
Spot1: Distance based join indices for spatial data
Tsin Shu YEH

University of Versailles: PRiSM Laboratory
45, av. des Etats-Unis

78035 Versailles
(33) 1 39 25 40 48

Tsin-Shu.Yeh@prism.uvsq.fr

ABSTRACT
Recently, distance based spatial queries have become more and
more important for spatial data analysis, data-mining, and geo
marketing. Such queries capture metric relationships between
spatial entities. They need the computation of spatial join with a
metric distance criterion, which is extremely expensive in I/O disk
cost. Indeed this is equivalent to make a cartesian product
between all entities. Processing these queries is a challenging task
due to the huge amount of spatial data and to the conceptual
nature of the problems.

Distance based spatial queries is a common problem in
Geographical Information Systems (GIS). Several approaches
have been presented in recent years, almost all of them based on
structures called join indices. Such structures transform the
complexity of the spatial join into a traditional problem that can
be processed with basic operators of relational data model.
However, a join indices file contains the cartesian product of
couples of spatial objects with their distances. Consequently, it is
properly working only on few amounts of data.

In this paper, we propose a distance based join indices approach
for spatial data in order to reduce the cost of storage and
processing. The idea is to store only distances of spatial data
linked to virtual points called "spots" which avoids storing all
combinations of distances two by two. A spot is a roundup of a set
of spatial objects. We propose a data structure on disk that uses a
clustering method to reduce the disk I/O during the join
computation. In theory, and confirmed by empirical studies, this
approach outperforms the traditional distance join method by at
least one order of magnitude, especially when the data set is large.

Keywords
GIS, join indices, spatial data processing, spatial operators.

1. INTRODUCTION
Many applications require the processing of spatial distance join.
Spatial join is the search of couple of data that fulfills a given
criterion of distance. Spatial distance queries may play an

important role in understanding spatial data and in capturing
intrinsic relationships between spatial and/or non-spatial data. For
instance, the spatial data mining may use distance based spatial
join to discover new knowledge as in our application1 described
in section 2.3. Distance based joins are so critical that commercial
softwares as ArcView integrate such operator.

However, as all distances of entities two by two might be
interesting, many operators lack efficiency because they calculate
the cartesian product of entities. This cartesian product makes it
possible to compute distances and to select couples of points
whose distance satisfies a criterion. Such cartesian product is very
expensive in running time, which is a limit for huge data volumes.
That is why algorithms implemented into most commercial
software are restricted to compute distances either between
entities and a fixed point, or between entities but for very small
volumes of data (typically too small to be practical in most cases).
Consequently, without an adapted data organization, this involves
an important number of I/O.

1.1 Related work
For distance queries, we could outline mainly two categories of
works. The first is solving the specific problems of near-neighbor
finding. These algorithms work for one fixed-point criterion and
they select points which distance to a given point is below some
value. This approach is used for seeking objects (images,
sounds,...) that are similar to a given pattern. Efficient solutions
use hierarchical data organization and typically have an O(log(n))
cost as the M-tree algorithm [2]. However, these approaches are
inadequate for selecting all couples of points within a given
distance.

R
S

Join indices

C

i1 di.

i2

i3

ds.

dss

dps
s1

s2
s3

p11

p12

p21

p22

p33
p31

p32

Figure 1: Join-indices
principle Figure

Figure 2: Distances to be
considered

Our problem takes place in the second category, which is
computing two by two every distance between all the points of
two data sets. In order to reduce the prohibitive cost due to
cartesian product, various approaches based on the join-indices
method have been proposed. The join-indices method has been

1 This work is partly supported by the PSIG’98 “Extraction de

connaissances en accidentologie routière”.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to distribute to lists, requires prior specific
permission and/or a fee.

