
Extendible Hashing-A Fast Access
Method for Dynamic Files

RONALD FAGIN

IBM Research Laboratory

JURG NIEVERGELT

lnstitut lnformatik
NICHOLAS PIPPENGER

IBM T. J. Watson Research Center

and
H. RAYMOND STRONG
IBM Research Laboratory

Extendible hashing is a new access technique, in which the user is guaranteed no more than two page
faults to locate the data associated with a given unique identifier, or key. Unlike conventional hashing,
extendible hashing has a dynamic structure that grows and shrinks gracefully as the database grows
and shrinks. This approach simultaneously solves the problem of making hash tables that are
extendible and of making radix search trees that are balanced. We study, by analysis and simulation,
the performance of extendible hashing. The results indicate that extendible hashing provides an
attractive alternative to other access methods, such as balanced trees.

Key Words and Phrases: hashing, extendible hashing, searching, index, file organization, radix search,
access method, B-tree, trie, directory, external hashing
CR Categories: 3.72, 3.73, 3.74,4.33,4.34, 5.25

1. EVOLUTION OF FILE ORGANIZATION SCHEMES

Over the past two decades, schemes for structuring large files of data have evolved
by merging concepts and techniques from two areas that were initially perceived
as requiring distinct approaches: data structures appropriate for central memory,
and access methods appropriate to slow, high-capacity secondary-storage devices.
This distinction is becoming more and more blurred. We will briefly trace some
relevant developments in both areas, and show their convergence towards general
schemes for structuring data whose volume is allowed to grow and shrink by large

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Some of this research was carried out while J. Nievergelt was a visitor at the IBM Research
Laboratory in San Jose and while N. Pippenger was a visitor in the Department of Computer Science
at the University of Toronto.
Authors’ addresses: R. Fagin and H. R. Strong, IBM Research Laboratory, San Jose, CA 95193;
J. Nievergelt, Institut Informatik, ETH, Zurich, Switzerland; N. Pippenger, IBM T. J. Watson
Research Center, Yorktown Heights, NY 10598.
0 1979 ACM 0362-5915/79/0900-0315 $00.75

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979, Pages 315-344.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320083.320092&domain=pdf&date_stamp=1979-09-01

316 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

factors, such that the data are always accessed by the same algorithm (requiring
no “exception routines”), and worst case performance is almost never significantly
worse than average performance.

The first schemes used for structuring data were more appropriate to static
than to dynamic data. Static means that the extent and structure of the data
remain unchanged during processing; only values may be updated. Dynamic
means that data elements may be inserted and deleted, and relationships between
data elements (such as links) may be changed. The distinction between static
and dynamic data is of course not clear-cut (e.g. changing a link means updating
a pointer value), but in practice it is usually unambiguous and serves a useful
purpose.

The array (as a data structure for central memory) and the sequential file (the
only feasible structure on media restricted to sequential access, such as tape), are
the best known examples of static structures. Insertions and deletions (except,
possibly, at the end of a file) lead to at least one of two undesirable consequences:
the introduction of ad hoc mechanisms (such as a flag to indicate that a record
still present in the structure should be considered as having been deleted, or
pointers to an overflow bucket which holds records that cannot be squeezed into
their rightful place), and frequent expensive restructuring of the entire data
collection (typically when the number of holes left by deletions, and overflow
areas created by insertions, has grown so large as to degrade performance
severely).

The evolution from static to dynamic data structures proceeded rapidly in
those applications where data could be kept in central memory. List structures,
invented to accommodate highly dynamic data, became an identifiable technique
during the 1950s (see, for example, Newell and Simon [El). The problem of
possible degeneracy of list structures (for example, when a dynamic tree degen-
erates into a linear list because of a biased sequence of insertions and deletions)
was recognized and attacked early. The height-balanced trees of AdeIson-Velskii
and Landis [l] were a pioneering step toward the development of data structures
that adapt gracefully and gradually to repeated insertions and deletions. The
concept of data structures that adapt their structure in response to external
demands is now widely known.

The development of comparable dynamic file structures for seconday-storage
devices was slower. With the advent of disks, the sequential files appropriate to
tapes were quickly modified to indexed-sequential files (see, for example, [6]),
which, ideally, permit access to any record in two steps: first, a directory is
searched, which points to the proper cylinder or track, second, this track is
searched sequentially. For static files this scheme is as fast as the hardware
restrictions on disk accessing permit; for highly dynamic files indexed-sequential
access can lead to poor performance; instead of a 2-step access to data, long linear
chains of “overflow buckets” may be traversed.

Balanced trees turned out to be a good solution for storing highly dynamic files
on disks, just as they were for dynamic lists in central memory. The B-trees of
Bayer and McCreight [3] (a decade after the discovery of balanced trees for list
structures!), were the first file organization scheme that addressed the issue of
gradual adaptation of structure to fit the data.

Since balanced trees are a successful technique for storing dynamic files, one
ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing - 317

might well be tempted not to look further. We have attempted, however, to make
a systematic search for other adaptable file organization schemes suitable for
dynamic files, and we saw two approaches that appeared promising.

First, the analogy we have outlined, between file structures for secondary-
storage devices, and data structures for central memory, leads one to investigate
another general class of file organization techniques. Data structures for central
memory fall into three broad categories: linearly or sequentially accessible (in
time O(n), where n is the number of items in the collection), accessible by tree
structures (in time O(log(n))), and directly accessible by key-to-address, or
“hash,” transformations (in time O(1)). Hashing schemes have so far been
adapted to dynamic files on secondary-storage devices only by the inelegant and
inefficient technique of attaching overflow buckets whenever needed, thus slowly
but surely changing the O(1) access time characteristic of hashing towards the
O(n) time characteristic of sequential allocation. If one can design adaptable
hashing schemes that remain balanced as pages are added and deleted, the
suitability of hashing for secondary-storage devices would be greatly enhanced.

Second, radix search trees (also known as digital search trees, or tries (Fredkin
[5])), which examine a key one digit or letter at a time, have long been known to
provide potentially faster access than tree search schemes that are based on
comparisons of entire keys, for the simple reason that one comparison leads to a
larger fan-out (equal to the number of characters in the alphabet underlying the
key.space). In practice, however, radix search trees tend to be used only for small
files, since they often waste memory. The scheme of allocating a field for each
character of the alphabet at each node is better suited to representing the entire
key space rather than the contents of a particular file. Thus a radix search tree
usually contains space for many keys not in the table. Usually, the wasted
memory space occurs at the nodes near the bottom of the tree. Attempts to
exploit the speed of radix search trees without paying the penalty in memory
space usually combine radix search for some prefix of the key with other search
techniques for the suffixes (see, for example, Walker [Ml). If, instead of switching
from radix search to, say, binary search at some arbitrary depth in the tree, one
could find a balancing scheme that would keep the tree uniformly filled, then
radix search trees might provide an attractive alternative to balanced trees based
on key comparison, such as B-trees.

We pursued both goals: (1) making hash tables extendible, so that they can
adapt to dynamic files and (2) filling radix search trees uniformly, so that they
remain balanced. These two apparently distinct goals merged into a single file
organization scheme which has both aspects. It will be described in detail after
the necessary concepts and terminology have been developed.

After preparing this paper, the authors learned that three similar but distinct
schemes had been independently proposed, under the names expandable hashing
[8], dynamic hashing [lo], and virtual hashing [ll]. The reader interested in the
scheme described in this paper should also consult [S, 10, 111. Expandable and
dynamic hashing are very similar to our scheme. Both our scheme and the
schemes presented in [8] and [lo] use a directory (or index) pointing to leaves (or
buckets), and all three schemes distribute records among buckets in the same
way. The main difference is in the structure of the directory: Knott [S] and
Larson [lo] use linked access to a tree, while we use direct access to a contiguously

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

318 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

allocated table. Our scheme will be no worse than the schemes of Khott and
Larson as regards access time, and with virtual memory ours wilI be much better:
we risk but one page fault to find the bucket containing a record, while Knott and
Larson will risk several, depending on the depth of the tree. The comparison as
regards space depends on system-dependent parameters such as pointer lengths,
and also on the particular file being stored. For practical values of the parameters,
our directory will be small with probability very nearly 1 (in a sense that will be
made precise in Section 5). This difference will usually be unimportant, however,
since the space used for the directory will be small compared with that used for
the records themselves. Comparison of virtual hashing with our scheme is more
difficult. The definition of virtual hashing (“any hashing which may dynamically
change its hashing function”) is quite broad and could be taken to include all of
the above schemes. The specific virtual hashing schemes Litwin [ll] describes,
however, are different enough so that comparison with our scheme appears to
require further specification of implementation details and values of system-
dependent parameters.

