removed in order to produce a proper relation.

While the first operation can be performed very efficiently, the second is much
more complex and requires nonlinear (with respect to the number of tuples) time
on a single processor. One could argue that, if the result of the projection is going
to only be used in a subsequent operation and not become a permanent relation
in the database, it is unnecessary to perform the duplicate removal. However, if
there are a large number of duplicates in the result relation (e.g., if the relation
is projected on a nonkey attribute), the execution time of the complete query
could be considerably slower (possibly orders of magnitude slower) without re-
moval of the duplicates.

On a single processor, the complexity of eliminating duplicates is essentially
the same as the complexity of sorting the relation. However, in a multiprocessor
organization, we may either sort or make use of parallelism to eliminate duplicates
without sorting. Since parallel sorting was considered in the previous section, in
this section we present and analyze a method to eliminate duplicates which does
not require sorting. The method relies on a hardware broadcast facility.

We assume that pages have already been reduced to a vertical form by the
previous operation and that there are no intrapage duplicates. Each processor
reads one page. Let a processor be labeled by the number of the page it has read
(that is, the processor that has read page i is known as Pi). For i= p, p - 1,
p - 2,. ..) 2, page number i is broadcast to processors Pi-l, Pi-z, . . . , PI. When
page i is broadcast, Pi is released. When processor Pj (j < i) receives page i, it
compares page i and page j and eliminates any duplicates from its page. Note

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

17

16 Parallel Binary Sort

15

14

13

12

11

m 10
.z
5 9
aI
.E
I- 8

“u”
N 7

0”
- G

5

4

3

2

1

Parallel Algorithms for Relational Database Operations * 337

h 8 ,

4 5 6 7 8 9 10 11 12 13 14 15 16 17

1092 pages

Fig. 4. Comparison of the two sorting algorithms.

that Pj will not see page i if i < j. Consequently it is guaranteed that only one
copy of each tuple will remain in the relation (that copy will reside in the highest
numbered page of all the pages that had a copy of it). The broadcast step is
shown in Figure 5.

In the general case when p, the number of processors, is smaller than n, the
number of pages, the algorithm works in a number of distinct phases. Each phase
produces p projected pages and sees p fewer pages than the previous phase. In
phase i there are (i - 1)p pages that have already been projected, p pages in the
processors’ memories, and n - (ip) nonprojected pages. The phase begins by
broadcasting the n - (ip) nonprojected pages to the p processors for duplicate
removal. After this step has completed, Pp broadcasts its page and exits. The

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

338 * D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

. . . . 4

dl

PP-1 pP

I I I
I I I
L -- -_d- ----a------ L i

Broadcast step 1

----a Broadcast step 2

*- ,.....” Broadcast step p-l

Fig. 5. Projection by broadcast.

remaining processors follow suit. The cost of phase i is thus

c, + (n - ip)(C, + C,) + (p - l)(C, + c, + CL) + c,.

If n = pm, there are m phases and the total cost of the algorithm is

mC, +
m(m - Up

2
(Cr + Cm) + m(p - l)(C, + Cm + W + mCW.

This may be rewritten as

()
$+S (cr+cm) -%m+nCw

P

which is of the order of n2/2p page operations. Note that if n is not an exact
multiple ofp, the last phase would use only n modp processors and thus terminate
faster.

One may think of reducing the number of pages before starting the broadcast
steps. For this modified version of the algorithm, each processor reads as many
pages as it can, eliminating duplicates as it goes along. This modification may
considerably improve the performance of the algorithm in the case of a high
duplication factor. For example, if a tuple is duplicated 10 times on the average
and the duplicates are uniformly distributed among the pages, up to 10 pages
may be merged by each processor before the sequential broadcast algorithm is
initiated. A second improvement to the algorithm would be to perform such a
compression, at least once, of all the source relation pages before the broadcast
step is initiated. Thus, when the number of duplicates is expected to be large, a
broadcast method with a priori compression would perform much more efficiently
than the analytical upper bound of O(n2/2p) page operations. On the other hand,
if the number of duplicates is expected to be small, and if n >> p, it is probably
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations l 339

more efficient to use one of the sorting algorithms which perform in O(n log n/
2p) page operations rather than O(n2/2p).

