
Hierarchical File Organization and Its
Application to Similar-String Matching

TETSURO IT0 and MAKOTO KIZAWA

University of Library and Information Science, lbaraki, Japan

The automatic correction of misspelled inputs is discussed from a viewpoint of similar-string matching.
First a hierarchical file organization based on a linear ordering of records is presented for retrieving
records highly similar to any input query. Then the spelling problem is attacked by constructing a
hierarchical file for a set of strings in a dictionary of English words. The spelling correction steps
proceed as follows: (1) tInd one of the best-match strings which are most similar to a query, (2) expand
the search area for obtaining the good-match strings, and (3) interrupt the tile search as soon as the
required string is displayed. Computational experiments verify the performance of the proposed
methods for similar-string matching under the UNIX” time-sharing system.

Categories and Subject Descriptors: H.3.2 [Information Storage and Retrieval]: Information
Storage; H.3.3 fInformation Storage and Retrieval]: Information Search and Retrieval; 1.2.7
[Art&&l Intelligence]: Natural Language Processing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Fide organization, hierarchical clustering, linear ordering, similar-
ity, best match, good match, spelling correction, similar-string, text editor, office automation

1. INTRODUCTION

Workers in an automated office or laboratory manage their tasks of creating,
analyzing, copying, transforming, interchanging, and transmitting information
with a computer-assisted system [6,8,27]. The preparation of documents, which
includes the complicated and time-consuming processes of typing, proofreading,
updating, and so on, can also be handled with filing, editing, and formatting
programs.

One of the most useful facilities in this mode of preparation is that used to
analyze documents for the detection and correction of terminal input errors in
the written text [ll, 151. A typical error-correcting program looks for the mis-
spellings in the text from beginning to end. Once a misspelled string has been
found, the user has several options, for example, try to correct it, ma& it- as
correct, or do nothing [IS]. However, when the user does not know the exact
spelling of the string to be corrected, he or she can do nothing at all. This can

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Authors’ address: University of Library and Information Science, Kasuga l-2, Yatabe-machi, Tsukuba-
gun, Ibaraki-ken 305, Japan.
0 1983 ACM 0362-5915/83/0900-0410 $00.75

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983, Pages 410-433.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319989.319994&domain=pdf&date_stamp=1983-09-01

Hierarchical File Organization - 411

often occur in the course of looking up a person’s name in a directory. A spelling
program therefore should guide the user to the correct strings by displaying the
various probable correct spellings.

Two approaches to file searching can be employed for this purpose [ll]. One is
to formulate an efficient exact matching algorithm such as that used in the DEC-
10 SPELL program. Such an algorithm generates all possible correct strings, and
then tests whether or not they are in a dictionary. This is viable only when the
probable input errors are fully analyzed beforehand. The other is based on a best-
match (or nearest neighbor) technique which appears in general pattern classifi-
cation problems. The entire set of strings is grouped into affinity classes so that
similar strings within a cluster are jointly retrieved. The latter seems more
promising for obtaining not only the correct versions of misspelled words but also
legitimate variations (e.g., grammatical transformations and abbreviations).

Various authors have devised file organization and search methods for obtaining
and processing clusters of the records of interest. (Each record is generally
characterized by a set of known attributes. For strings, attributes simply consist
of symbols drawn from some alphabet.) Burkhard and Keller [3] and Shapiro
[23] have formulated efficient strategies for finding the best-match records based
on the triangle inequality of a distance function: Jardine and van Rijsbergen [13]
and Salton and Wong [22] have formulated partial file search procedures by
constructing classes of related records. Techniques for solving the best-match
problem without employing the triangle inequality have been proposed by Ben-
tley, Friedman, and Finkel [l, 2, lo]. These methods, however, need assumptions,
such as that the records constitute a metric space, that similar records can be
grouped into a cluster, or that the distance function has a monotonic property.

We present here a new method of organizing a file for finding records that are
similar to any input query, with the condition that a similarity measure, which
has the reflexive and symmetric properties, is given. The file organization steps
arrange the records linearly according to their similarity values [12], and group
them into hierarchical clusters which are specified by representative records
constituting, in turn, the lower level clusters. Thus the given records are stored
at the highest level after clustering, and in the lower levels the representative
records are stored. An entire configuration, called here an HL-file (Hierarchically
organized file based on a Linear ordering), thus takes the form of a multiway tree
c141.

Consider a spelling correction situation in which the task is to correct misspell-
ings or to find the grammatical variants. Since the input strings are likely to be
only minor variants of the correct ones, the problem can be viewed as retrieving
the records from a file of strings that are highly similar to the inputs. The file
search policy here consists of two processes, best-match and good-match searches,
to speed up the total text editing task. First, one of the match strings showing the
largest similarity value to the input is retrieved. The file search continues while
the user examines the correctness of the displayed result. It locates the good
matches, that is, those showing sufficiently large values of similarity to the
unsatisfactory inputs, by visiting the clusters adjacent to the one to which the
best match belongs. Thus the time spent in checking the correctness of the
displayed result can be overlapped with retrieving further similar strings.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

412 - T. Ito and M. Kizawa

The proposed methods are experimentally examined for a set of about 24,000
strings under the UNIX’ time-sharing system [171.

2. HIERARCHICAL FILE ORGANIZATION

In this section the notions of similarity measure, linear ordering, and hierarchical
clustering, which will be used for organizing HL-files, are explained.

2.1 Structure of HL-Files

HL-files are a class of multiway trees [14] devised for external searching. The
generation of HL-files, which employs a hierarchical clustering scheme often used
in general pattern classification applications, proceeds by grouping the linearly
ordered records into clusters of size not greater than m. Linear ordering means
that similar pairs of records are placed close together in the file, and dissimilar
pairs far from each other. Each cluster obtained is specified by another record,
called a representative. Representatives are further clustered in the same way,
and finally a hierarchical tree structure of a certain height h (21) is generated as
an HL-file.

The file structure has two kinds of nodes, one storing a cluster of input records
at the highest level, the other storing that of representatives at the lower levels.
Each representative conveys a pointer to its corresponding cluster at the next
level up. In the auxiliary memory, a cluster is expressed as a block or bucket of
size m. Let us refer to the HL-file structure for the records r0, rl, . . . , r14 in
Figure 1. A given record is expressed as X, and a representative as x or X located
in the center of its cluster (size 54). The distance between two records is assumed
to be inversely proportional to the similarity between them. A constructed file of
height 2 is seen in Figure 2. The representative rp2 : 2, for example, specifies the
cluster C2: 2 = [r14, rO] at level 2, and is specified by rp2 at level 0. It is to be
noted that similar records are grouped together. A cluster of input records (at
level 2) or representatives (at levels 0 and 1) is stored in a block of size 4, which
is shown by a dashed rectangle. Records at level 2 contain no pointer information,
since they are terminals.