In addition to the details mentioned, other differences between our paper and
the papers of Knott [8], Larson [lo], and Litwin [ll] are that we have a more
comprehensive analysis (Section 5), and we describe (in Sections 2 and 3) an
overall approach to designing ftie organizations.

2. CHARACTERISTICS OF DYNAMIC FILE ORGANIZATION SCHEMES .

This section defines the concepts and terminology used throughout the paper,
and illustrates them by means of well-known data structures and file organizations
(see also [17, Ch. 61.

A file is a collection of records, each one identified by a key; usually B natural
order is defined on the space of keys, which induces a natural order on the file.
When accesses to the file occur according to the natural order, we speak of
sequential access or processing of the file; otherwise we speak of random access.

A file organization scheme is a logical storage structure into which a file can
be mapped, along with the algorithms needed to manage this structure. A scheme
manages a collection of pages or blocks, usually of fixed size. To specify a scheme
one has to describe the relationship between the pages as well as the internal
structure of a page, and algorithms for file maintenance (inserting and deleting
records) and access.

STRUCTURE BETWEEN PAGES. Pages are accessed by starting at a root page
and following an access path which leads from page to page. A file organization
scheme suitable for dynamic files imposes a constraint on the balance of the
structure, which states that the length of access paths is bounded by some
expression in the total number p of pages (for example, path length = O(log p) or
perhaps O(1)).

INTERNAL STRUCTURE OF A PAGE. In general, a page contains records and
pointers to other pages, i.e. a page is a storage area as well as a directory. If a
page contains only pointers, it is called a directory page. If a page contains only
keys, or keys and their associated records, then it is called a leaf page, or leaf
Usually the occupancy, or load factor A of a page is bounded, i.e. constants (Y and
j? are specified such that 0 5 (Y I A 5 j3 I 1. The purpose of the lower bound (Y is
to prevent the creation of pages that are underfiied; the purpose of the upper
ACM Transactions on Database Systems, Vol. 4. No. 3, September 1979.

Extendible Hashing - 319

bound /3, when it differs from 1, is to reduce the number of undesirable events
(such as collisions in hash tables) due to crowding.

File maintenance algorithms guarantee that the constraints on the balance of
the entire structure, and on the load factor of each page, are always satisfied.
Early file organization schemes did not include file maintenance as an integral
part of the file structure. As a consequence, file maintenance algorithms were
crude and not specified in much more detail than: “when there are so many holes
and overflow buckets that access performance is severely degraded, restructure
the whole file.” Dynamic file organization schemes, on the other hand, enforce
rigorously stated balance and occupancy constraints. As soon as an insertion or
deletion causes an occupancy parameter to fall outside its allowed range, a
“small” rebalancing operation is performed. Usually, an underfilled page bor-
rows records from a neighbor, if there is one who can spare records; or an
underfiied page is merged with a neighbor who can absorb it; and an overfilled
page is split into two partially filled pages.

The difficulty of designing a dynamic file organization scheme lies in meeting
all, or most, of the criteria above in a uniform way, by means of a set of simple
concepts and algorithms. As an illustration, let us describe some well-known data
structures and file organizations in terms of the concepts introduced above.

Consider binary search trees. Each node can be considered as a page with a
simple internal structure: It contains precisely one key (or record) and two
pointers (which may be nil). The load factor of each node is always 100 percent.
If the tree is allowed to grow and shrink unchecked in response to random
insertions and deletions, the O(logp) access performance expected of binary trees
cannot be guaranteed; the worst case behavior will be O(p). The height-balanced
trees of Adelson-Velskii and Landis [l] enforce the following balance constraint:
at any node, the heights of the two subtrees of this node may differ by at most 1.
The weight-balanced trees of Nievergelt and Reingold [lS] enforce the following
constraint: at any node, the ratio of the weights (e.g. the total number of nodes)
of the two subtrees of this node must lie within certain bounds. Both balance
constraints guarantee access, insertion, and deletion in time O(logp). Both classes
of trees have balancing algorithms based on local transformations called rotations,
which restore the balance of a tree that was disturbed by a single insertion or
deletion, in time O(logp).

Consider “paginated binary search trees,” where each page may contain at
most m records (nodes of the binary tree). The structure between pages is that of
a multiway tree, with a page containing i keys having i + 1 pointers to other
pages. Page faults will be minimized when each page contains a connected
subtree. In order to achieve this, Muntz and Uzgalis [14] proposed the following
constraint on paginated binary trees: If a newly inserted key has no place in the
page of its father, then it is entered into a newly allocated page (rather than into
any page that has an empty space). Unfortunately, this constraint leads to the
creation of many nearly empty pages, with a corresponding waste of memory and
access time.

Bayer and McCreight [3] proposed a more efficient occupancy constraint: when
a newly inserted record does not fit into the page where it should go according to
the natural order of its key, then split that page into two half-filled pages. Their
B-trees satisfy the occupancy constraint + I h I 1 for all pages (with the possible

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

320 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

exception of one, the root page). The internal structure of a page is not completely
specified, except that it contains records as well as pointers to other pages. Access
to records within a page was originally intended to be sequential. If a page has
the internal structure of a binary tree, then a B-tree can be interpreted as being
a paginated binary tree.

These examples should suffice to illustrate the concepts introduced at the
beginning of this section. The reader who experiments with various combinations
of balance and occupancy constraints and with various structures between the
pages and internal to a page, will be able to discover an unlimited number of
reasonable dynamic file organizations. Most of these will be variations on well-
known themes. The following section combines these concepts to form a novel
class of dynamic file organization schemes.

3. EXTENDIBLE HASHING EQUALS BALANCED RADIX SEARCH TREES

A clear understanding of the characteristics and components of dynamic file
organization schemes, as presented in Section 2, allows one to design such
schemes on demand. The results tend to cluster around a few basic types,
however, one of which is the well-known balanced tree concept. A new basic type,
to be described in this section, can be understood from two different viewpoints,
and, accordingly, obtained by modifying two distinct known methods: hashing
and radix search trees. These two addressing schemes are usually considered to
be unrelated. Their interplay in our novel file organization scheme achieves two
striking goals:

(1) Hashing, conventionally using a table of fixed size, can be made to be
extendible.

(2) Radix search trees, conventionally seen to grow randomly, can be made to
be balanced.

This section gives an intuitive, high-level description of two design processes
that lead to the same goal, a file organization scheme we call extendible hashing.
The detailed description is left to Section 4. By presenting not only the final
result, but also the method that leads to its discovery, we hope that the reader
will gain a deeper understanding of the essential issues.

3.1 Balancing Radix Search Trees

Thesis. Radix search trees are naturally extendible. By addressing their nodes
via a hash function that provides a uniform distribution of keys they become
balanced.

Let us illustrate the above brief statement of a design principle by means of an
example.

(a) Consider the radix search tree in Figure 1, over the alphabet (0, 1, 2}.
Assume that leaf LOI contains all keys that start with the digits 01, for example,
the keys 012 and 01110. When a leaf overflows, as might have happened in our
example toa previzsly present leaf ,510, it is simply replaced by an internal node
to which three new leaves are attached (L~oo, ZW, ~5102 in our example).

(b) Access to a radix search tree can be speeded up if, instead of comparing
one digit of a key at a time (resulting in a fan-out equal to the size r of the
ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 321

Fig. 1. A radix search tree

00 01 02 10 11 12 20 21 22

I I I I I I I I

~,~p$ &, &, &, &, &,

0 1, 2

I I I

1 1 1’

ho L 101 ho2

Fig. 2. Radix search tree with two levels compressed into one

OCO 001 002 010 011 012 020 021 022 loo 101 102

L~I~IIIIIIIIIIIIIII

222

. . .

z
b2

Fig. 3. Degenerate radix search tree

underlying alphabet at each node), we flatten out the top d levels into an array
of rd pointers; by using the d leftmost (= most significant) digits of the key as an
index into this directory, we achieve a fanout of rd at the root. For d = 2 our
example is displayed in Figure 2.

(c) If we can afford to waste some space for redundant information, then we
may extend the directory to a greater depth, i.e. to cover more levels than the
shortest root-to-leaf path justifies, thus trading memory for speed. This happens
in our example if we choose d = 3 (see Figure 3). Notice that each leaf at depth
2 (or level 2) in the tree is being pointed at from three different entries in the
directory; only the leaves at depth 3 make full use of the expanded length of the
directory.