A comparison of the performance of these two algorithms is unfortunately
beyond the scope of this paper. An accurate evaluation of these two algorithms
requires the application of statistical tools since the distribution of the duplicates
will have a significant effect both on the number of compression steps of the
modified broadcast algorithm and the lengths of runs in the sorting algorithms.
We are currently engaged in such an effort.

4.4 Join Algorithms

In this section we present two parallel algorithms for the relational join operation:
a parallel “nested-loops” algorithm and a parallel “merge-sort” algorithm. The
nested-loops join algorithm relies heavily on a broadcast facility, while the merge-
sort algorithm requires sorting of the two source relations with respect to the join
attribute. A third strategy based on hashing techniques has been recently inves-
tigated in [l, lo]. A performance comparison of the hashing strategy with either
the nested-loops or the merge-sort joins is beyond the scope of this paper, but we
plan to incorporate it in future work.

4.4.1 The Parallel Nested-Loops Join Algorithm. Given two relations R and
T, the “smaller” relation (i.e., the one with fewer pages) is chosen as the inner
relation, and the larger (say R) becomes the outer relation. The first step is for
the processors to each read a different page of the outer relation. Next, all pages
of the inner relation Tare sequentially broadcast to the processors. As each page
of T is received by a processor, it joins the page with its page from R. Clearly, this
algorithm is a block parallel version of the most inefficient uniprocessor join
algorithm since each tuple of relation R is compared with each tuple of relation
T. However, since it achieves a high degree of parallelism for the duration of its
execution (limited only by the number of pages in R), it may outperform more
sophisticated join algorithms.

Let n and m be the sizes, in pages, of the relations R and R’ and suppose
n L m. Let p be the number of processors assigned to perform the join of R and
R’. S is the join selectivity factor and indicates the average number of pages
produced by the join of a single page of R with a single page of R’. If p = n, the
execution time of this algorithm is

T nested ~~~~~ = T(read a page of R)

+ mT(broadcast a page of R’)

+ mT(join 2 pages).

It is important to notice that joining 2 pages consists of the following operations.
The 2 pages are joined by merging, then the output page is sorted on the join
attribute of the subsequent join (if there is one), and finally the output page is
written out. The number of output pages written depends on the join selectivity
factor S defined by

s = size(R join T)
mn

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

340 l D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

If p c n, the same process must be repeated n/p times, yielding

T nested loops = - ; {Cr + m[Cr + cm + S(Cao + Cw)l>*

In the case that either the subsequent join is to use the same join attribute or
the result of the join is to be displayed on a screen, the output pages need not be
internally sorted.

4.4.2 Merge-Sort. This algorithm is performed by first doing a parallel sort on
both relations to be joined (assuming that they are not both already sorted on
the join attribute). After both relations have been sorted, they are joined, and the
result relation pages are sorted on the attribute used by the subsequent operation.
The merge operation is executed by a single processor. If the sort steps are
performed using our block bitonic algorithm, the join cost is

T-
m+m

&logn+$logm+ (log22p-log2p)-
4P 1 C”,

+ (n + m)C, + max(n, m)C, + mnS(C,, + CL).

One improvement to this algorithm is to leave the pages of the output relation
unsorted. Then the p processors participating in the subsequent operation can
perform the internal sort in parallel rather than the sequential sort done now.

It should be noted that by using a merge-sort algorithm to perform the join,
we obtain a relation sorted with respect to the join attribute. This property is
desirable if the output relation is the final result of a query or if it becomes the
source relation for a subsequent operation using the same joining attribute.

4.4.3 Comparison. Using the formulas developed in the previous two sections,
we have compared the performance of these two join algorithms. Our results are
presented in Figures 6 and 7. Our assumptions about the processors’ capabilities
are specified in Appendix B.

Figure 6 presents the results for a selectivity factor of 0.001 with no sorting of
output pages. We assumed that each page contained three hundred, 55-byte
tuples, but we found very similar results for pages composed of one hundred, 165
byte tuples. The results indicate that when two relations of a similar size are
joined, the merge-sort algorithm should be employed, unless the number of
processors available is close to the larger relation size. However, if the ratio
between the relation sizes is significantly different from 1, the nested-loops
algorithm outperforms the merge-sort (except for a small numbers of processors).
For lower selectivity factor values, the merge-sort algorithm performs better than
the nested-loops algorithm because the merge step (handled by a single processor)
has to output fewer pages. Since in the nested-loops algorithm the output relation
is divided among all the processors, a reduction in its size has very little effect on
the total execution time. Figure 7 shows a similar result for the same joins with
a selectivity factor of 0.001 with sorting of output pages.