An HL-file somewhat resembles the clustered file proposed by Salton and
Wong [22]. Clustered files, however, have some defects: the clustering process,
which needs, for example, a time-consuming density test or an iterative grouping
[21], occasionally produces overlapping clusters, and this reduces the storage
utilization and file search efficiency. The already existing file structure may not
be preserved by the continued insertion and/or deletion of records. The clustering
criterion for HL-files, on the other hand, is very simple. Further, since all records
are stored after arranging, the insertion and deletion operations could be done in
a manner similar to those used with B-trees [5,14]. (The main difference between
HL-files and B-trees is that in the HL-fde search the objective is to retrieve
additionally any record similar to the query even when an exact match record is
not found.)

’ UNIX is a trademark of Bell Laboratories.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization l 413

Fig. 1. Hierarchical clusters for the records r0, rl, . . . , r14. The records encircled by a line constitute
a cluster.

2.2 Similarity Measure and Linear Ordering

LetR= {rO,rl,..., r,-,}, n > 0, be a set of records to be stored. In an information
retrieval environment, each record ri, 0 5 i < n, is generally characterized by
assigning certain attributes, and is expressed as an w-dimensional (w 2 1) weight
vector (at, 6f, . . . , 6r) of the attributes attached to ri [22]. Various authors have
proposed similarity measures for the purpose, for example, of pattern classifica-
tion, speech understanding, or database organization. Among such measures a
set-theoretical function [19] has often been used because it is a simple process to
compute the numbers of common and distinct attributes of any pair of records.
The value for ri and ri measured by this function becomes

&min(s?, $)

& max(GP, $1 *
(1)

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

414 l T. Ito and M. Kizawa

i . . . /
L-----J

level 0

-‘I I
jL-------

1 (rpl:Il-c1:II1

I

I

a..

L-------l

c2

I=

J

level 1

I
L .-‘XL--

?2:3

level 2

Fig. 2. An HL-file of height 2 for the records r0, . . , r14 in Fig. 1.

Salton gives a cosine function for clustering document records in [21]. It can be
noticed that any reasonable similarity measure s defined on R x R will satisfy

and

S(ri;., rj) = O!, a=1 if ri=rj, reflexivity (2)

S(ri, rj) = S(lj., ri), symmetry (3)

for (Y E [0, l] (or sometines (Y E E-1,1]). Often s will be formulated to satisfy S(F-h,
n) > s(rh, q) (Or s(l;h, n) >> s(rh, q)) when rk is more (much more) sin&r to ?“i
than to rj. The problem of retrieving similar records can now be stated as follows.
ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization - 415

For any query r, find ri in the file much faster than rj, if ri and rj satisfy s(rq, ri)
>> s(rq, rj).

When the records have been arranged linearly, it is easy to solve this problem,
but in general the linear ordering characteristic is restrictive for any set of records.
Let us now introduce another measure t derived from s. Consider an edge-
weighted graph G(C) for a subset C (1 C 1 = m + 1 I n) of R, where node ri and
weighted edge ri - rj correspond to record ri and node pair (ri, r;) with similarity
value s(ri, rj), respectively. Then t(ri, rj) is set to the minimum of the weights of
the edges of a path connecting ri and rj in a maximal spanning tree MST (C) of
G(C) [7]. (In any edge-weighted graph G, a sequence of edges joining two nodes
is called a path, and a subgraph with no closed path is called a tree. Furthermore,
a tree which contains all nodes of G is called a spanning tree of G. If we define the
weight of a tree to be the sum of the weights of its constituent edges, then a
maximal spanning tree of G is a spanning tree whose weight is maximal among all
spanning trees of G [26].)

The following matrix rearrangement procedure [121 (called a two-dimensional
sorting operation) is formulated to arrange the records according to their sirnilar-
ity values with respect to t.

[Two-dimensional sorting operation TSO]

Note: Suppose that the records in C are numbered by finite integers 0, 1, . . . , m stored in
array Z(Z[O] = 0, Z[l] = 1, . . . , Z[m] = m). (Characters between /* and */ are comments.)
Procedure TSO (C);
begin

for i := 0 to m - 1 do
begin / * Matrix rearrangement */

{Arrange [Z[i], Z[i + 11, . . . , Z[mll so that th[i], rl[i]) 2 th[i],

rrp+q) 2 - * - 2 th[il, nd)

end,
for i := Otomdo

begin
{Renumber rlI,7 as ri}

end
end;

Theorem 1 holds for t.

THEOREM 1. All the records in C can be arranged linearly by TSO as

t(ri, rj) I t(ri, rk), 0 5 i 5j 5 k I m;
(4)

t(ri, rj) 5 t(ri, rk), 0 Ij5 k 5 i 5 m.

PROOF. See Appendix.

We can see that the following inequality holds between s and t.

Ski, rj) I th, rj), V ri, rjE C. (5)

If ri is most similar to rj with respect to s (that is, ri and rj have the largest s-
value), then S(G, rj) equals t(ri, rj). Thus t gives the upper bound to the original
s. Figure 3 exemplifies the steps of TSO for the set C = [r14, r10, ~3, r6, rO].
Values of s for all pairs of the records are given in Figure 3a, and those of t in

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

416 * T. Ito and M. Kizawa

C = [r140,rlO,,r3*,r63,r04 I

r140

rlOl

s: r32

6

fO4

100 16 16 6 22

100 18 I 12

100 20 16

* 100 3

100

r140 .. . rO4 r140 .. . rO4

r140

rlOl

t: r32

6

rO4

100 16 16 16 22

100 18 18 16

100 20 16

* 100 16

100

(a)

l%(C) = [r140, rO1, rlOz ,133, r64 I

r140 .. 6

‘r14o

rO1
t: rlOz

r33

6

100 22 16 16 16

100 16 16 16

100 16 18

* 100 20

100

(W

r140 . .. 6

r140 100 22 16 16 6

4 100 12 16 3

s: rlOz 100 18 7

r33 * 100 20

r64 100

(d (4

Fig. 3. Matrix expressions of the similarity values for C. Rearranging matrix (a) results in
(d). Each element contains 100 x s(ri, rj) or 100 x t(ri, r,). The values of (c) in boldface are
sufficient for clustering.

Figure 3b. (The edges for an MST(C) are r1490, r14-r10, rlO-r3, and r3-r6.)
TSO arranges C in order to satisfy inequalities (4), as seen in Figure 3c. Figure 3d
shows a matrix representation of the s-values for the arranged records [r14, r0,
r10, r3, ~-61, where pair (r14, rO), for example, has a large s-value compared with
(r-14, rlO), (r14, r3), and (r14, r6); and is thus placed adjacently.

Throughout this paper the records showing the largest s-value to r, are called
rq’s best matches, and the ones showing sufficiently large s-values are called r,‘s
good matches.

2.3 Hierarchical Clustering

The object of file searching is to find the best matches and good matches, so the
file organization may be viewed as consisting of the clustering of similar records.
A set C of the records arranged is clustered by the following simple procedure.