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

322 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

(d) So far we have considered radix search trees whose top d levels have been
flattened into a directory of depth d; leaves at level 1 I d are then accessed with
a single probe, i.e. by following a single pointer from the directory (= root of the
tree). Leaves at level I > d, on the other hand, would require more than one
probe, as Figure 2 shows. By choosing the depth of the directory sufficiently large
(d z the length of the longest root-to-leaf path) we can guarantee access in a
single probe to any leaf. The radix search tree has degenerated into a direct
(= one-step) access mechanism. Using the key as an address yields the ultimate
in speed at a usually extravagant cost in memory-unless the space from which
the keys are drawn is uncharacteristically small, or (and this is the key observa-
tion) the keys in the file are uniformly spread over the key space.

(e) Hash functions have been used for two decades to convert a nonuniform,
usually unknown, distribution into another one which one hopes is close to
uniform. Only recently Carter and Wegman [4] have given a mathematical
foundation to this hope. Armed with this insight, we now envision the following
file organization scheme which is both extendible and balanced (see Figure 4).

This is a summary of the ideal picture. The details are described in Section 4.
An analysis which justifies the high expectations mentioned above occurs in
Sections 5 and 6. Let us now describe how the same goal can be reached by
another design process, which starts with conventional hash tables and tries to
extend them.

3.2 Extending Hash Tables

Thesis. Hash tables are naturally balanced. By separating the hash address space
from the directory address space, hash tables can be made extendible.

Hashing (or key-to-address transformation, or scatter storage techniques) is

Key space S:
Actual content
of file very un-
evenly distributed

Hash function h
maps S onto an
address space A
such that addresses
hiKl fairlv evenlv

Address space A is
mapped onto a
directory of appropriate
size such that all leaves
have approximately 0 0 0
the same high load 0 0
factor

ml 0

Fig. 4. Radix search tree being accessed through a hash function

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 323

1
Address

Space

W h
Al

Space B

S
Hash

Function

h(K) = Constant

1 fy----j-q
Fig. 5. Hashing into a directory

recognized in practice as providing the fastest random access to a file. This
empirical evidence is supported by theoretical analysis, which indicates that
access time to a hash table is independent of the number of records; instead,
access time depends on the load factor of the table, and in practice load factors
as high as 90 percent ahow hashing to be competitive with other access schemes.

In contrast to the fast O(1) access time, hashing is burdened with two disad-
vantages that prevent its use in many applications. First, hashing usually cannot
support sequential processing of a file according to the natural order on the keys.
Sequential processing requires sorting, an O(n log n) operation which makes the
fast random access useless. Second, traditional hash tables are not extendible-
their size is intimately tied to the hash function used, and often must be
determined before one knows how many records are to be placed in it. A high
estimate of the number of records results in wasted space; a low estimate results
in costly rehashing, that is, choice of a new table size, a new hash function, and
relocation of all records.

Because of the two preceding disadvantages, hashing has usually been confined
to tables which fit into main memory, and whose size can be estimated reliably.
Where such a table is a directory of a file stored on disk, the necessary file
maintenance algorithms to make the file organization scheme truly dynamic, in
the sense described in Section 2, have not previously been worked out.

In this section we describe a broad class of file organization schemes based on
hashing which are extendible in the sense of Section 2. They also go part way
toward solving the first traditional shortcoming of hash tables: They support
sequential processing to a limited extent. More specifically, it is possible to
process the keys in hash order, without referencing the same page more than
once. Let the following examples illustrate the design approach.

(a) Consider a hash table organized as a directory with address space Al, with
each entry of the directory pointing to a bucket (= leaf page) of fixed size (see
Figure 5). This traditional picture has the disadvantage that it does not suggest
a way of making the file extendible: When a bucket overflows, because too many
keys K arrive with h(K) equal to a given address (Y, there appears to be no
alternative to rehashing.

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

324 - R. Fagin, J. Nievergelt, N. Pippenger, and H. FL Strong

(b) The following figure serves as a starting point for generalization, since it
contains an additional component that can be manipulated (see Figure 6). The
hash function maps the key space S onto a large address space Al. A partition n
splits A1 into m blocks; each block has one leaf allocated for its use and the
directory somehow implements the correspondence between blocks and leaves.
Assuming that 7~ is defined by m + 1 boundaries (~0, (~1, . . . , am, leaf Li contains all
keys K with ai-1 I h(K) < CY~. The added flexibility of this scheme is shown by
the following possibilities: if a leaf overflows, we may be able to change the
partition, perhaps by as little as shifting one boundary ai, and relocating only
those keys that are affected by this shift. Notice that h need not be changed.

(c) We are thus led to make the hash table extendible by varying a partition
7~ on a large address space A, while keeping the hash function unchanged. The
question arises immediately as to what kind of partitions can be efficiently
managed. Since we aim at a very large, theoretically unbounded, capacity of the
entire file, while keeping the bucket capacity constant, the partitions we deal with
must have a variable number of blocks. Among many conceivable families of
partitions, the well-known “buddy system” for storage management (see, for
example, Knuth [9, Vol. 1, p. 4421) suggestsitself immediately because of its
simplicity. Let A = (0, . . . , 2” - 1) for some large fixed n; then a0 = 0 < (Y~ < (Y~
c... < (Y,,, = 2” - 1 are the boundaries of a partition of the buddy-system type
iff all intervals [ai-l, ai) can be obtained by repeated halving of intervals in A.
The example in Figure 7 shows a buddy-system partition with n = 3.

Buddy-system partitions have the advantage that when a leaf overflows, the
corresponding block in the address space is halved, a new leaf is added, and only
the keys in the halved block are affected. Halving any block of a buddy-system
partition leads to another such partition. When a block gets underfilled because
of deletions, and its buddy has enough room, these two blocks can easily be
merged into a buddy-system partition with one block less.

(d) There remains the question of how a buddy-system partition is efficiently
implemented in a directory. Again there is an obvious efficient solution. Let the
depth d of a buddy-system partition be the least integer such that each member
of the buddy-system partition is the union of some of the 2d equal-sized intervals
obtained by continued halvings. Thus d is minimal such that for each block

Kw
SpiXe

S

h
.

Hash
Function

Fig. 6. Hashing into a large address space

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing - 325

Fig. 7. A partition of the buddy-system type

[(~i-~, aJ of the partition, (ai - ai-1) 2 2”-“. A directory with 2d entries, some of
which may point to the same bucket, allows one to take the d most significant
bits of the hash address h(K) as the index in the address space A1 =
(0, . . . , 2d - l} of the directory. When the depth of a partition increases, then the
directory doubles in size.

(e) The attentive reader will have noticed that we have now arrived at precisely
the same scheme developed in Section 3, starting from a radix search tree; it is
presented here for the special case where the radix r = 2, which is natural if one
thinks of hash addresses as bit strings. The details of the file organization scheme
thus found at the intersection of two distinct approaches are presented in
Section 4.

3.3 Balance Versus Sequentiality

Two points mentioned earlier in this section remain to be discussed: balancing
and sequential processing. Balancing, in the case of a two-level tree as we have in
extendible hashing, merely means that the occupancy of leaf pages is bounded
above and below. Sequentiality can mean two things. In a weak sense it means
that the entire set of keys (and corresponding data) can be processed efficiently
one at a time, where each page of keys is referenced only once. Sequential&y in
the usual stronger sense means that the order of sequential processing coincides
with the natural order (e.g. lexicographic order) defined on the space of keys.
Either of these desirable goals (balance and sequentiality) can be achieved in
extendible hash tables; both can be achieved simultaneously to some extent, but
not fully.

Balancing is achieved in two distinct ways. First, partitioning the address space
A into blocks of variable length achieves a balancing effect regardless of the
distribution of hash addresses h(K) over A: in regions where hash addresses of
keys in the table cluster, the partition is finer than in sparsely populated regions.
Second, a main purpose of hash functions in general is to distribute a set of keys
that is nonuniformly distributed over the key space S uniformly over an address
space A.