4.5. Aggregate Operations

In contrast to the relational operations join, project, select, etc., there is no
commonly accepted set of aggregate operations among existing relational data-
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

45

40

35

25

15

10

5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

O,l

Parallel Algorithms for Relational Database Operations l 341

16384 Pages Join 1024 Pages

-.-.-.- 1024 Pages Join 1024 Pages

------ 1024 Pages Join 128 Pages

Unsorted Output Pages

Selectivity Factor = 0.001

log2 processors

Fig. 6. Comparison of the two jo& algorithms.

base systems. For our purposes, we adopt the facilities provided by INGRES [181
as being representative and develop algorithms to process them (see [8] for a
presentation of algorithms for processing aggregates in a uniprocessor environ-
ment). We distinguish “scalar” aggregates from aggregate “functions.” Scalar
aggregates are aggregations (average, max, etc.) over an entire relation. Aggregate
functions fist divide a relation into nonintersecting partitions (based on some
attribute value, e.g., sex) and then compute scalar aggregates on the individual

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

342 * D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

50

45

40

35

30

25

20

15

0.8

0.7

0.6

015

0.4

0.3

0.2

0.1

16384 Pages Join 1024 Pages

-.-. -. - 1024 Pages Join 1024 Pages

_---- 1024 Pages Join 128 Pages

Sorted Output Pages

Selectivity Factor = 0.001

A
123456789 10 11 12 13 14

log2 processors

Fig.7. Comparisonofthetwojoin algorithms.

partitions. Thus, given a source relation, scalar aggregates compute a single result,
while aggregate functions produce a set of results (i.e., an output relation). The
two types of aggregates have the following form:

scalar agg-op (agg_att where qual)
function agg-op (agg-att by-list where src-qual) where by-.qual
by-list by att-1 by att-2 by . . . by att-n

agg-op sum, avg, count, max, min, sumu, avgu, countu
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations

Employee Relation

* 343

Name

Smith

Miller

Jones

Brown

Department Task SdarY

Toys Clerk 300.00

Shoes Buyer 650.00

Books Acct 550.00

Shoes Clerk 400.00

countu(Empbyee Department) = 3

Manager

Johnson

Bergman

Hanis

Conners

Fig. 8. Example of a “unique” scalar aggregate.

The agg-att is the attribute over which the aggregate is being computed. The
aggregate operators (agg-op above) are self-explanatory except for those with
the “u” suffix. The u denotes “unique” and implies that duplicates (tuples which
match on the agg-att) will be eliminated before the aggregate is computed (see
Figure 8).

Qualifications may be added (“where qual”) to compute an aggregate over a
subset of tuples in a relation. For aggregate functions, the partitioning attributes
are specified with the by-list. Note that relations may be partitioned on more
than one attribute (e.g., partitioning employees by department and task within
department). Also note that the result of an aggregate function may depend on
qualifications outside the aggregate (by-q&) (this is discussed in more detail
later). In contrast, scalar aggregates are “self-contained” and are not affected by
the rest of the query. Finally, as with update operations, we distinguish “simple”
qualifications from “complex” qualifications. Simple qualifications can be pro-
cessed in a single scan of the relation and may be applied at the same time that
the aggregate is being computed. Complex qualifications require interrelation
operations so the relation must be preprocessed before computing the aggregate.

The compute a scalar aggregate, a processor maintains two fields: a count field,
and the aggregate value itself. The count field specifies the number of tuples
contributing to the aggregate value and is used in averaging and initialization.
When processing aggregate functions, a third field is also required to identify the
partition (since a processor may be accumulating aggregate values for more than
one partition at the same time). The analyses of the algorithms described below
are presented in Appendix C.