[Clustering procedure CLS]
Note: The set C = [Q, rl, . . . , r,,J to be clustered is the output of TSO. Variable thd,
storing a threshold value for clustering, is set to 1. CLS returns the positi.on c in C of the
record which specifies the subclusters.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization - 417

Procedure CLS(c, C);
begin

for i := 0 to m - 1 do
begin / * c 3 {i:min(t(ri, ~-j+~) IO 5 i < m)} */

if thd 2 t(ri, ri+l) then c := i;
thd := min(thd, t(ri, ri+l))

end
end; /* Subclusters are Cl = [ro, . . . , rJ and Cz = [rc+l, . . . , r,,J.*/

Thus the clustering is attained by examining the t-values of adjacent pairs.
Procedure CLS (c, C) operating on the records in Figure 3 results in C1 = [r-14,
rO] and CZ = [rlO, r3, r6], and the value of thd is set to 0.16. The best match to
both r10, and r6 is r3; all of these are in the same subcluster. The following
theorem holds for the resulting subclusters.

THEOREM 2. An s-value for a pair of records in the different subclusters is
smaller than or equal to thd.

PROOF. By inequality (5). 0

It is possible that some of the good matches to any ri (E C) could be included
in the same subcluster as ri.2 For the best matches we have the following corollary.

COROLLARY. Any record ri in C,, (C, (2 2 (or in CZ, (CZ (2 2), and its best
match, which are adjacent in C, are still adjacent in Cl (C2).

PROOF. If s(ri, rj) < thd for any rj E Cl, then, by (4), t(ri, ri) < thd, which
contradicts the result of CLS. Thus s(ri, rk) 1 thd for some rk E G. By Theorem
2, ri and its best match are in the same subcluster. 0

To determine which clusters contain the best and/or good matches to a query,
let us introduce the notion of representatives. A representative rp for a cluster C
is another record characterized by the attributes of the records in C. The
similarity between rp and ri is measured by any sR satisfying

SR(R, rp) 2 ski, rj), Vrj E C. (6)

Then the cutoff criterion for reducing the number of clusters to be examined can
be specified as follows.

For a query r, and a stored record ri, any cluster C satisfying sR(rq, rp) 5 s(r*,
ri) contains no record ri such that

s(rg, 5) > s(rq, ri’i). (7)

The repeated clustering of the representatives produces the hierarchically orga-
nized clusters shown in Figures I and 2, where the given records are in the highest
level, and the representatives are in the lower levels.

Some sort of balancing of the cluster is required for efficient file search and
organization [22]. According to CLS, the obtained subclusters are disjoint but not

’ If pairs of the records showing the same t-value in the rearrangement steps of TSO are further
arranged according to their s-values, then we can obtain more refined subclusters, including many
good matches.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

418 . T. Ito and M. Kizawa

identically sized. There now follows the procedure MRG for merging similar
subclusters which are small in size.

[Merging procedure MRG]
Note: The outputs of CLS(c, C) are C1 and Cz. Let rpl and rpz be their corresponding
representatives. Further, let D be the cluster containing the representative for the (updat-
ing) cluster C.

Procedure MRG(C1, Cz);
begin

{Find a cluster C’ whose representative rp’ satisfies
s(rppl, rp’) = max(s(rpl, rp*) Irp* E D and / CI U C* 15 m));

/ * C * is the cluster represented by rp * */
if C’ exists then C1 := C1 U C’;
{Find a cluster C” (ZC’) whose representative rp” satisfies s(rp2, rp”) = max(s(rp2,
rp*)~rp*~Dand~C~UC*)~m)};

if C” exists then Cz := Cz U C”
end;

A set of clusters containing a small number of records results in a significant
amount of wasted storage space, since any cluster is stored as a block of fixed
size. Therefore, we can save space by merging similar clusters into one. CLS
occasionally distributes a record ri and its best match rb among different subclus-
ters Cl and CZ (which can be caused by the fact that 1 Cl / = 1, i.e., CI = [ri]).
However, when some record is added to CZ at the later stage of file organization,
Cz will be divided into two, and then by MRG ri and rb will be again in the same
cluster. This can save time in file searching because these are jointly retrieved.

3. SEARCHING HL-FILES

The discussion above has stated that a record and its best match are to be stored
in the same block. The generation of an HL-file is therefore done by adding
successively a new record r, adjacent to its best match. We present a best match
search algorithm which specifies recursively the higher level block whose repre-
sentative is most similar to r,.

[Best match search procedure BST]

Note: BST is a recursive procedure. One rb (initially set to a dummy record showing value
0 to any record) of the best matches to r, is retrieved. Variables v (init,ially 0) and ptr
(initially the location of a block at the lowest level) store the level and the location of a
block under search, respectively. A block pointed by ptr at level v is denoted by C”[ptr].

Procedure BST(v, ptr);
begin

bsl: while (v 2 0) and (v < h) do
begin

[Search C”[ptr] for a new record rp, most similar to r, with respect to sR};
if (q)= exists) and (sR(rq, rp,) > s(rq, rb)) then

begin /’ Forward step */
ptr := location of the block represented by rp,; u := u + 1; BST(u, ptr)

end
else

begin /*Backward step. Consider C”[ptr] to be an */
v := v - 1; return /* already examined block. */

end
end;

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization l 419

bs2: if v = h then
begin

end;

{Search C*[ptr] for a candidate best match rc};
if s(rq, rc) > s(rq, rb) then rb := r,;
u := v - 1; return

end

The file structure is updated when r, is a record to be added.

[File organization procedure ORG]

Note: ORG begins with the block Cl: containing the best match rb to r,. Variables are
initialized as follows: rp, rp’, rp” and rpl to dummy record, rp2 to r,, ptr to the location of
C$, and u to h.

Procedure ORG(u, ptr, rp, VI’, VI”, WI, ~2);
begin

C := (C”[ptrl - [rp, rp’, rp”l) U [rm, p21;

if(Cl>mthen
begin

ifv=Othen
begin /* Increase the height of the file */

h:=h+l;u:=v+l
end,

CLS(c, TSO(C)); Cl := [r0, . . . , rcl; C2 := [r,+l, . . . , rml; MRG(CI, Cd
end

else
begin

if u = 0 then return;
TSO(C); C1 := [ro, . . . , rm]; C2 := 0

end,
{Store Cl and C2 us the blocks at level v};
rp := representative for C”[ptr];
ptr := locution of the block containing rp;
rp’ (or rp”) := representative for the block merged into Cl (CZ);
rpl (or rp2) := representative for Cl (C2);

v := v - 1; ORG(v, ptr, rp, rp’, rp”, rpl, rp2)
end,

Let us see how algorithms BST and ORG work by adding r15 to the file
structure in Figure 2. The position of r15 is shown in parentheses in Figure 1.
Cluster C2 : 3 containing a candidate 1-11 for the best match is first found in step
bsl which selects in turn the representatives rp2 and rp2 : 3. This step also checks
whether or not rll is the true best match, and finally it notices that no further
search is needed. After the best match r-11 is found, ORG works as follows:
Record ~15 is stored in C2: 3, and is adjacent to rll. That is, the cluster to be
updated at level 2 becomes [r7, r5, r13, r15, rll]. This cluster is arranged by
TSO as [r7, r5, r13, rll, r15], and then clustered by CLS as C1 = [r7, r5, r13,
rll] and CZ = [r15]. Of these, CZ is merged by MRG with C2 : 2 = [r14, rO], since
the representative for Cz shows the largest s-value for rp2 : 2 among rp2 : 1, rp2 : 2,
andrp2:4inC2(1CzUC2:1I,IC2UC2:2I,ICzUC2:4I=4).TheaboveC1and
CZ = [r15, r14, rO] are stored as two blocks, C2 : 3 and C2 : 2’, respectively, at
level 2. The cluster to be updated at level 1 becomes [r-p:! : 1, rp2 : 4, rp2 : 3, rp2 : 2’1,
where rp2 : 2’ is the representative for C2 : 2’. Since the number of the records in
this cluster is 4, this is stored, after arranging, as block C2’ at level 1. Similarly,

ACM Transactions on Database System, Vol. 8, No. 3, September 1983.