Sequentiality in the weak sense (by hash address or “pseudokey”) is trivially

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

326 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

achieved with extendible hashing. For many applications, sequentiality in pseu-
dokey order is just as good as sequentiality in key order. For example, consider
a batch-update application, where there is a master file and a (presumably
smaller) update file. The updates are “batched together” into an update file,
which is then used to update the master. An efficient procedure for actually
applying the update to the master file is to always store the master file in sorted
order, then to sort the updates by key, and then to apply the updates to the
master. In this way, no page of the master file is retrieved more than once. In this
application, one can just as well sort in pseudokey order as in key order. As
another example, it is often important to do a “first, next, next, next, . . .” and
touch every record (or key) exactly once. Again, pseudokey order will do just as
well as key order.

Sequentiality in natural order, that is, by key, tends to conflict with balancing:
a compromise is the result. Hash functions that tend to distribute hash addresses
uniformly over A, even for biased sets of keys with many clusters, ignore (destroy)
the natural order on the keys (whence the name “hash”). If such a conventional
hash function is used in order to improve the balance, then extendible hashing
provides sequentiality only in the weak sense. Note, however, that it is possible
to store the set of keys within each leaf in natural order, so that sequential
processing in natural order can be obtained for the cost of merging all leaves, as
opposed to sorting the entire file.

Order-preserving hash functions, which satisfy the condition “K < L iff h(K)
< h(L)” permit sequential processing in natural order. They are rarely used in
practice because they do not sufficiently break up clusters of adjacent names,
and thus fail to provide a uniform occupancy of the address space. Since
extendible hashing induces a partition of the address space into variable-length
blocks, the occupancy of leaf pages (buckets) can be made to be significantly
more uniform than the occupancy in the address space is. Hence order-preserving
hash functions should be seriously considered as a means of allowing true
sequential access in extendible hash tables.

4. A SPECIFIC EXTENDIBLE HASHING SCHEME

In this section we describe in more detail one extendible hashing scheme.
Probably its most important performance characteristic is its speed. Even for files
that are very large by current standards, there are never more than two page
faults necessary to locate a key and its associated information.

We assume that we are given a fixed hash function h. If K is a key, then we call
K’ = h(K) the pseudokey associated with K. We choose pseudokeys to be of fixed
length, such as 32 bits. A good choice for the hash function h is one randomly
selected from a universal class of hash functions, as defined by Carter and
Wegman [4]. Then, whatever the distribution of keys, we can expect the pseu-
dokeys to be distributed nearly uniformly: about half the pseudokeys have Grst
bit 0; about a quarter start with 01, etc. Note that although the pseudokeys are
of fixed length, the keys need not be.

The file is structured into two levels: directory and leaves. The leaves contain
pairs (K, I(K)), where K is a key, and I(K) is associated information: either the
record associated with K, or a pointer to the record.

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Depth d

000 pointer

001 "

010 "

011 "

100 "

101 "

110 "

111 "

Directory

Extendible Hashing -

Leaf Paqes

327

hi-) = 00. . .

h(-) = 010. . .

h(-J = 011 . . .

h(-) = 1 . . .
I

Fig. 8

The directory has a header, in which is stored a quantity called the depth d of
the directory. After the header, the directory contains pointers to leaf pages. The
pointers are laid out as follows. First, there is a pointer to a leaf that stores all
keys K for which the pseudokey K’ = h(K) starts with d consecutive zeros. This
is followed by a pointer for all keys whose pseudokeys begin with the d bits
0 . . . 01, and then a pointer for all keys whose pseudokeys begin 0 . . . 010, and so
on lexicographically. Thus altogether there are 2d pointers (not necessarily
distinct), and the final pointer is for all keys whose pseudokey begins with d
consecutive ones. If d = 3, then the directory looks like the left side of Figure 8.

Assume that we want to locate key Ko and its associated information. Calculate
h(Ko), and find its first d bits. Do a simple address computation to find the
location in the directory of the pointer that corresponds to this d-bit prefix. If we
follow this pointer, then we find a leaf page that contains (Ko, I(Ko)), provided Ko
is a key in the file at the moment.

Each leaf page has a header that contains a local depth d’ for the leaf page.
For example, if we follow the 000 pointer in the directory of Figure 8, we reach a
leaf page with local depth 2. Local depth 2 means that not only does this leaf
page contain all keys whose pseudokey begins with 000, but even more, it contains
all keys whose pseudokey begins with the 2 bits 00. Thus the 001 pointer also
points to this leaf page. The depth of the directory is the maximum of the local
depths of all of the leaf pages.

In our example of Figure 8, there are so few keys whose pseudokey begins with
a 1 that there is a single leaf page (with local depth 1) associated with all such
keys. What happens when this leaf page finally overfills (or reaches a predeter-
mined unacceptably full level, such as 90 percent full)? Then as in Figure 9, it
“splits” into two leaf pages, each with local depth 2. All keys whose pseudokey
begins 10 appear on the first of these leaf pages, and all keys whose pseudokey
begins 11 appear on the other.

What happens if a leaf page overfills, and the local depth of the leaf page
already equals the depth of the directory? Then the directory doubles in size, its
depth increases by 1, and the leaf page splits. For example, if we start with the

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

328 - R. Fagin. J. Nievergelt, N. Pippenger, and H. R. Strong

Depth d

000 Pointer

001 "

010 "

011 "

100 "

101 "

110 "

111 "

Depth d

0000 pointer

0001 "

0010 "

0011 "

0100)'

0101 "

0110 "

0111 "

1000 "

1001 "

1010 "

1011 "

1100 "

1101 "

1110 "

1111 "

Directory Leaf Paqes

Fig. 9

Directory Leaf Paqes

0
E

3
\

\
\

\ 2

\
\ 0

I I
L---l

Fig. 10

h(-)=OO.. .

h(-) =OlO. .

h(-)=Oll . . .

h(-)=lO . . .

h(-)=ll . . .

h(-)=OO.. .

h(-)=OlOO. . .

h(-) =Oll * . .

h(-) =lO.. .

h(-)=ll . . .

h(-) =OlOl . .

situation as in Figure 9, and if the leaf page pointed to by the 010 pointer overfills,
then we get Figure 10. This process of doubling the directory is not expensive
because no leaf pages need to be touched (except, of course, for the leaf page that
caused the split and its new sibling). There is an easy, essentially one-pass
algorithm for doubling the directory, that proceeds by working from the bottom

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 329

of the old directory up to the top of the old directory. The simple details are left
to the reader. If there are so many keys that the directory is in secondary storage,
then since the directory is stored contiguously, it can be streamed into main
memory in large blocks. If there are a few million keys when the directory
doubles, and if the secondary-storage device has a data transfer rate of around a
million bytes per second (roughly comparable to that of the IBM 3330 disk), then
it is straightforward to estimate that the time involved in doubling the directory
(which is mainly data transfer time) would be less than a second if there were 400
keys per leaf page. Even in the extreme case of a billion keys, the time involved
in doubling the directory would be less than a minute.

We note that if we had used suffixes of pseudokeys instead of prefixes, then the
algorithm for doubling the directory would be especially easy: it would essentially
consist of making a second copy of the nonheader portion of the directory,
immediately after the first copy. However, we chose to use prefixes for the sake
of intuitive simplicity (thus, by using prefures the keys can easily be accessed in
pseudokey order, rather than in inverted pseudokey order).

The internal structure of the leaves is independent of the relationship between
the pages. In the interest of speed, we choose to organize the leaves as (traditional)
hash tables. It is natural to use the “ignored” bits of the pseudokey K’ to hash
within the page. Any standard collision-resolution technique, such as open
addressing or chaining, is acceptable, as long as it stores colliding keys within the
same page.

If deletions form such a large proportion of the operations of an application
that space will be saved by coalescing pages, then this can be accomplished by
keeping in the directory the number of entries on each page as well as the pointer
to the page. Then at each deletion, the total number of entries in the page deleted
from together with the appropriate sibling page can be checked without any extra
accesses. However, this additional complexity will probably not be justified for
those applications where we can expect new growth to rapidly replace any
deletions.

There is at most one page fault in locating the appropriate directory page,
because the structure of the directory is so simple that the location of each
pointer can be determined by an easy address computation. Further, there is at
most one page fault in obtaining the appropriate leaf page. So no more than two
page faults are necessary to locate a key and its associated information. In many
natural situations the directory will be so small that it can be kept resident in
main memory. For example, if the page size is 4K bytes, if keys are 7 bytes long
and pointers to pages are 3 bytes long, then after a million inserts, the directory
can be expected to be 3 pages in size.