4.5.1 Scalar Aggregates. Scalar aggregates may be processed in a single pass
over a relation. We consider only the obvious algorithm. Thep processors request
pages of the source relation from the controller and compute an aggregate value
for the pages they see. When the pages are exhausted, we have p partial results,
and a single processor must combine them to produce the final value. A simple
qualification is applied at the same time the processors are accumulating their
partial results. Complex qualifications require preprocessing of the source relation
since interrelation operations are involved. If the aggregate operator is a “unique”
operator, the source relation must be projected on the agg-att so that duplicate
tuples are eliminated.

45.2 Aggregate Functions. In this section we describe two algorithms for
processing aggregate functions. Recall that we must consider two types of quali-

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1888

344 ’ D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

fications. To see why, consider the following example:

count(emp.name by emp.mgr where emp.sal > 500)

This query requests, for each manager, a count of the number of employees
earning more than $500. However, even if a manager does not have any employees
making more than $500, he should not be excluded from the list and his count
should be set to 0. If we applied the qualification first and then computed the
aggregate function on the result, we would miss those managers since all his
employees were removed by the qualification. As another example, consider

count(emp.name by emp.mgr where emp.sal > 500) where emp.mgr # “Smith”

Clearly, in this case we want to include the count for all managers other than
Smith. Thus, we need to distinguish restrictions on the source tuples from
restrictions on the set of possible partitions. This is why we allow for two different
types of qualifications in aggregate functions. Qualifications inside the aggregate
(the “src-qual”), in addition to selecting a subset of the source relation, may
have the undesirable side effect of removing desired partitions (e.g., manager
Johnson in Figure 8). On the other hand, qualifications outside the aggregate
(the “by-qual”) ,are used to eliminate unwanted partitions. (e.g., manager Smith
above).

When an aggregate function contains an src-qual, any algorithm for processing
the aggregate must begin by determining the set of desired partitions so that any
partitions which are removed by applying the src-qual (e.g., managers with zero
counts, above) can be included in the result of the query. Determining the set of
desired partitions occurs in one or two steps depending on whether the query
contains a by-qual. If the query does contain a by-q& (whether simple or
complex), it is applied to the source relation in order to eliminate “unwanted”
partitions. Then, the resulting relation (or the source relation if the relation did
not contain a by-q& is projected on the by-list attributes to determine the
“names” of the desired partitions.

Algorithm 1: Subqueries with aparallel merge. Our first algorithm is similar
to the scalar aggregate algorithm and works best when the number of partitions
is small. In the first stage, each processor reads its source relation pages, but
instead of accumulating a single aggregate value, it produces one aggregate value
for each partition it sees. This results in a number of pages containing partial
results which must be combined. The second stage is a parallel “merge” of the
pages produced in the first stage.

When qualifications are included in a query, several additional steps are needed
to extract the correct partitions. First, the by-qual (if the query has one) must
be applied to eliminate unwanted partitions. If the query has an src-qual, three
additional steps must be performed. First, the set of desired partitions must be
determined by projecting the source relation (or the relation produced by exe-
cuting the by-qual) on the byAist. This step will produce a temporary result
relation (denoted R ‘) with the result and count values for each partition initialized
to 0. Next, the src-qual must be applied. If the query has a simp1.e src-qual, it
may be processed at the same time the aggregate is computed; otherwise, it is
performed as a separate operation before the aggregate is computed. The final
ACM Transactions on Database Systems, Vol. 8, NO. 3, September 1983

Parallel Algorithms for Relational Database Operations 345

stage required when an src-qual is specified is for one processor to merge R’
with its run of t pages before the parallel merge is initiated.

Finally, note that unique aggregates require a separate preprocessing step in
which the source relation is sorted on the by-list in order to eliminate duplicates.

Algorithm 2: Project by-list and broadcast source relation. This algorithm
exploits the ability of our architecture to broadcast pages to multiple processors.
The idea is to first project the source relation on the by-list domains to
determine the partitions. This gives us a list of partitions which we will distribute
among p processors. The pages of the source relation are then broadcast to all
processors and each processor computes the aggregate value for its set of parti-
tions. If the space occupied by the list of partitions exceeds the combined buffer
space of the processors, then the source relation will have to be broadcast more
than once. If the query has a simple src-qual, it may be processed at the same
time the aggregate is computed. If a unique aggregate is specified, the source
relation must be sorted on its by-list (as the major field) and the agg-att (as
the minor field). Then, duplicates will be eliminated by the processors which will
compare tuples with the previous tuple received for that partition.