420 * T. Ito and M. Kizawa

level 0 level 2

Fig. 4. The updated structure of Fig. 2 caused by the addition of r 15. The
changed clusters and their representatives are written as c’ and I$,
respectively.

the block at level 0 becomes [rpl, rp2’] (rp2’ is the representative for C2’). The
updated structure of Figure 2 is given in Figure 4.

When the obtained best match does not match the user’s requirement, the
good match file search follows BST. This process begins with the block C$
containing rb, and gradually expands the target blocks to be searched checking
the user’s satisfaction with the displayed results.

[Good match search procedure GUD]

Note: GUD conveys a variable u (<h) to restrict the searching of the extra blocks. The
blocks adjacent to 12: at a level higher than or equal to u are examined. Array B (initially
B [0] = rb of size K (>l) stores the required number of the good matches.

Procedure GUD(v, ptr, K);

begin

gdl: (Same as bsl except that the first line is “while (v 2 U) and (v < h) do”};
gd2: if v = h then

begin
{Search Ch[ptr] for K good matches, and merge them into B);
(Display B}; r(, := B[K - 11; v := v - 1; return

end;
gd3: return

end;

For query r15, six good matches, (r14, rO} (in C2 : 2’ containing 1-15 at level 2)
and (r7, r5, r13, rll} (in C2 : 3 adjacent to C2: 2’ at level l), are found by GUD
(u = 1).

A set of representatives works as a hierarchical directory to enable the rapid
location of the required records. The lower level records are much smaller in
number and much more frequently referred to than the higher level ones. Thus,
the efficient file search can be attained by employing storage hierarchy hardware
[20], where the lower level blocks are stored on the solid state memory and the
higher level blocks on the disk memory.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1963.

Hierarchical File Organization * 421

johnron
h n

BTF’TN(bin): ~..i;..j$~..i;...OIO...j...O~O..ij
s

. ..OlO...~... o,O..if...o,y..i~..j~

n
BTPTN (hex): 004~000 1 OOOI&OO 1 OKlOkOO 1 OOlMkKl 1 0OOO:OOO 1 OOO&OO I-

h n s o
ASCII (hex/: 6;,&~6E~73kVki:

do&son

d 0 d n
BTPTN /bin): 0...j...010..iJ...010...4 l...o,o...$...o,o..i~...oIo..i~...o,o..i~...o

d d
BTPTN (hex) : 10000000 ~0602&10 ~10000000 ~02OOiooO 1 OOOO:OOO ~0002iOOO IOOO4iOOO

dodgson
ASCII (hex): 6416F16416717316FI6E

{ johnson, dodgson}

d i d h
BTPTN(bin): O.~.i~..O~O..i~...O~O.~..~..O~O..~.i~.O~O..i~...O~O..i~...O~O...~...O 14

BTPTN /hex/ : 10400000 ~060&00 1 llI&lOO 1 OZO%JOO I OOOOkIOO 1 6002°~0 1 OOO4kOO

Fig. 5. Examples of BTPTN code for words which are seven characters in length (bin = binary
notation; hex = hexadecimal notation).

4. SIMILAR-STRING MATCHING

In this section the spelling problem is discussed from the viewpoint of searching
an HL-file for strings highly similar to the misspelled inputs.

4.1 An HL-File for the Spelling Problem

Each character of a string is generally represented by ASCII (or EBCDIC) code
within the computer memory. We employ here another representation, named
BTPTN code. Let 7 be a size of character set S. For example, 7 is 32 for S = {a,
b * * , z, 01, . . . , U6} (Ul, . . . , US are dummy characters for future extension).
Then the BTPTN code for a character u is an q bit-pattern 6%’ a + a 6; es. aV,
where 6’ = 1 and 6’ = . . . = ai-’ = ai+] = . . . = 6” = 0 if u is in the ith position
in S. Note that 6’ is considered to be a weight of the ith attribute for specifying
u. Any string w is a sequence of characters of length o; thus the BTPTN code for
w is an w x 11 bit pattern 8”8” . . . &?21 . . . 8” . . . aw’ . . . SW”. (N.B.: the
subpattern 6%j2 . . . 6” is said to be in the jth character position.) The codes for
johnson and dodgson are shown in Figure 5a.

Next let us see the BTPTN code for a representative of a cluster C of strings.
Each representative rp is specified by the set of the attributes Sik assigned to the
strings in C. Formally rp is expressed in a way similar to that for strings, except
that 6jk is 1 if the jth character of some string in C appears at the k th position in
S. Figure 5b depicts the BTPTN code for the representative of the cluster
{ johnson, dodgson} . Though the BTPTN code requires more computer storage
than the ASCII code, no ASCII code exists for a representative. In an HL-file the
BTPTN code and the ASCII code are employed to store a representative and a
string, respectively.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

422 l T. Ito and M. Kizawa

Fig. 6. Computing similarity value s(hoodgus,
hodges), where y(k) = od(3).

For the quantitative comparison of two strings, Findler and Leeuwen [9] have
defined a measure essentially equivalent to a set-theoretical function. We here
modify this to cope with the common spelling mistakes (i.e., single-character
omission, insertion and substitution, and reversal of adjacent characters [ll, 151).
The similarity s between a pair of records for strings (or representatives) is given
by

S(ri, rj) =
I&k) ~WAri, Y(k)), Mi, v(W)) I y(k) I

l&k) mdpdri, Y(k)), ph, y(k))) I y(k) I *
(8)

Here y(k) is a possible subpattern in ri or rj specifying a substring, which begins
with the kth character position (I y(k) I is the length of the substring). Function
Pt(ri, y(k)) takes 1 if ri contains a matched subpattern y’(K’) such that y = y’ and
K’ E [k + 5, k + 5 + I y(k) 1 - l] (1 I K I w - I y(k) I + 1, -1 5 .$ 5 l), and 0
otherwise (< shifts the beginning position of y(K)). It is assumed that y’(K’) does
not match any y(k) in rj twice. The sum is over all distinct subpatterns in ri or rj.
(All y(K) in ri (or rj) are distinct subpatterns. For y(k) in rj and y’(k’) in ri they
are distinct if y f y’ or min(Pc(ri, y(k)), P&i, y’(F))) = 0.) The measure sR
between a string ri and a representative rpj is given by