A number of advantages accrue from the simple, intuitive structure of exten-
dible hashing. The most obvious is the simplicity of coding (thus leading to lower
likelihood of “bugs”). Our extendible hashing algorithm is easily modified to
accommodate individual needs: for example, it might be desirable in some
contexts to “initialize” by starting with a directory depth d greater than zero and
individually initializing 2d leaf pages.

We close this section by giving in more detail the algorithms for extendible
hashing.

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

330 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

ACCESS (given key Ko)
1. Calculate K< = h(KJ.
2. Read d, the depth of the directory.
3. Take the initial d bits of K<, interpret them as an integer base 2, and call this number

4. ket u be the length in bytes of the region (one for each pointer in the directory) that
tells the numbber of entries on that leaf page. If this information is not being stored in
the directory then let v = 0.

5. Find the pointer that is located r(Z + u) bytes from the start of the nonheader portion
of the directory, when 1 is the length of each pointer in bytes.

6. Follow this pointer to a leaf page P.
7. Use the trailing s bits of the pseudokey to hash onto leaft page P (where s is a fixed,

system-determined parameter).
8. If necessary, follow the collision-resolution scheme within page P.

INSERT (given (Ko, I(Ko)))
1. Apply the first seven steps of ACCESS, using key Ko.
2. If by inserting key KO on leaf page P, we would exceed our threshold, then go to Step

7.
3. If there is sufficient free space at the location calculated at the end of Step 1, then

insert (Ko, I(Ko)) there.
4. Otherwise, follow the collision-resolution scheme to insert (Ko, I(Ko)) on leaf page P,

if this is possible.
5. (Optional) For each directory pointer that points to page P, increment by one the

entry that tells the number of entries on the leaf page.
6. If (Ko, I(Ko)) has been successfully inserted, then stop.
7. At this point, we know there is not sufficient free space on page P. Obtain a new page

P* to use as a leaf page.
8. Obtain a temporary area Q to store all (K, I(K)) pairs that appeared on page P, along

with the new (Ko, I(Ko)).
9. Set the local depth of each of P and P* to d’ + 1, where d’ is the old local depth of P.

10. Erase all nonheader information from page P.
11. If the new local depth of P is bigger than the current directory depth, then do the

following.
a. Increase the depth of the directory by one.
b. Double the size of the directory, and update the pointers in the obvious manner.
c. (Optional) Set to zero the entry giving the number of entries on the leaf pages P

and P*.
12. INSERT all (K, I(K)) pairs one at a time from the temporary area Q.

Note that the INSERT routine can (repeatedly) call itself recursively (in Step 12).

DELETE (given Ko)
1. ACCESS, using K,,.
2. If K. does not appear, then stop (and send the appropriate return code).
3. Delete by writing the deleted sign over the entry or by unchaining, depending on the

collision-resolution strategy.
4. (Optional) If the sum of the number of entries on this page and its sibling page are

below the threshold, then coalesce these two pages as follows:
a. Copy all (K, I(K)) entries from these two pages into a temporary region Q.
b. Throw away (i.e. return to free space) one of the two pages. Make all pointers that

point to it point to the remaining page.
c. Decrement the depth on the remaining page P by one.
d. Erase all (K, I(K)) entries on page P.
e. Set to zero the “number of entries on page” values associated with all pointers to P.
f. INSERT all (K, I(K)) pairs one at a time from the temporary area Q.

5. (Optional) If every pointer in the directory equals its sibling pointer, then do the
following:

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing - 331

a. Decrease the depth of the directory by one.
b. Halve the size of the directory, and update the pointers in the obvious manner.

5. ANALYSIS

In this section we shall derive some analytical results concerning the number of
leaf pages and directory entries used by extendible hashing. As with all hashing
schemes, performance in the worst case is intolerable; it is possible, for example,
for a file with just one more record than wilI fit into a leaf page to cause the
directory to expand until there is a separate entry for every possible pseudokey!
The probability of this happening is astronomically small, of course, and in
speaking of “probability” here we need not entrust our fate to the source of our
file; for any file, we may take the dice into our own hands and choose our hashing
function at random (see Markowsky, Carter, and Wegman [12]). In describing
our insertion algorithm we assumed that the index contained no duplicate keys
and that an index page was never filled with duplicate pseudokeys. In fact, if the
hashing function maps even two distinct keys onto the same pseudokey, this
collision might be considered an indication that either the space of pseudokeys is
not large enough or that we have been unlucky in our choice of hash function and
should choose again from the class of hash functions available. The results of
Markowsky, Carter, and Wegman [12] aIlow us to make conservation estimates
of the probability of collisions in the pseudokey space independent of the
distribution of keys in the key space. For example, if pseudokeys are 128 bits
long, the probability of even a single collision in filling an index with one billion
inserts is less than one quadrillionth (10-15).

Our interest in what follows will be in average performance; to study this we
shall assume natural probability distributions, setting aside the question of
whether the randomness is provided by the source of the file, the choice of the
hashing function, or (as will usualIy be the case) some combination of the two.

For the analysis of average performance, it is traditional to assume that the file
has some particular number of records and that these records have uniformly
and independently distributed pseudokeys. This wilI be called the Bernoulli
model in what follows. The best way to handle this model seems to be to start
with another model, in which the pseudokeys are again uniformly and indepen-
dently distributed, but in which the number of records is itself a random variable.
This will be called the Poisson model in what follows. Our strategy wiIl be to
analyze the Poisson model, then show that the Bernoulli model can be reduced
to the Poisson model. Although our main interest is in the Bernoulli model (since
this allows comparisons with simuiations and other published analyses), the
Poisson model is of some interest in its own right: if, for example, records arrive
for insertion with exponentially distributed interarrival times and are deleted
after arbitrarily distributed lifetimes, then the equilibrium distribution follows
;he Poisson model (this is the situation M/G/w in ther terminology of queueing
theory; see Khinchine [7, Section 251).

THE BERNOULLI MODEL. For this model the number of records has a deter-
ministic value, say n. If we consider a pseudokey interval of lengthp, the number
J of records whose pseudokeys fall in this interval is a Bernoulli distributed
random variable:

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

332 - FL Fagin, J. Nievergelt, N. Pippenger, and H. Ft. Strong

~‘(1 -p)“-‘.

More generally, if we consider r disjoint intervals with lengths pl, . . . , pr, the
numbers JI, . . . , J, of records whose pseudokeys fall in these intervals have the
joint distribution

wherep=pl+ --. +p,andj=jI+ --- +j,.
THE POISSON MODEL. For this model the number N of records is a Poisson

distributed random variable:

P(N = n) = e-V/n!.

The parameter Y is the average number of records. The number J of records
whose pseudokeys fall in an interval of length p is also Poisson distributed:

P(J = j) = C (e-“v”/n!)
jzsn<m 0

y pj(1 -p)n-j

= (e-“vjpj/j!) C ~“~‘(1 - p)“-j/(n - j)!
jancm

=e -“)vp)j/j!.

More generally, the numbers J1, . . . , Jr of records whose pseudokeys fall in
disjoint intervals with lengthsp1, . . . , pr are independently Poisson distributed:

P(Jl = jl, . . . , J,. = jr) = z . . . pc(l -P)“-’
jzzncm

= (e-‘vjp$. . . pG/j,! . . . j,!) z v”-j(l - p)“+(n - j)!

jsnec

= (e-“pb(vpl)‘*/jl!) . . . (e-“P+pr)jr/j,!).

The aspects of extendible hashing that we shah study are closely related to a
variant of radix-exchange sorting. If we assume that leaf pages split when they
contain more than m records, we should assume that the sorting routine calls
itself recursively when there are more than m records to be sorted, but terminates
nonrecursively when there are m or fewer records. There will then be a one-to-
one correspondence between the leaf pages in extendible hashing and the terminal
invocations of the sorting routine. Straight radix-exchange sorting (the case m =
1) has been analyzed by Knuth [S, Vol. 3, Section 5.2.21 and it is natural to try to
extend that analysis to m I 2. This is done in [S, Vol. 3, Section 6.3, Exercises 19
and 201, but the form in which the results are given there is unsuitable for our
purposes, since it involves a sum of m different Fourier series. The method we
use in what follows leads straightforwardly to a single Fourier series. Although it
gives coarser error terms, it gives a natural interpretation for the main approxi-

ACM Transactions on Database System, Vol. 4, No. 3, September 1979.

Extendible Hashing * 333

mation involved: a Bernoulli distribution is approximated by a Poisson distribu-
tion.