Comparison. In order to compare the performance of these two algorithms, we
selected two queries, one with an src-qual and one without an src-qual. In
Figures 9 and 10, we have plotted the execution time for both algorithms for 32
processors, 1000 partitions, and varying relation sizes. (The assumptions made
with regard to I/O costs and processor speeds are described in Appendix B; the
curves are based on formulas derived in Appendix C.) Figure 9 shows that
Algorithm 1 is significantly superior to Algorithm 2 (up to two orders of magni-
tude) when the query does not contain an src-.qual. However, as shown in Figure
10, when the query contains an src-qual, Algorithm 2 is better except when the
relation is very large. Furthermore, the performance of Algorithm 1 is sensitive
to the number of partitions. Since both algorithms process by-qualifications in
the same way, the results presented are representative whether or not the query
contains a by-qual. Similar results were obtained with both different numbers
of processors and processors of varying speeds.

In addition to the two parallel aggregate function algorithms which we have
presented, we also developed and evaluated another algorithm which employed
a parallel binary merge sort to divide the source relation into one subrelation for
each partition. As each subrelation was produced by the sort, another processor
immediately read the subrelation and computed its aggregate value. While this
algorithm initially looked promising, our analysis showed that is was always
inferior to the other two algorithms except when the relation was partitioned on
a key (an unlikely event).

5. CONCLUSIONS AND FUTURE RESEARCH

This paper has presented and analyzed algorithms for parallel processing of
relational database operations. We have concentrated on those operations which
cannot be processed in a single pass over the relation. To analyze alternative
algorithms, we have introduced an analysis methodology which incorporates I/O,
CPU, and message costs.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

346 l

1000

900

800

700

600

,”
E
Y 500 lo

.E

E” .r
I- 400

300

200

100

D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

Algorithm 1

. -.-.- Algorithm 2 I

32 Processors

No Source Qualification

I

i
i

i

!

i

I
i

I
/

I’
t

!’ /
/

/
/

/’
/’

/’
/

/’
0.

0’
1. .-

/.A./’ ,

,_.-.-.C
,_.-.-’ -.

5 6 7 8 9 10 11 12

loci2 pages

Fig. 9. Comparison of two aggregate algorithms.

Parallel sorting has been used as a basic building block in the design of
algorithms for relational database operations. Although an extensive literature
on parallel sorting exists, none of the algorithms appear feasible. We have
discussed two algorithms for parallel sorting of large relations residing on mass
storage devices. We did not rely on an asymptotic complexity analysis to derive
the “optimal” algorithm because I/O time and communication overhead must be
incorporated for a more accurate analysis. For example, despite the theoretical
complexity of O(n) and O(log2 n), the parallel binary sort and parallel block
bitonic sort show a comparable performance (see Figure 4).
ACM Transactions on Database System, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations 347

Algorithm 1

. -.-.- Algorithm 2

32 Processors

1 Source Qualification

!
I

i
i
I

1000

900

800

700

600

w
2
c cz 500

.z

$
;' 400

300

zoc

1oc

7 8

log2 pages

Fig. 10. Comparison of the two aggregate algorithms.

Our analysis of algorithms for parallel join operations indicates that when the
sizes of the two relations to be joined are approximately the same, the parallel
merge-sort algorithm is superior to the parallel nested-loops algorithm. However,
when one relation is larger than the other (as is frequently the case when joining
a relation describing an entity set with a relation describing a relationship), the
parallel nested-loops algorithm is faster.

We have presented two algorithms for the project operation: one based on
sorting and the other based on broadcasting. The results presented are inconclu-
sive since the analyses do not incorporate the effect of duplicate tuples on the

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

348 * D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

performance of the two algorithms. Our feeling is that elimination of duplicates
through sorting is probably faster except when there is a high duplication factor.
The extension of these analyses to handle the effect of duplicates is currently
under investigation.