SR(ri, vj) =
Cm ~NVri, y(N), P&pi, y(K))) I y(k) 1

L(k) Pt(ri, y(M) Iv(k) I ’
(9)

The sum is over all subpatterns in ri. It is evident that s and sx satisfy inequality
(6). Figure 6 depicts schematically the process of computing the s-value for
hoodgus and hodges, where subpatterns y(k) (I y(k) I 5 2) in hoodgus (or hedges)
me h(l) (= h(l)), o(2) (= o(2)), o(3), d(4) (= d(3)), . . . , ho(l) (= ho(l)), oW),
od(3) (= od(2)), . . . , US(~). In this figure the specified subpattern y(k) is od(3).
PE(hoodgus, od(3)) (or Pt(hodges, od(3)) takes 1, when 5 is set to 0 (-1). By
summing Pt(hoodgus, y(K)) and &(hodges, y(k)) according to (8), we have
s(hoodgus, hodges) = 0.45. This is still a large value, even if character “0” is
inserted, and “u” is substituted for “e”.

The text editing process including the correction of misspelled inputs will be
done in an interactive fashion using a visual display unit. When the correct string
for an input string is displayed on the screen, no further search is needed. In
addition, since misspelled strings are only minor variants of the correct ones, a
considerable portion of the time for file searching will be spent in checking the
retrieved results. By considering these facts, the following file search policy has
been devised.

(1) Find a candidate for the best match by setting a rather large threshold
value T to avoid the extra forward steps. In this case, since most of r, such that
s(rq, rc) > S(rq, rb) Satisfy sR(rq, rc) 2 sR(rq, rb), lines 5 and 6 of bsl in BST are

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization l 423

r0 100 0 6 16 2 2 3 0 2 0 12 2 0 0 22 22
rl 100 2 0 0 6 0 3 35 72 0 13 3 15 2 12
r2 100 3 0 0 3 0 2 2 3 0 6 0 2 2
r3 loo 2 0 20 0 2 0 18 0 3 0 16 12
r4 100 2 0 3 0 0 2 2 2 2 5 2
r5 100 0 52 3 6 0 23 3 66 6 9
r6 loo 0 0 0 7 0 3 0 6 3
r7 loo 3 3 3 20 3 33 3 6
r8 100 22 2 13 3 12 5 15
r9 100 0 13 3 15 2 12

r10 * 100 3 3 0 16 12
rll 100 6 45 6 29
r12 100 6 6 2

r13 100 2 22

r14 100 26

rl5 100

C = [rO:carlJon, rl :goodrum , r2:alwood, r3:fenlon,

r4:bubenko, rS:rogan, r6:senko, r7:roget,

rb:goodwin, r9:woodrum, rlO:hinton , rll:hodges,
rl2:sloane, rl3:rodgerq rll:johnson, rl5:dodgson]

r0 rl . . . r7 . 15

Fig. 7. Similarity matrix for C. Each matrix element holds 100 x s(r,, q).

changed to:

if (rp, eX&S) and (SR(~~, rp,) 2 InaX(7, sR(rq, rb))) then
begin

(2) Find the good matches by examining blocks adjacent to the one containing
the candidate best match, and display these good matches. In this case T is set to
a rather small value.

(3) Interrupt (2) as soon as the required record is displayed.

Figure 7 shows the s-values for a set of 15 names used by HaII [ll] to exemplify
Salton’s work on a clustered file. (Record r0 is added here.) Their relative
positions were shown in Figure 1, where the similarity value for two strings is
inversely proportional to their separation. Figure 8 demonstrates the steps for
retrieving (1) a candidate (or candidates) rc for the best match that shows the SR-
value greater than 0.50 to the query r, and (2) three good matches in the blocks
that are adjacent to re at a level not lower than 0. For hoodgus (=rq) the block
C’ at level 0 is examined in step bsl of BST, and rp2’ is extracted by considering
that C2’ wih contain the best match. In step bs2 the block C2 : 3 whose repre-
sentative rp2 : 3 is most similar to r, in C2’ is searched to find a candidate best
match rll (=rc). It can be noticed that rll is the true best match in the entire
file, since SR(~~, rp2:4) (=sR(~~, rp2: 2’) > s~(r*, rp2: 1)) and s~(r~, rpl) are
smaller than s(T~, rll). Similar steps for finding good matches to hoodgus and
best/good matches to fenkon and goodge are summarized in this figure.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

424 * T. Ito and M. Kizawa

Steps for

BstfGud

bsl

bsl

-r bs2
w

cs
bsl

bsl

gd2

gd3

level

V

0

1

2

1

0

2

1

121

0

Best &
Good Matches

hoodgus

p, or rc sR (or s

rp2’ 0.89

rp2:3 0.63

rll
0.57

(0.45)

rp2:4 0.42

vl 0.21

------___

I-11 0.57
(0.45)

r13

r5

0.42
(0.26)

0.10
(0.06)

rp2:4 0.42

[rl 0.42
(0.26)’

rp2:2 ’ 0.42

rp2:l 0.05

QUERIES

I)r
fenkon

PC or rc sR (Or !

rp2’

rp2:l

r3

rp2:2’

rpl

r3

t-6

rl0

rp2:2’

[r14

rp2:4

_-

1.00

1.00

0.68
(0.5 2)

0.31

0.25

-- -_

0.68
(0.5 2)

0.62
(0.52)

0.31
(0.18)

0.31

0.31
(0.16)’

0.06

(Return since v<

rll:hodges

rl3:rodgers

rl: goodrum

r3: fenlon

r6: senko

rlO:hinton

PC 01 rc sR (Or

rp2’

rp2:3

rll

rp2:4

1.00

0.68

0.62
(0.45)

0.62

rp2:2’ 0.50

rpl 0.31

t-11 0.62
(0.45)

r13

r7

rp2:4

[‘I

0.62
(0.40)

0.06
(0.03)

0.62

0.62 ,
(0.40).

rp2:2’ 0.50

rll :hodges

rl3:rodgws

rl: goodrum

Fig. 8. BST and GUD steps for the best-/good-match strings to hoodgus, fenkon, and goodge (T =
0.50 in BST, and 7 = 0.30, K = 3, and u = 1 in GUD). Here rp, (or rJ is the extracted record in step
bsl (bs2) or gdl (gd2).

4.2 Performance Analysis

The structure of HL-files takes the form of multiway trees. In a multiway tree, a
large value of branching, that is, block size I?Z, reduces the number of file accesses
to auxiliary memory. But, on the other hand, it increases the time needed to
transfer a block into main memory, as well as the time to perform an internal
block search. Extra memory is also needed for storing the blocks to be searched.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization * 425

The searching of a multiway tree is, in general, quite straightforward. It is a
top-down or forward process, and only one block at each level is referred against
every query. Though the total time T required to retrieve any record in a tree
depends on the branching factor m, the characteristics of auxiliary memory, and
the length of the records, it is easy to find the optimal multiway tree which
minimizes T [14, 251.