5.1 The Poisson Model

We begin with the average number of leaf pages. Consider a binary tree that has
the “ghosts” of pages that have split as its internal nodes and has the current leaf
pages as its external nodes (see Figure 11).

The number of leaf pages is greater by one than the number of ghosts. A ghost
at level K (the root is at level 0) corresponds to a pseudokey interval of length 2-k
that contains more than m records. Since there are 2k potential ghosts at level k,
the average number of leaf pages is

1 + z 2kP(>m, 2-9, (5.1.1)
OSk<C.D

where P(>m, 2-k) denotes the probability that a pseudokey interval of length 2-k
contains more than m records.

Substituting the Poisson distribution (with average number of records as V)
into (5.1.1) yields

1 + c 2k c e-“-*(v2+)9!. (5.1.2)
OSS<m mv~cm

We shall show that if m remains fixed and Y + 00 this expression behaves like

(v/m)~,(log v) + O(v”’ log v), (5.1.3)

where
b(x) = C, cm,heePnihX (5.1.4)

-m-zk<+m

and
cm,h = (log e)(m - 1 + 2&h log e)!/(l - 2rih log e)(m - l)!.

The logarithms are to the base 2.

(5.1.5)

A few words concerning this result are in order. The average number of records
is v; if these records were packed m to a page, they would occupy v/m pages. In
the expression (5.1.3), +,(log v) should therefore be interpreted as the storage
expansion ratio: the ratio of the average number of pages for this algorithm to

Fig. 11

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

334 * R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

the average of the minimum possible number. The Fourier series (5.1.4) shows
this function to be periodic with period 1, so when Y doubles the expansion ratio
returns to its original value. The constant tern (corresponding to h = 0) is
log e = 1.442 . . . ; this is the “average” value of &,,(log v) if v is “distributed”
according to the logarithmic law (so that log v is uniformly distributed modulo J).
The first harmonic terms (corresponding to h = +l) are smaller in magnitude by
at least a factor of (1 + (2a log e)2)“2, since I(x + iy)! 1 I x!; the succeeding
harmonic terms continue to decrease in magnitude, and eventually they decay
exponentially.

To evaluate (5.1.2), we write it as

1 + c (vj/j!) c 2MFde-y2-’
mcj<m Osk<cc

and substitute the integral representation

This gives
I

-1/2+im

eP = (l/2&) (z!/zd+‘) dz.
-1/2-h

I

-1/2+im

1 + c (9/j!) c 2k”-q1/27ri) [z!/(v2-k)z+l] dz
m-qicm tik<CO -1/2-k

I

-1/2+im

= 1 + x (vj/j!)(l/2ni) [z!/v”+‘(l - 2z++2)] dz.
mqj<m -1/2-b

To evaluate this integral, let us consider the poles of the integrand. There are
poles at 2 = -1, -2, . . . due to z!, and poles at z = j - 2 + 2nih log e (for h =
. . . , -1, 0, +1, . . .) due to the zeros of 1 - 2*-J+2. If the path of integration is
shifted to the right of the latter poles, the value of the integral is augmented by
the sum of the residues at these poles. This gives

1 + C (vj/j!) 2 (log e)(j - 2 + 2vrih log e)!v-i+1-2rrih log e
mcjcm -m<h<+m

j-3/2-e+&

+ C (vj/j!)(l/277i) I [z!/v”‘(l - 2z++2)] dz,
?Kj<CO j-3/2-c-ice

where E is a small parameter (0 < E < 3) which will be chosen later. To complete
the derivation of (5.1.3) we shall show that the double sum is (v/m)&(log v) and
that the remaining sum is O(V”~ log v).

The double sum can be rewritten as

v -m;<+m v-2?rih log e C (log e)(j - 2 + 2aih log e)!/j!
mc j<m

=v c eCfnih log “(log e) C (m i-j - 1 + 2nih log e) !/(n + j + 1) !.
--m<h<+m Osj-zx

The inner sum is the hypergeometric series

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing - 335

F(m + 2mih log e, 1; m + 2; l)(m - 1 + 2mih log e) !/(m + l)!

= (m - 1 + 2rih log e)!/(l - 2?rih log e)m!.

This gives

v -rrzc+m e-2nih log “(log e)(m - 1 + 2&h log e)!/(l - 2nih log e)m!

= (v/m) C c,,he-2n’h log ”
-m-zh<+m

= W4qMlog 4.
For the remaining sum we have

j-3/2-r+im

(1/27ri)
I

[z!/v”+‘(l - 2=-j+2)] dz = O((j - 1 - l)!/V’-“2-‘(+ - e))
j-3/2-r-ix

and
mJ<m (zJ/j!)O((j - 1 - l)!/P’“-‘(4 - E)) = O(vi’2”/e(+ - E)).

By choosing E = l/in Y we obtain O(V”~ log v).
Let us now consider the depth and the number of directory entries used by

extendible hashing. We have seen that there are about (v/m)log e = v/m ln 2 leaf
pages on the average; if these all appeared at two successive levels, these two
levels would be

a = [log (v/m ln 2)]
and

b = [log (v/m ln 2)1,

and the directory would have

entries. This last expression can be written as (v/m)#,Jlog v), where J/m(x) is a
periodic function with period 1. This function has a Fourier series with constant
term (log e)2 = 2.079 . . . , so there would be (v/m)(log e)2 = v/m@ 2)2 directory
entries on the average.

It does not always happen, of course, that all the leaf pages appear at two
successive levels, we shall show, however, that it happens with probability very
nearly 1 for practical values of m and v. First, consider the probability that there
is a leaf page at level a - 1 or less. This can happen if one of the 2+’ potential
ghosts at level a - 1 fails to be a ghost; the probability of this is at most

Since

gaml[l - P(>m, 2’-33 = za-’ C e-Y2’-“(y21-a)j/j!a

Or+m

and

2”-’ 5 v/2m ln 2

v2 lea 2 2m In 2,
ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

336 - Ft. Fagin, J. Nievergelt, N. Pippenger, and H. Ft. Strong

this expression is at most

(v/2m ln 2) C e-2m h 2(2m In 2)‘/j!
osjm

= (v/2m ln 2)[ed2” ‘” 2 (2m ln 2)“/m!] c (2m ln 2)‘~“m!/j!.
05&m

Bounding the sum by a geometric series, we find that this expression is at most

(v/42 In 2 - l))[e-‘” Ln 2(2m In 2)“/m!],

and using the inequality m! > mme-m(2?rm)1’2 we find that this expression in turn
is at most

~/rn~‘~(27r)~‘~(2 In 2 - 1)(2/e In 2)“. (5.1.6)

By similar reasoning, if there is a leaf page at level b + 1 or more, one of the 2b
potential ghosts at level b must actuaUy be a ghost; the probability of this is at
most

zbP(>m, 2-b) = 2b C e-‘2-b(v2-b)i/j!
mq’a=

I (2v/m ln 2) C e-* In 2(m ln 2)‘/j!
*-=j<Ol

5 (2u/m ln 2)[e-” In 2 (m ln 2)“/m!] 1 (m ln 2)‘-“m!/j!
m-=j<oa

I (2v/m(l - ln 2))[e-” In 2(m In 2)“/m!]

I 2v/m3’2(27r)“2(1 - ln 2)(2/e ln 2)“. (5.1.7)

The bounds (5.1.6) and (5.1.7) are both of the form v/E,,,, where E, grows
exponentially with m. This means that when m is moderately large, these bounds
are very smalI unless Y is very large. If m = 200, for example, (5.1.7) is less than
~/130,000,000, and (5.1.6) is smaller still. For practical values of m and Y, then, the
depth and number of directory entries can be predicted with considerable confi-
dence.

If m remains fixed and Y + m, however, we have no satisfactory estimates for
the average depth and the average number of directory entries. The depth wilI
exceed k if and only if there is a ghost at level k; the probability of this is

Q(>k) = 1 - [l - P(>m, 2-k)]“.

(We have used the fact that disjoint pseudokey intervals contain independent
numbers of records.) Thus the average depth is

wTcm Q(>k) = C
OSk<CC

and the average number of directory entries is

1 + c 2kQ(>k) = 1 + C
OSk<CO OdKm

1 - x eey2-‘(v2-k)j/$ II . m-&m

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 337

These sums have us stumped. It is natural to suppose that they are O(log 4 and
O(V), but we have not succeeded in obtaining bounds better than O(V) and O(V’);
these bounds are obtained by applying Q(M) I 2kP(>m, 2-k) and proceeding as
for the average number of leaf pages.