Our model of a shared memory multiprocessor architecture has enabled us to
examine a wide range of algorithms without being constrained by the limitations
of a specific interconnection scheme. On the other hand, it has forced us to make
simplifying assumptions. In particular, we have not clearly differentiated between
the I/O and inter-processor communication costs. Also, we have assumed that the
processors were synchronized by their page requests to the controller. Despite
these limitations, we believe this study to be a first important step in the design
and analysis of parallel algorithms for database machines. A strong argument to
be made in favor of this approach is that it has enabled us to proceed with the
implementation of update, sorting, and aggregate operations on DIRECT.

This paper leaves open several other areas for future research. First the
addition of “logic-per-track” devices to the multiprocessor organization would
permit the development of additional algorithms for join, projection, and aggre-
gate operations. A second area for future research is the design and analysis of
parallel algorithms for database operations which employ indices. If algorithms
can be developed that allow the efficient processing of indices in a multiprocessing
environment, these algorithms could also be utilized to develop parallel algorithms
for the selection operation whose performance can then be compared with the
performance of “logic-per-head” devices. Another area that needs further explo-
ration is the development of techniques for evaluating the cost of controlling
multiple processors on complex algorithms (such as the parallel merge-sort join).
While it may be the case that the control cost is dominated by the I/O cost (and
hence the relative performance of the algorithms is unchanged), this topic merits
further investigation. In addition, the performance of each of these algorithms in
the context of a complete query should be analyzed since the choice of an
algorithm for each operation may be affected by the other operations in the
query. Finally, an interesting extension would be to consider a cost/performance
evaluation of these algorithms in which architectural costs were incorporated.

APPENDIX A. ANALYSIS OF THE PARALLEL KEY MODIFY ALGORITHM

In this appendix we analyze the performance of the parallel key modify algorithm
described in Section 4.1.3. The execution time of the simple key modify by p
processors is given by the following formula:

where

Tp =; ([T:] + [Tf])

stage1 stage2

and

T: = C, + C,, + C, + C, + $ (C,, + C,)

T:: = C, + z(C, + Cm).

In stage1 each processor examines n/p source relation pages, looking for tuples
matching the qualification (G + C,,). We assume that on the average j such

ACM Transactions on Database System, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations 349

tuples exist in each source relation page. Each page containing qualifying tuples
needs to be reorganized (CJ and written out (G) after the matching tuples have
been moved to the buffer. Finally, the new tuples need to be sorted ((j/k)&)
and written out ((j/k)&).

In stage2 the processors search for the possible introduction of duplicates into
the relation. Let z denote the number of pages containing modified source tuples.
Then each processor reads a page of the source relation and all of the z pages.
The processor performs the modified merge described above. Finally, if no
duplicates are found, the z new pages are added to the source relation page table.

APPENDIX B. PROCESSOR CAPABILITIES ASSUMPTIONS

In this appendix we outline our assumptions about the capabilities of processors
used in our evaluation of the join and aggregate algorithms (see Sections 4.4 and
4.5).

Page size is 16 kbytes.
C, the time to compare two attributes, is 10 ps.
V, the time to move a tuple, is based on the cost of 1.5 ps to move a single

word. Thus, for a tuple length of 150 bytes, Vis 225 KS.
R,, the time to transfer a page between mass storage and the cache is 28 ms.

This is based on a transfer time of 20 ms, a latency time of 8 ms, and a negligible
track seek time.

R,, the time to transfer a page from the cache to the processor’s memory is 16
ms, based on a processor bus bandwidth of approximately 1 Mbyte per second.

The cache hit ratios H and H’ were assigned the values 0.85 and 0.35,
respectively.

The cost to process a message Cmsg, including the sending, transfer time, and
receiving, was picked to be 15 ms.

Finally, it should be noted that each experiment was subsequently performed
with slower processor speeds (about half as fast), and that similar results were
obtained.

APPENDIX C. ANALYSIS OF THE PARALLEL AGGREGATE ALGORITHMS

In this appendix we analyze the performance of the parallel aggregate algorithms
described in Section 4.5. In the following discussion, we assume these parameters:

n number of pages in source relation
P number of processors to process aggregate
m for aggregate functions, number of partitions
r for aggregate functions, number of result tuples per page
q number of operations to apply for a simple qualification (if query has one);

else 0.