Obtaining the optimal HL-file structure is a complicated process, since the file
search steps backtrack down the hierarchy to check whether or not the retrieved
records are the true best and/or good matches. Though the advantage of the tree
structure seems to be diminished in HL-files, the proposed approach is worthwhile
if only a few extra blocks need searching.

We attempt in the following an approximate analysis of the expected time to
search for a candidate best match. The size of a record (including a pointer) at
level u is denoted by R(u), and the size of a page for storing a block or blocks by
PGS. Furthermore, the number of blocks visited at level u during the file search
is denoted by BA(u), which depends on the clustering criterion CLS. Assuming
that any block includes m’ records (that is, that any block is m’/m full), the
average search time t(u) at level u is given by3

t(u) = bm - m’ + (tsk + ttr - PGS) - [m - R(u)/PGSl) - BA(u). UO)

Here t,b is the average time for similarity computation against each record, tsk is
the average seek time, and tt, is the transfer rate of auxiliary memory employed.
Since [rn - R(u)/PGS] is the number of pages to store a block of size m at level u,
[m - R(u)/PGS] . BA(u) indicates the number of page faults occurring at this
level. (Notation: [xl is an integer greater than or equal to x and smaller than x
+ 1.) The optimal structure is the one which minimizes the total time:

T = min i t(u)
BA(4 u=o

(11)

under the condition that rnlh < n I m’h+l.
Next let us see how many blocks are considered to be worth examining in BST.

Any input string r, can be expressed as

rq:al, a2,. . . , a,, (12)

and any representative rp’ at level u as

rp”: by, bz”, . . . , bi, biZ1, . . . , bZ*, 1rX<w, (13)

where ai (1 5 i 5 w) and bY (1 I i I h) are characters, and bY* (A < i I w) is a set
of characters. The representative for {johnson, dodgson} in Figure 5 becomes bl,
bp, b3, b+ bt?, bs*, bf (bl = o, b2 = s, b3 = o, bd = n, b5* = {d, j}, bB = {d, h}, and
b? = {g, n} 1.

In the hierarchical structure, rp” represents many more strings than its descen-
dant rp” (u < u < h), where

rp”: by, b;, . . . , bx”, . . . , b;, b,“;l, . . . , b:‘, x<p<cd. (14)

3The probability that blocks in a page are examined successively is assumed to be small in the
equation.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

426 * T. Ito and M. Kizawa

The representative rpi: for the cluster containing r,‘s best match is considered to
show a sufficiently large sR-value. Therefore the BST search for the most similar
record to r, at each level will specify rpa” correctly in the forward step. When an
incorrect representative rp” becomes a candidate for extension, since its descen-
dant rp” contains in { bP: A c i I p} some characters different from those of rq, the
forward search to the corresponding block is cut off at this level u. Thus BA(u)
is said to depend positively on the sR-value between a representative and an input

rq.
A lower level representative which yields a large sR-value represents more

strings than a higher level one in relation to block size m. It can be concluded
that the block access frequency BA depends positively on the number n, of
strings represented by a representative. Though the probability of examining
blocks at a lower level seems very high, the total number of the blocks is
extremely small. As a result, the distribution of BA is schematically explained as

[

n,: small middle large
BA: low high 1 low * (15)

The extra space is required for storing a set of representatives as a hierarchical
directory. For an HL-file of height h, the size DT of the directory is given by

h-l

DT = c. nz.R(~).m’”
u-o

th

2 m-R(O) -5,
m’ - 1

mrh >> 1,

sinceR(0) =R(l) = ... = R (h - 1). On the other hand, the size ST of the space
for input strings is given by

ST = mSR(h)qm’h. (17)

For a 26-letter alphabet R (0) = 4R (h) because the BTPTN code for a character
needs 4 bytes. Thus DT will become smaller than ST in an HL-file with m’ > 5.

4.3 Computational Evaluation

The proposed methods were experimentahy examined under the UNIX time-
sharing system on a PDP 11/44 computer. The strings were drawn from a set of
the words in the dictionary (named /usr/dict/words in UNIX’s file directory)
prepared for various test processings. This contains about 24,000 English words.

Using algorithm ORG to update the already existing file structure by the
repeated insertion of the records is not so efficient when a large number of strings
are to be stored at a time. This is especially true when the given strings are
arranged in lexical order. An HL-file in this connection was organized by assuming
that any pair of strings physically close in the dictionary would exhibit large
similarity values. The best-match search therefore could be eliminated from
ORG. (This expedient reveals itself when grammatical transformations of the
inputs are being retrieved.) The uppercase characters were mapped into the
lowercase ones, all the representatives were truncated to eight characters in
length, and the similarity values were measured by eqs. (8) and (9) after setting

IYl~2.
ACM Tnnsactiom on Database Systems, Vol. 8, NO. 3, September 1983.

Hierarchical File Organization 427

I 1 1 1 I I 1 1

6 6 12 25 56 100 256 500 1666 "m

Fig. 9. Block access frequency BA plotted as a function of the number nm of strings represented
by a representative record.

4.3.1 Optimal Block Size. It is very time consuming to determine experimen-
tally the optimal block size over a set 2 of all 24,000 strings. For an input r, which
begins with a correct character al, the representative rp” with by = al will show
the largest similarity among others at level 0. In this case the strings with al are
examined in BST. On the other hand, for an input with an incorrect first
character, some of the representatives are wrongly assumed to include the best
match as their descendants. However, as discussed in Sect. 4.2, this process of
visiting improper blocks is cut off in the early stage of file searching.

A preliminary experiment for a set A (I A 1 = 1700) of the strings which began
with the character “a” was made to predict the optimal block size for 2. Figure
9 shows the average block access frequency over 60 spellings with typical mistakes.
By this figure, T (= C t(u)) is computed for constructing the optimal HL-file
structure. In our experimental environment, the auxiliary storage device was a
DEC RL02 disk cartridge. Table I contains the values of the parameters used in
the course of the simulation study. The value of PGS was set to 512 bytes, which
is the page size of the UNIX file. Figure 10 gives the estimated values of T for
sets A and 2. The optimal structure was obtained for M = 10 in both cases.

4.3.2 Best and Good Matches. Table II shows the number of the records at
level u in the optimal HL-files HLA (for set A) and HLz (for set 2) with m = 12.
Since m-R(u) < 512, each block is included in one page. Both structures are at
least i full except at the 1 west level. This indicates the efficient storage utilization
of the proposed file design. The size of the space for storing representatives in
HLz is, by Tables I and II, 466m -R(O) (= 1057m. R(4)), and that for 24,006 strings

ACM Transactions on Database System, Vol. 8, No. 3, September 1983.

428 l T. Ito and M. Kizawa

2.5 -

2-

1.5 -

l-

I I I I I

12 5 10 20 50 m

Fig. 10. Total search time 2’ plotted as a function of the block size m for
sets A and Z.