ACM GIS ’99 11/99 Kansas City, MO USA
© 1999 ACM 1-58113-235-2/99/0011 … $5.00

103

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320134.320161&domain=pdf&date_stamp=1999-11-01

proposed by P.Valduriez [13] as a valuable technique for
increasing speed of the query evaluation in Data Base
Management System (DBMS) [12,9]. The efficiency of this
method has been demonstrated on the distance based join for a
given selectivity [9]. It reduces the cartesian product cost by
transforming it into a linear scan of disk blocks. This approach
materializes (i.e. precomputes) the functional joins in the form of
generalized join indices. This principle consists in storing in a
collection of tuples C (cf. figure 1) information concerning spatial
relationship sr between two entities. Each tuple of C contains an
identifier to a tuple of the set R and an other identifier to a tuple
of the S set. Both R and S sets contain respectively the spatial
description of entities. Thus, this method is interesting when
spatial relationship sr is very expensive to calculate as a
geometrical computation [6]. However, if the selections of
materialized join indices exhibit a low selectivity value (i.e. many
output tuples are produced), the performance gain of these
algorithms is limited [5,11].

Unfortunately, in the case of spatial relationships based on a
distance criterion, it requires to store all combinations of pairs of
points issued of the cartesian product with their distances. So, due
to the cartesian product, a huge data volume has to be stored.
Scanning such a collection containing join-indices requires
important disk I/O and therefore limits performances of this
approach. An improvement of this method consists in using a B-
Tree structure to store these distances as suggested in [5,9]. But,
due to the extremely high data volume, the performance problem
remains.

In [9], besides the traditional approach that consists in storing all
the distances between points, two other approaches have been
studied. The first approach distributes couples of points in several
files according to their distance. Each file includes pairs of points
with a distance included in an interval. These intervals are
defining collections that are two by two disjointed. For a query,
only relevant files are scanned. The second approach defines
several classes of distances. Each class defines a scale in which a
distance has a meaning. For example if one is interested by a
distance at continent scale, distances of entities in a village are no
longer significant. For a query at a scale, solutions are the union
of all significant classes of distances. However, the data volume
remains a problem.

In [7] an approach is proposed to calculate the spatial distance
join and distance semi-join. Incremental algorithms are presented
for computing these operations, which can be used in a pipelined
fashion, thereby obviating the need of waiting for their
completion even when only a few tuples are needed. The
algorithm is based on a queue and using R-trees. Computing the
entity pairs situated to a certain distance requires recursive
scanning of the R-Tree. The queue guides the course of R-tree and
is also used as a cache memory. The incremental algorithms
outperform non-incremental approaches by an order of magnitude
if only a small part of the result is needed, while the penalty for
the incremental processing is modest if the entire join result is
required. But the number of I/O remains a problem when
computing all the distances fulfilling a criterion.

1.2 Our Contribution
In this paper, we propose a new approach for distance based join-
indices. Storing an intermediate data named "spot" is the key idea
for reducing the data volume. Conceptually, a spot is a virtual

circle on a 2D map with the purpose to delimit a subset of points.
Each spot clusters some points and is stored in an individual disk
block. We store only the relationship from these points to the spot
with a linear cost. Thus, this approach avoids storing all
combinations two by two of distances between points.

In such a method, speed increasing is due to complementary
information in our proposed data structure. This information
describes the distance between these two spots. With this
information, a distance query loads in main memory only spot
disk blocks that fulfill the distance criterion. For example, if a
query searches points which distance is less than dmax, then if two
spots are separate with a d-(r1-r2)≥ dmax they is no chance that
spots contain points respecting the distance criteria. Here, r1 and
r2 are spot radius, and d is the distance that separates these two
spots. With this key idea, we save a number of disk I/O compared
to a traditional approach during the join processing.

1.3 Outline of Paper
This paper is organized as follows. We first introduce in section 2
an algorithm for seeking spots on a map. Then, this result is used
in section 3 to be stored in an adapted storage structure for
efficiently computing a join indices collection. This join indices
computation is presented in section 4. Sections 3 and 4 contain
our main contribution. Section 5 presents performance study of
our approach. Finally our conclusion is presented in section 6.