Scalar aggregates are as follows:

Tsc-agg = T(exec qual) (if complex qual)
+ T(project) (if unique agg-op)
+ T(partial results)
+ T(combine p part&)

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

350 ’ D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

We are concerned with the time needed to produce and combine the partial
results since the time required to execute the qualification and to project the
source relation have been covered by other sections of this paper.

T(partial results) = 2 p [Cr + (4 + W~CI + c,,.

Each processor sees n/p pages. To process the page it must read it, apply a
qualification to it (if simple), and update the partial result. Thus, each tuple
requires a number of comparisons for the qualification plus an additional opera-
tion (e.g., add) to process the aggregate. The time to send the partial result is just
the cost of a message. The processor which combines the partial results simply
reads p messages and performs p arithmetic operations (note, the cost of the
message is accounted for by the partial results formula). Thus, T(combine
part&) = PC. The final formula is thus

Tsc-agg = T(exec qual)
+T(project)
+ WP)[Cr + (q + l)CX] + CIna,
+pC

(if qualification)
(if unique aggregate)

Aggregate Functions: Algorithm 1

The cost of this algorithm (assuming no qualifications and a nonunique aggregate)
may be computed as

Z’algl = Z’(produce partial result pages) + T(paralIe1 merge).

Each processor will read n/p source relation pages. Each tuple in the page must
be placed in the correct partition and the aggregate value for that partition must
be updated. If we assume x = min(m, r) partitions and use a binary search, then
for each of the k tuples in a source page, log x comparisons are required to locate
the correct partition. After the correct partition is located, the aggregate value
must be updated. Thus, the cost to process the source relation pages is

; (Cr + k[(log x) + l]C}.

We need to estimate the number of output pages produced by one processor.
An upper bound of [(n/p)k]/r pages occurs when the relation is partitioned on a
key. This is a pathological case. A lower bound is r(m/p)/rl which occurs when
the tuples from each partition are seen by only one processor (an equally unlikely
event). We feel that t = [m/r] is a plausible estimate of the number of output
pages produced by each processor if one assumes that the partitions are uniformly
distributed in the relation so that each processor sees all the partitions. Therefore,
the cost for a processor to output its partial result pages is tC,.

In addition to accounting for the cost of writing each of the t pages, we must
also account for the cost of putting each page in sorted order (so that a binary
search can be utilized). Each time a new, by-list value is encountered (i.e., a new
partition), the processor must create a new result tuple and add it. to the sorted
page. For each new partition this step requires, on the average, that one-half the
result tuples be moved down. For x = min(m, r) partitions, x(x + 1)/4 tuple
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations 351

moves will be required. Thus, the cost to process each of the t pages produced by
a processor is

t
[
Jg (x + 1) + c,

I
.

The parallel “merge” we use in the second stage is not a true merge since 2
partial output pages are combined to form a single output page. First, each
processor must form a sorted run of the t pages it. has produced. Using a merge
sort this step requires (t/2) log(t/2) C$ operations. Next a parallel binary merge
(see Section 4.2.1) is ked to combine thep runs of t pages into one run of t pages.
The number of stages used is log p. Each processor will read two runs of t pages,
merge them, and write a run of length t. Let. C,,,, = 2r(C + V) denote the cost of
a merge of 2 output pages. Then the cost of the parallel merge is

(t + logp)(2C, + Cd + C,).

The total cost of the basic algorithm is then

!ralg1=; {C, + k[(log X) + l]C} + t
[

x(x + 1)V
4 + CW 1

+$og ; C;+(t+logp)(2C,+C~~+Cw). 0
L \‘/

The final formula for Algorithm 1 is thus:

Z’algl = T(execute by-qual)
+ T(project on by-list)
+ T(execute src_qual)
+ T(project)

process partitions:

+ (n/p)(G + M(log 4 + W)
+ (n/p) w%)
+ t(x(x + l)(V/4) + C,)

perform parallel merge:

+ wwg(t/w;
+ t (2C, + cm, + C,)
+ (t + logp)(2Cr + cm, + C,)

Aggregate Functions: Algorithm 2:

if by-qual
if srikqual
if complex srckqual
if unique aggregate

x = min(r, m)
if simple src-qual
t = [m/r1

if src-qual

The cost. of this algorithm (assuming no qualifications and nonunique aggregates)
may be summarized as

Z’alg2 = T(project by-list) + T(process partitions).