TABLE I. The Values of the Parameters for TABLE II. The Number of

Computing T (= C t(u)) Blocks at Level u in HLa and

Parameter Value
HLz

10 rn.9 tdm
tsk 55 ms
tu 2.5 &byte
m’lm 2/3"

PGS 512 bytes
= R(u) (v h) 15 byte8

(v < h) 34 bytesb

’ Computationally evaluated value.
b Representatives are truncated.

HL file

V HLa HLz

0 1 1

1 3 6
2 28 49
3 221 410

4 * 3134

is 3134m *R(4). Thus the directory requires only one-fourth the total space.4 GUD
(K = 4) is used to see how many similar records were stored adjacently in a
cluster. Experimental results indicated that three good matches (one is the exact
match) to a stored record, on average, shared the same block.

Table III shows how BST works well in exact-string matching (i.e., retrieving
the strings which exactly match the inputs). The structure of HL-files is analogous

4 A directory can be reduced in size by employing data compression techniques [16]. There will be a
subpattern which is not necessary for distinguishing a representative from others in a cluster (e.g.,
this is expressed as bX;l . . . bz’ in (13)). Furthermore, since strings are given in lexical order, every
representative in a cluster will possess an identical subpattern at the front of its BTPTN code. We
can apply a data compression scheme to delete these redundant subpatterns.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1933.

Hierarchical File Organization * 429

TABLE III. The Number of Blocks at Level u
Visited During the Exact and Best Match

Searches to HLa and HLz,

Exact matches Best matches

HLa HLz

Q1
V HLa HLz W) Q1 &I QZ

0 1 1 1 1 1 1
1 1.4 1.0 2.6 1.4 1.0 1.2
2 2.7 1.6 7.3 3.4 1.5 2.6
3 1.2 2.3 1.7 1.6 3.8 4.3
4 * 1.2 * * 1.5 1.4

to that of B-trees. Both have a hierarchical directory as an index to speed retrieval
of the records in the leaf nodes. B-trees are very efficient in maintaining the tree-
structured files. A B-tree search algorithm examines only one block at each level
of the tree, and then has a search time proportional not to n but to log n [14], n
being the number of input records. Algorithm BST for an HL-file instead
examines extra blocks at the middle levels. Yet by comparing the result for HLA
and HLz, we can see that the number of blocks visited depends on the height of
the files. Thus the exact matches are said to be found by BST in the logarithmic
time as seen in B-tree searching.

The best-match search results for a set Q1 of 60 queries are also given in Table
III. Each query began with the character “a” and met the common typing
mistakes. The “full” for HLA in the table means that BST searches the listed
number of the blocks to find the true best match among possible strings. The
other figures are for the number of blocks visited until a candidate best match is
found. About half the time is spent checking the validity of the candidate best
match. Table III also includes the statistics for HLz against Q1 and another set
Q2 of 60 queries. Each member of QZ began with a non-“a” character, and alao
required the best-match search.5 Though 14 of 120 best matches are wrongly
retrieved, rapid location of the candidate best match, which spent the time
independently of the file size, was attained. Thus, an efficient file search is
formulated by employing the policy proposed in Section 4.1, at the expense of a
smaIl degradation in precision of retrieval. It is noted that BST does not always
find the required string because of the difficulty of formalizing a similarity
measure reflecting the user’s intention. The approach of finding candidate best
matches is viable especially in an on-line environment. In the experiment, though
the best match rb to the misspelled query r,: ansent was hansen, the required
spelling rc: absent is retrieved as a candidate much faster than rb. Other examples
for (rq, rb, rJ are (arrington, barrington, arlington), (chep, chef, cheap), and
(thaught, haughty, taught).

5 In this case, since at least one of the first two characters is correct, the value of P&-i, y(k)), where
(y(k) (= 1, was set to 3 for the matched subpattern in the character position 1 or 2 in ri.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

430 * T. Ito and M. Kizawa

TABLE IV. Number of Blocks
at Level u Visited During Good
Match Search to HLz and Ratio

Percentagk of Number of
Corrected Misspellings to that of

Inputs Requiring Good Match
Search (K = 2, u = 1)

u

V 3 2 1

0 * * *

1 * * t

2 * * 0.7
3 t 2.0 2.8
4 0.9 1.7 1.9
w 28 64 78

The queries resulting in unsatisfactory searches in BST call the good-match
search GUD. The file search statistics are shown in Table IV. Each table element
gives the expected number of blocks at level u examined, while GUD expands the
search to the blocks adjacent. to r’c at a level higher than or equal to u. In this
process, misspelling rg: anie required the search of the additional three blocks at
level 4 and one block at. level 3 for the correct spelling r,,: annie, after r,:anise
was found by BST. Similar examples are (rq, r,, rc,,) : (forthy, forth, forty, (supar,
supra, super), (intmate, inmate, intimate), and (filfil, filial, fulfil), each of which
require the additional block searches (0, 0, 0, 0, l), (0, 0, 0, 0,2), (0, 0, 0,2,6), and
(0, 0, 2, 11, 3) at levels (0, 1, 2, 3, 4), respectively. The percentage value in Table
IV is the ratio of the number of the corrected misspellings to that (= 14) of the
queries requiring the good-match search. Three of these queries were not cor-
rected even when GUD searched the entire file. Thus 97.5 percent (= 117/120) of
the total required strings were found by BST and GUD. (The rest of the
uncorrected misspellings were in fact more similar to the other words than they
were to their “correct” versions.)

5. USER INTERFACE DESIGN

Though BST and GUD search an HL-file effectively in most cases, some of the
inputs call for the examination of many extra blocks. To overcome this defect, a
batch processing strategy could be adopted, one in which a few misspelled strings
are corrected at a time. While the user examines the alternative candidate words
for the misspelled ones, the file search proceeds for the rest of the inputs.

Let us estimate the user’s performance using the keystroke-level model pro-
posed by Card and Moran [4]. In this model the task of the user consists of two
parts: (1) to assess whether or not a displayed string is a correct one, and (2) to
press the specified key following the user’s decision. The time for this task was
estimated experimentally with 40 pairs of misspellings and their candidate best
matches. Ten people were asked to decide the correct versions of the misspellings
by pressing the “y” or “n” key. They were told that most of the best matches
would be correct. In the course of this experiment, it took the subjects about 4 to
ACM Tnmsactiom on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization l

I
Abstract

The automatic corection of misspelled inputs is discussed from a viwopoint

of similar-string matching. First a hireamhiial fde organization based on a

linear ordering of records is presented for ret&wing records highly similar to

any input query. Then the spelling

1. corection; correction

2. viwepoint; viewpoint

3. hirearchical; hierarchical

/

Fig. 11. The screen of the terminal designed for computer-assisted spelling correction.
Candidate best matches to the three misspelled words are displayed at the bottom of the
screen.

5 seconds to decide the correctness of each displayed string, to find the “y” or “n”
key, and to press it. On the other hand, it took about 2 to 3 seconds on average
to get the response from BST, which included the best-match search time and
the system’s overhead of, for example, transmitting results to the terminal,
collecting job accounting information, and processing multiuser jobs. The time
difference between the two is therefore dedicated to another file search.