2. SPOTS DETECTION
This section describes the algorithm for determining spots from a
spatial data set. It's not our main contribution, but it is necessary
for the next step. Although more general clustering algorithms
(e.g. CLARANS) are existing, our spot search has specific
constraints. This algorithm could work with O(n log n) I/O based
cost to find spots in a map independently of data volume. The
result of this step is a set of spots and a set of isolated points.

Y

X

Isolated pointA spot

Figure 3: A map with spots

The problem is to group a set of points that could be contained in
a spot. The algorithm input is a map which contains a number of
points too high for been loaded in main memory as a supposition.
Moreover, a map might contain a non-uniform distribution. For
example, cities bring together generally more geographical entities
than countryside. This increase in density involves an increase in
points quantity to be loaded into memory. Consequently it results
in a non-uniform distribution of spots in space. Thus, for a given
location, the number of spots could be more than one (spots are
overlapped) as illustrated in figure 3.

This clustering algorithm is characterized by three parameters.
The first one is the maximum number of points in a spot. This
parameter is chosen with the consideration of storage structures
described in section 3. The set of spot points has to be placed in
only one disk block in order to optimize the disk I/O during the
query execution. The second parameter is the minimum number of
points that could be contained in a spot. To the extreme, a spot

104

that contains one or two points is not worthy to be considered.
Indeed, a spot involves an over cost of several I/O during the data
access. When the radius increases, the number of points in a spot
increases. However the imprecision increases during the data
access and involves to load useless disk blocks as shown in the
section 4.

2.1 Algorithm principle
The algorithm loads as and when required points in main memory.
For this part, it is processing in two steps. First, the algorithm
sorts the whole of the points in the data set following the X and Y
coordinates.

Part of points not yet loadedDone part

P point which
trigger the spot search.

CS.

WMin WMax

Y

X

Figure 4: algorithm principle

1. Input: data set s, thresholdmin, thresholdmax
2. Output: a collection r of points or spots
3. mem ß {} ; r ß {} ; WMin ß 0; WMax ß 0;
4. While ! eos(s) do
5. While !eos(s) and card(mem)>sizeof(mem) and

(WMax-WMin < 2*SR) do
6. Read s, pt
7. mem ß mem + {pt}
8. WMax ß pt.x
9. Wend
10. m <- Min(mem); spot ß Calc_Spot(m) ; s ß {}
11. foreach p in mem do
12. if p∈ spot and card(s) < thresholdmax then s

ßs+{p}
13. done
14. if Card(s) > thresholdmin then
15. mem ß mem - s
16. r ß r U { ("spot", s)}
17. else
18. mem <- mem - m
19. r ß r U { ("isolated point", m)}
20. end if
21. WMin ß min(mem).x
22. wend
23. return r

Figure 5: Spot search algorithm

For the second step, the algorithm works on a virtual window
constituted by two vertical lines thereafter named WMin and WMax.
These two lines are sliding down the X-axis in proportion of the
algorithm progression. All points contained in the window are in
the main memory. The window is slightly wider than twice the
Spot Radius (SR). This allows to have in memory all needed
points for constructing spots.

For the loading of points in memory, according to figures 4 and 5,
when a point in the data set reaches the WMax line, it is loaded in
main memory (lines 6,7). In proportion of the loading of points,
the WMax line goes to the right. WMax has the same coordinate as the
X coordinate of the loaded point (line 8). Since points are sorted
following the X-axis this is equivalent to make a sequential read
of disk blocks. Thus, the number of I/O is equal to the number of
blocks of the data set.

For the WMax boundary, it is possible to load points until the main
memory is saturated. This view is not useful in our case for two

reasons. The first one is that data read from disk are buffered by
the operating system and therefore need a minimum number of
disk I/O. The second reason is that the search of spot points in
memory is linearly proportional to the number of loaded points.