5.2 The Bernoulli Model

We again begin with the average number of leaf pages. Substituting the Bernoulli
distribution into (5.1.1) yields

1+ c 2k c
osk<ca llb&n 0

y pj(l _ 2-ky-3.

We shall show that this expression differs from

1 + c 2k c e-“2-b(?z2-k)j/j! (5.2.2)
OSk<CO m+CCO

by a term of the form O(n2j3), and thus that the average number of leaf pages for
the Bernoulli model is the same as that found in Section 5.1 for the Poisson model
(with u = n), except for a slight deterioration of the error term. We shall go from
(52.1) to (5.2.2) in three steps. First, we shall show that terms with k small orj
large do not contribute much to (5.2.1), so these terms can be omitted without
much effect. Second, we shall show that for the remaining terms the summand of
(5.2.1) approximates that of (5.2.2). Finally, we shall show that terms with k small
or j large do not contribute much to (5.2.2), so these terms can be restored
without much effect.

To make this argument precise, let

k0 = log en2/’

and

j0 = en’j3.

Expression (5.2.1) differs from

kz<m zk m& (;) 2-k’(l - rkrj (5.2.3)

1+ c 2k c
tik<k, m<jsn

this sum is O(n213), since the inner sum (a Bernoulli probability) is at most 1.
Expression (5.2.3) in turn differs from

c P c
0

y 2-kj(l _ 2-k)n-j (5.2.4)
k,,sk<m

k,z&m 2k jo-& (I)

pj(l _ p)n-i= c ”

iO+- 0

J %:k p-j)(l _ 2-k)“-‘;

c: m

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

338 - R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

this sum is O(n2’3e-en”3), since (1 - 2-k) I 1 and (7) 5 (en/j)‘.
Let us adopt the notation U(f(n)) for a factor of the form eoV@)). The expression

U(f(n)) is equivalent to 1 + O(f(n)) when f(n) + 0 as n + m. Thus we have

n 0 j
= n(n - 1) - - - (n -j + 1)/j!

and

(1 _ 2-k)n-j = e(n-/)h(l-21)

= ~(~-‘/3)~-“2-’

when k0 5 k and j 5 j,. Thus (5.2.4) can be rewritten in the form

U(n-“3) k -gc 2k C e-n2-“(n2-k)i/j!. (5.2.5)
cl-= m mussi

We have seen in Section 5.1 that the double sum in this expression (even extended
over 0 zz k < m and m <j < m) is O(n), so (5.2.5) differs from

(5.2.6)

by a term of the form O(n2’3).
Expression (5.2.6) differs from

C zk C e-"2-"(n2-k)i/j!
kGk<m nt.Zj<CC

(5.2.7)

k C, 2k 2 e-“zek(n2-k)j/j! = c tnj/j!) bk 2k(l-j)e-n2-k;
6 m jo-cj-zm &ii- c m

this sum is O(n2’3e-en”3), since e-n2-k 5 1 and j! L G/e)‘. Expression (5.2.7) in turn
differs from (5.2.2) by

1 + C 2k C e-“2-k(n2-k)j/j!.
Osk<k, mcj-zm

This sum is O(n2j3), since the inner sum (a Poisson probability) is at most 1.
From this chain of estimates we conclude that (5.2.1) and (5.2.2) differ by a term
of the form O(n213), and thus that average number of leaf pages for the Bernoulli
model is essentially the same as that found in Section 5.1 for the Poisson model:

(n/m)$h(log n) + O(n2j3).

Yao [19] has analyzed B-trees using the Bernoulli model; since the structure of a
B-tree depends on the order in which the records are inserted, he made the
assumption that all n! orders of insertion are equally probable. He found that the
average number of pages is (n/m) log e asymptotically, which is the same as the
leading term in the expansion of (n/m) c#+,, (log n); the oscillations of & (log n) do
not occur for B-trees, however.
ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 339

Let us now reconsider the depth and the number of directory entries. The
probability that there is a leaf page at a level less than

a = Llog(n/m ln 2)]

is at most

271 _ p(>m, p-Q)] = y-1 c
0

‘1 2’W(l _ 21-yi
oz+srn J

5 (n/2m ln 2) c
0

Y
o+rn J

[(2m ln 2,/n]‘[l - (2m In wzl"-'.

Using results of Anderson and Samuels [2], it is easy to show that for n L
2m ln 2 (that is, for a L 1) this Bernoulli probability is less than the corresponding
Poisson probability, and thus that this expression is at most

(n/2m In 2) C eezm In2 (2m ln 2)‘/j! 5 n/m3’2(2~)1’2(2 In 2 - 1)(2/e ln 2)-.
Osmsj

By similar reasoning, the probability that there is a leaf page at a level greater
than

is at most

b = [log(n/m ln 2)]

2bP(> m, 2-*) = 2’ C
mc,is 0

9 2--bj(l _ 2-b)n-j

5 (2n/m ln 2) C
0

?
mcjsn J

[(m ln 2)/n]j[l - (m In 2)/n3”-‘.

Again using the results of Anderson and Samuels [2], it is easy to show that for
n L m In 2 this expression is at most

(2n/m ln2) C eemh2 (m ln 2)‘/j! 5 2n/m3’2(2r)“2(1 - ln 2)(2/e ln 2)“.
IMj<C.2

Thus the probability bounds we derived in Section 5.1 for the Poisson model hold
for the Bernoulli model as well.

6. SIMULATION ’

In order to analyze the performance of extendible hashing, we wish to estimate
three performance factors ((1) expected access time, (2) expected insert time, and
(3) total space required) as functions of the following database and system
parameters: (a) database size (i.e. number of entries), (b) page size, (c) entry size,
(d) directory entry size, (e) buffer size (number of pages resident in primary
storage at a time), (f) expected page fault time, and (g) expected entry page
search time (as a function of page occupancy). Analyzing at this level, we can
compare the performance of extendible hashing with that of a typical B-tree
model [3]. In this section we present sample results of a fairly detailed Monte
Carlo simulation at this level plus performance estimates obtained from much
simpler analytic models suggested by the simulation results and by results of
Section 5.

ACM Tramachs on Database Systems, Vol. 4, I&. 3, September 1979.

340 * FL Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

1400

1300

1200

1100

E 1000

F 900
Ln

8

:

800

700
8
y 600

$ 500

-.-A- 8 - Tree

-O--O- Extendible Hashing

I I I I I I
10 15 20 25 30 35 40

Index Size (x 1000 Entries)

Fig. 12. Access time. Detailed simulation of access times averaged over 1000 accesses for index sizes
in multiples of 1000 entries. The time to fetch a page is 1000. The maximum number of entries on a

page is 400.

6.1 Detailed Models

We postulate a paged memory, with p equal to the maximum number of entries
(key-pointer pairs) that can reside on a page. (For directory pages, the maximum
occupancy will be d.) There is a buffer in primary memory that can hold b pages;
and, whenever we require a page not in the buffer, there will be a page fault time
cost of fi (No time except page fault time will be charged for searching the
directory.) The time to search a page containing x entries will be S(x). An
approximation for S(x) used in our simulations is S(x) = (probe time) [logzx].
This is an upper bound for extendible hashing and a lower bound for our B-tree
model.

The total number of entries will be n. The parameters n, p, b, f, and S are
common to both detailed models. We simulated the insertion of n entries,
following Section 4 for EXHASH (extendible hashing) and a standard B-tree
insertion algorithm for B-TREE. Then we averaged the time costs of 1000
ACCESSes to obtain approximate expected access times, and we averaged the
time costs of 1000 INSERTS to obtain approximate expected insert times (for
n + 500). Sample results withp = 400, b = 10, f= 1000, and S(x) = 21 [logzx] are
given in Figures 12 through 14. The page replacement algorithm for the buffer
was “Least Recently Used” [13].

6.2 Simpler Analytic Models

The detailed simulation suggests that we can approximately characterize the
space requirements of both EXHASH and B-TREE by assuming uniformly filled
leaf pages. Let UT(n) be the average page occupancy in entries divided by p.
UT(n) will of course be different for EXHASH and B-TREE. Our simulation

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 341

1600 . I I I I I I

1500 -

1400 -

1300 -

1200 -

,E 1100 -

-A-A- 8 -Tree

--O--O- Extendible Hashing

200 I I I I I I I

0 5 10 15 20 25 30 35 40

Average Index Size (x 1000 Entries)

Fig. 13. Insert time. Detailed simulation of insert times averaged over loo0 inserts. The average
insert time is plotted against the index size after 500 of the 1000 inserts. The time to fetch a page is

1000. The maximum number of entries on a page is 400.

140 I I I I I I I

130 - .+0-~0p~--L”4 -

120 - 110 - -A-A- 6 -Tree

100 - Extendible Hashing

irrd /

-o--o- 90 - i
z 80 - JA

/

P 70- /
IL .’ -o-•-a-a-•-rc-o- B

60 -

50 -

i 9’

40 - .