A processor sees every page of the source relation (n pages). Each tuple must be
placed in the correct partition (depending on the number of passes over the

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

352 l D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson

source relation, there are either m/p or r possible partitions), and we assume that
the partitions are sorted so a binary search may be used. When the broadcast is
complete, the processor must write its result. Let b = [(m/r)/pl denote the
number of complete broadcasts of the source relation. The cost to process
partitions is

T(process partitions) = b{n[C, + (log x)C,] + G}
where x = min(r, m/p).

Thus, the total cost for this algorithm is

Talg2 = T(exec by-qual)
+ T(project by-list)
+T(exec src-qual)
+ T(project source) + bn(C,,)

process partitions:

if by-qual
determine partitions
if complex src-qual
if unique aggregate

+ bMC, + (log x)Cs,) + Cw)

+ bnqC,, if simple src-qual

REFERENCES
1. BABB, E. Implementing a relational database by means of specialized hardware. ACM Trans.

Database Syst. 4, 1 (Mar. 1979), l-29.
2. BANERJEE, J., BAUM, R.I., AND HSIAO, D.K. Concepts and capabilities of a database computer.

ACM Trans. Database Syst. 3,4 (Dec. 1978), 347-384.
3. BATCHER, K.E. Sorting networks and their applications. In Proc. AFIPS 1968 Spring Jt.

Computer ConfI, vol. 32, AFIPS Press, Arlington, Va.
4. BAUDET, G., AND STEVENSON, D. Optimal sorting algorithms for parallel computers. IEEE

Trans. Comp&. C-27,1 (Jan 1978).
5. BORAL, H., AND DEWITT, D.J. Design considerations for data-flow database machines. In Proc.

ACM SZGMOD 1980 Int. Conf Munugement of Data, (Santa Monica, Calif, May 14-16), ACM,
New York, pp. 94-104.

6. DEWITT, D.J. DIRECT-A multiprocessor organization for supporting relational database
management systems. IEEE Trans. Cornput. C-28, 6 (June 1979).

7. DEWITT, D.J. AND HAWTHORN, P. A performance evaluation of database machine architectures.
In Proc. 7th Conf. Very Large Data Bases (Sept. 1981).

8. EPSTEIN, R. Techniques for processing of aggregates in relational database systems. Memo.
UCB/ERL M79/8, Electronics Research Lab., College of Engineering, Univ. California, Berkeley,
Feb. 1979.

9. FRIEDLAND, D. Design, analysis, and implementation of parallel external sorting algorithms.
Ph.D. dissertation, Dept. Computer Sciences, Univ. Wisconsin, Madison, 1982.

10. GOODMAN, J.R. Personal communication.
11. KNUTH, D.E. The Art of Computer Programming-Sorting and Seurching. Addison-Wesley,

Reading, Mass., 1975, p. 160.
12. LIN, C.S., SMITH, D.C.P., AND SMITH, J.M. The design of a rotating associative memory for

relational database applications. ACM Trans. Database Syst. 1,l (Mar. 1976), 53-65.
13. OZKARAHAN, E.A., SCHUSTER, S.A., AND SMITH K.C. RAP-An associative processor for data-

base management. In Proc. AFZPS 1975 Nut. Computer Conf., vol. 45, AFIPS Press, Arlington,
Va.

14. SLOTNICK, D.L. Logic per track device. In Advances in Computers, J. Tou (Ed.), vol. 10,
Academic Press, New York, 1970.

15. STONE, H.S. Parallel processing with the perfect shuffle. IEEE Trans. Cornput., C-20,2 (Feb.
1971).

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Parallel Algorithms for Relational Database Operations 353

16. Su, S.Y.W., AND LIPOVSKI, G.J. CASSM: A cellular system for very large databases. In Proc.
Int. Conf. Very Large Data Bases, (September 22-24, Framingham, Mass.) ACM, New York,
1975, pp. 456-472.

17. THOMPSON, C.D., AND KUNG, H.T. Sorting on a mesh-connected parallel computer. Commun.
ACM 20,4 (Apr. 1977), 263-271.

18. YOUSSEFI, K., ET AL. INGRES version 6.0 reference manual.

Received September 1980; revised July 1981; accepted July 1982

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