Figure 11 depicts the screen of a terminal designed for computer-assisted
spelling correction. The misspelled strings are highlighted in the context to show
that correction is to take place. Three of the strings being corrected are displayed
at the bottom of the screen with numbers 1, 2, and 3 and their candidate best
matches. Pressing a preselected function key indicates that either (1) the correct
string has been found, or (2) the correct string is to be typed, and so the file
search against the string with this number is to be stopped.

6. CONCLUSIONS

A spelling program should guide the user to correct the misspellings by displaying
the probable correct strings. The methods presented here solve this problem by
(1) finding a candidate string for the best match, (2) expanding the target blocks
to be searched for the good matches, and (3) interrupting the search as soon as
the user is satisfied with the displayed result. These processes can effectively be
executed on the proposed screen-oriented editor.

The associative search in pattern classification, phonemic analysis, speech
understanding, natural language analysis, document information retrieval, etc.,

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

432 l T. Ito and M. Kizawa

also necessitates finding records closely related to an incoming query. As pre-
sented, HL-files can be applied to those research areas as well as to string
matching.

APPENDIX. PROOF OF THEOREM 1,

For simplicity, denote by ti,i the value t(ri, ri). From [24] we can see that

ti,j 2 t&k, tj,k iff ti,k = tj,k, V ri, rj, rk E C. (Al)

TSO can arrange [to,o, &, . . . , to,,,J so as to satisfy

ho 2 to,1 2 - - * 2 to,,. (~42)

Let us consider the following inequality for any k (1-c k I m),

tj,k-1 2 tj,k >- tj-l,k, lrjck. (A3)

Consider the situation in which j = 1. Since to,l 2 tO,k, by (Al) we have tl,k I

t&k. If &,,A--1 = .%,k, then, by TSO, tl,k-1 2 t 1,k; else if tO,k-1 > t&k, then, since to,l E
tO,k-1, We have tl,k-1 > tO,k = tl,k. Next, suppose that (A3) holds for any integer
smaller than j (~2). By reasoning similar to the above, since tj-l,j 2 tj-l,k, we
have tj,,k L t;-l,k. If t&k-l = ti,k for ah i (0 I i <j), then, by TSO, tj,k,-1 2 tj,k; else

if ti,k-1 > t&k for SOIIE i (0 5 i < j), then, SiIICe ti,i+l 2 ti,k-1, We have ti+l,k-1 > ti,k

= ti+l,k and, hence, tj,k-1 > tj,,k. Thus, by induction, (A3) holds for any j (1 5 j <
k I m).

From (A2), (A3), and the reflexive and symmetric properties oft, we can derive
inequalities (4). q

ACKNOWLEDGMENTS

The authors wish to express their thanks to the referees for the many helpful
suggestions and comments on an earlier version of this paper.

REFERENCES

1. BENTLEY, J.L. Multidimensional binary search trees used for associative searching. Commun.
ACM 18,9 (Sept. 1975), 509-517.

2. BENTLEY, J.L., AND FRIEDMAN, J.H. Data structures for range searching. ACM Corn@. Suru.
II,4 (Dec. 1979), 397-409.

3. BURKHARD, W.A., AND KELLER, R.M. Some approaches to best-match file searching. Commun.
ACM 16,4 (April 1973), 230-236.

4. CARD, S.K., AND MORAN, T.P. The keystroke-level model for user performance time with
interactive systems. Commun. ACM 23, 7 (July 1980), 396-410.

5. COMER, D. The ubiquitous B-tree. ACM Comput. Suru. 11,2 (June 1979), 121-137.
6. DESOUSA, M.R. Electronic information interchange in an office environment. IBM Syst. J. 24

1 (1981), 4-23.
7. DUNN, J.C. A graph theoretic analysis of pattern classification via Tamura’s fuzzy relation.

IEEE Trans. Syst. Man Cybern. SMC-4,3 (May 1974), 310-313.
8. ELLIS, C.A., AND NUTT, G.J. Of&e information systems and computer science. ACM Comput.

Sum 12, 1 (March 1980), 27-60.
9. FINDLER, N.V., AND LEEUWEN, J.V. A family of similarity measures between two strings. IEEE

Trans. Patt. Anal. Machine Intell. PAMZ-I, 1 (Jan. 1979), 116-118.
10. FRIEDMAN, J.H., BENTLEY, J.L., AND FINKEL, R.A. An algorithm for finding best matches in

logarithmic expected time. ACM Trans. Math. Softw. 3,3 (Sept. 1977), 209-226.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Hierarchical File Organization l 433

11. HALL, P.A.V., AND DOWLING, G.R. Approximate string matching. ACM Comput. Surv. 12, 4
(Dec. 1980), 381-402.

12. ITO, T., AND KIZAWA, M. The matrix rearrangement procedure for graph-theoretical algorithms
and its application to the generation of fundamental cycles. ACM Trans. Math. Softw. 3,3 (Sept.
1977), 227-231.

13. JARDINE, N., AND VAN RIJSBERGEN, C.J. The use of hierarchic clustering in information
retrieval. Inf. Stor. Retr. 7 (Dec. 1971), 217-240.

14. KNUTH, D.E. The Art of Computer Programming, vol. 3: Sorting and Searching. Addison-
Wesley, Reading, Mass., 1973, pp. 471-479.

15. PETERSON, J.L. Computer program for detecting and correcting spelling errors. Commun. ACM
23,12 (Dec. 1980), 676-687.

16. REGHBATI, H.K. An overview of data compression techniques. Computer 14,4 (April 1981), 71-
75.

17. RITCHIE, D.M., AND THOMPSON, K. The UNIX time-sharing system. Commun. ACM 17,7 (July
1974), 365-375.

18. ROBINSON, P., AND SINGER, D. Another spelling correction program. Commun. ACM24,5 (May
1981), 296-297.

19. ROGERS, D.J., AND TANIMOTO, T.T. A computer program for classifying plants. Science 132
(Oct. 1960), 1115-1118.

20. SALASIN, J. Hierarchical storage in information retrieval. Commun. ACM 16,5 (May 1973), 291-
295.

21. SALTON, G. The SMART Retrieval System. Prentice-Hall, Englewood Cliffs, N.J., 1971.
22. SALTON, G., AND WONG, A. Generation and search of clustered files. ACM Trans. Database

Syst. 3, 4 (Dec. 1978), 321-346.
23. SHAPIRO, M. The choice of reference points in best-match file searching. Commun. ACM 20, 5

(May 1977) 339-343.
24. TAMURA, S., HIGUCHI, S., AND TANAKA, K. Pattern classification based on fuzzy relations. IEEE

Trans. Syst. Man Cybern. SMC-1, 1 (Jan. 1971), 61-66.
25. WRIGHT, W.E. Binary search trees in secondary memory. Acta Znf. 15,l (1981), 3-17.
26. ZAHN, C.T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE

Trans. Comput. C-20, 1 (Jan. 1971), 68-86.
27. ZLOOF, M.M. QBE/OBE: A language for office and business automation. Computer 14,5 (May

1981), 13-22.

Received January 1982; revised May 1982; accepted November 1982

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