30 - %

.-s- &d

20 - l -d
10 -

04
A,

I I I I I I J
0 5 10 15 20 25 30 35 40

Index Size (x 1000 Entries)

Fig. 14. Space required. Detailed simulation of the number of pages required as a function of the
index size. The maximum number of entries on a page is 400.

suggests that for B-TkEE UT(n) will quickly reach a steady state, even while
the database size n grows. However, EXHASH seems to have a UT function
which oscillates with scarcely decreasing amplitude far into the region of very
large database size. In any case, we will factor our simplified models into a page

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

342 * Fi. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong

utilization model (UT(n)) and a time performance model which assumes each
leaf page has exactly UT(n)p entries.

6.2.1 ACCESS TIME. We need to calculate probabilities of page fault, i.e. of
a page not residing in the buffer when it is required. We simplify our LRU page
management algorithm by assuming that the buffer has one page reserved for
each level of the index, and that the remaining buffer slots are occupied by pages
drawn at random from the highest (root or directory) level or from succeeding
levels if the highest were exhausted before the buffer. This assumption makes the
page fault probabilities extremely easy to calculate. First we consider EXHASH.

6.2.1.1 EXHASH. Let I be the number of leaf pages:

I = rn/UT(n)pl.

Then, if dl is the number of directory pages,

dl = rl/dl.

Now we can compute the probabilities bl (page fault referencing directory page)
and b2 (page fault referencing leaf page):

bl = max(O, 1 - (b - l)/dl))

bp = max(O, 1 - (max(1, b - dl))/Z)).

Finally we have our approximation for expected access time:

ACCESS = (bl + bz)f + S(UT(n))p.

Next we consider B-TREE.
6.2.1.2 B-TREE. Rather than write a general formula for the arbitrarily many

levels of a B-tree index, we assume that there are at most four such levels. (The
generalization will be obvious.) Since there is only one root page it will always be
resident in the buffer. Thus our page fault probabilities will be bl (page fault at
second level), bp (page fault at third level), and b3 (page fault at fourth or leaf
level). We assume that at each level except the root, pages have at most x =
UZ’(n)p entries. Thus in order to have four levels, we must have

px2 5 n 5 px3.

In this case,

I= m/xl,
dz = [Z/xl,
dl = r&/xl,

and

bl = m&O, 1 - (b - 3/d,)),

b2 = max(O, 1 - (b - d, - 2)/d2)$

bS = max(O, 1 - ((b - d, - d2 - 1)/Z)),

ACCESS = (bl + b2 + b3)f + S(dl) + 3%~).
ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

Extendible Hashing * 343

6.2.1.3 Comparison. We expect that S(x) < f, so that a rough estimate on the
extra time required for B-TREE over that required for EXHASH is the difference
in page fault times. For an index with more than one page (n > p), B-TREE
requires at least as many levels as EXHASH. Moreover, we expect the number

5000

4000

E
F
g 3000
8
8

B
; 2000
B
Lz

1000

103 3x104 lob 3x10' 103

Index Size (Log Scale)

Fig. 15. Access time. Analytic approximation to expected access time for index sixes plotted on a log
scale. The time to fetch a page is 1000. The maximum number of entries on a page is 400. The

analytic model depends on simulation for the page utilization: the average number of entries per
page at a given index size.

2500

z 1500
z

$

lu 1000

3oc

1oc

1u- JX IU.

Index Size (Log Scale)

Fig. 16. Access time. Analytic approximation to expected access time for index sixes plotted on a log
scale. The time to fetch a page is 1060. The maximum number of entries on a page is 40 as opposed
to 400 for Figures 12 through 15. As in Figure 15 the analytic model depends on simulation for page
utilization. For index sixes greater than 100,000, this simulation is unstable for extendible hashing.

Different simulations give widely varying results, so we have plotted an upper bound to our
approximation to expected access time based on 30 simulation runs.

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

344 * R. Fagin, J. Nievergelt, N. Pippenger, and H. FL Strong

of directory pages for EXHASH to be significantly less than the number of second
level pages for B-TREE. Thus it should not be surprising that the difference in
expected access times between B-TREE and EXHASH grows proportional to
the log of the database size. Figure 15 plots our approximations for expected
access times out to n = one billion entries, given the parameters of our earlier
simulation. Here we have assumed a steady UT(n) = 0.69 for B-tree (see Section
5).

Simulation of space utilization for EXHASH indicates that the function f(n)
= UT(2”) is roughly periodic (as predicted in Section 5), with period 1, for n < 9.
For n 2 9, we expect 0.53 < f(n) < 0.94 (cf. Section 5). The small waves in the
access time graphs for EXHASH correspond to this periodic behavior. In partic-
ular, for integers n, f(n) = 0.64, and for n equal to an integer plus 0.17, f(n) =
0.72. We have also simulated space utilization for the case of 40 keys per page
(Figure 16).

REFERENCES
1. ADELSON-VELSKII, G.M., AND LANDIS, Y.M. An algorithm for the organization of information.

Dokl. Akad. Nuuk SSSR 146 (1962), 263-266 (Russian). English transl. in Soviet Math. Dokl. 3
(1962), 1259-1262.

2. ANDERSON, T.W., AND SAMUELS, SM. Some inequalities among binomial and Poisson probabil-
ities. Proc. 5th Berkeley Symp. Math. Statist. and Probability, 1965, pp. 1-12.

3. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Actu
Informutica I (1972), 173-189.

4. CARTER, J.L., AND WEGMAN, M. Universal classes of hash functions. Res. Rep. RC 6687, IBM
T.J. Watson Res. Ctr., Yorktown Heights, N.Y., 1977. To appear in J. Comptr. Syst. Sci.

5. FREDKIN, E. Trie memory. Comm. ACM 3,9 (Sept. 1960), 490-499.
6. OS/V’S2 ISAM Logic, IBM SY26-3833.
7. KHINCHINE, A.Y. Mathematical Methods in the Theory of Queueing. Griftin, London, 1969.
8. KNOTT, G.D. Expandable open addressing hash table storage and retrieval. Proc. ACM SIGFI-

DET Workshop on Data Description, Access, and Control, 1971, pp. 186-206.
9. KNUTH, D.E. The Art of Computer Programming. Addison-Wesley, Reading, Mass., 1973.

10. LARSON, P. Dynamic hashing. BIT 18 (1978), 184-201.
11. LITWIN, W. Virtual hashing: A dynamically changing hashing. Proc. Very Large Data Bases

Conf., Berlin, 1978, pp. 517-523.
12. MARKOWSKY, G., CARTER, J.L., AND WEGMAN, M. Analysis of a universal class of hash functions.

Lecture Notes in Computer Science 64,1978, pp. 345-354.
13. MATTSON, R., GECSEI, J., SLUTZ, D., AND TRAIGER, I. Evaluation techniques for storage hierar-

chies. IBM Syst. J. 9,2 (1970), 78-117.
14. MUNTZ, R, AND UZGALIS, R. Proc. Princeton Conf. on Inform. Sci. and Syst., 1970, pp. 345-349.
15. NEWELL, A., AND SIMON, H.A. The logic theory machine: A complex information processing

system. IRE Trans. Inform. Theory 2,3 (Sept. 1956), 61-79.
16. NIEVERGELT, J., AND REINGOLD, E.M. Binary search of trees of bounded balance. SIAM J.

Comptng. 2 (1973), 33-43.
17. REINGOLD, E.M., NIEVERGELT J., AND DEO, N. Combinatorial Algorithms. Prentice-Hal& En-

glewood Cliffs, N.J., 1977, Ch. 6.
18. WALKER, W.A. Hybrid trees as a data structure. Ph.D. Diss., Dept. Comptr. Sci., U. of Toronto,

Toronto, Ont., Canada, 1975.
19. YAO, A. C.-C. Random 3-2 trees. Actu Znformuticu 9 (1978), 159-170.

Received October 1978; revised January 1979

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979.