However, concurrently and during the former processing, the WMin
line slides to the right. When a point P from the windows reaches
this line (line 10), the algorithm calculates the point CS which is
placed at a distance SR of the point P slid in the right direction of
the X axis, as illustrated in figure 4. The set of points included in
this spot is then analyzed (lines 11-13). There are two cases. If the
spot contains a number of points higher than a fixed number, all
points contained in this spot constitute a new spot (lines 14-16).
This new spot is generated (line 16) and the points included in
this spot are taken from the window and therefore from the
memory (line 15). In the other case (lines 17-19), the point P is an
isolated point. It reaches then the left of the WMin line (line 21).
Hence a result is produced with this point (line 19) and it is then
taken from the virtual window (line 18).

2.2 Dynamic adjustment of the window size
As the main memory size is limited to the strict necessary for the
spot calculation, it might involve a saturation problem. This size
is fixed using two criteria: the density contained in the windows at
a given time, and the spot radius. When the radius increases, the
number of points that a spot will be able to contain will increase,
and the main memory size will be bigger.

So, to solve this problem of memory saturation, our strategy
consists in reducing automatically the window width when the
density of point increases. In order to do that, when the main
memory allocated to the window saturates (second test, line 5),
the WMax line stops progressing. As concurrently the WMin line
continues to progress (line 21), the window width decreases. The
search of spots is made of a spot radius equal to half of the
window width. As soon as the WMin line takes points from the
window following the above described mechanism (line 21), the
window size grows larger again to reach a width equal to twice
initial SR (line 5).

2.3 An example of car crash survey
The figure 6 illustrates an example of spots seeking applied to a
car crash survey in the district of Lille in France. Each point is an
accident location. The data set contains more than 30000 points.

Figure 6: An example of car crash survey

105

3. THE STORAGE DATA MODEL
This section describes a storage data structure for spots. This Spot
Data Structure (SDS) is used to build join indices as described in
the next section. This physical representation has to store spots
and isolated points computed during the previous step. The
problem is to find an optimum and adapted representation that
minimizes the disk I/O and increases the processing speed while
computing join indices.

3.1 Computing distances
The most general case is to consider the seeking distances of
entities issuing from two data sets. Seeking distances of entities in
a same data set is a particular case. However, to facilitate the
illustration, we have represented on the figure 2 the data
belonging to the two data sets. Each point belongs to one of the
two data sets (in the same way for spot represented by circles).

As our data structure includes two levels, we need to consider
several categories of distances. By taking combination of points
and spots, we have four categories that are necessary to be stored.
Each category can contain distances of type:

• IxI for the couples of isolated points. These distances are the
cartesian product between all isolated points. The di distance
in figure 2 illustrated an example.

Computed distances are:
dIxI(I1,I2)={dist(i1,i2)|i1∈ I1∧ i2∈ I2} where I1
(resp.I2) are isolated points from the first (resp. second) set.

• IxS for the couples from the cartesian product between every
isolated point and points from each spot. This kind of distance
is illustrated by the line ds in figure 5.

All calculated distances are: dIxS= D(I1,S2)∪ D(I2,S1)
with: D(I,S)={dist(i,p)|∀ s∈ S, i∈ I∧ p∈ s}

• SxP for the couples of points belonging to different spots.
This is illustrated by the dps line in the figure. Computed
distances are : dSxP(S1,S2)={ dist(p1, p2) | ∀ s1 ∈ S1, ∀ s2 ∈
S2, p1 ∈ s1 ∧ p2∈ s2} where S1 and S2 are two spots sets.

• SxS for the couples between spots (dss in the figure).
During the join indices construction, these distances are used
by algorithm to eliminate SxP distances computation between
points of the two spots (section 4.1).

All calculated distances are: dSxS(S1, S2)={dist(s1, s2) | s1 ∈
S1 ∧ s2 ∈ S2}. S1 and S2 are two sets of spots.

3.2 Physical representation
We do not store directly these data according to these 4
categories. Indeed, due to the cartesian product between all these
data, the produced volume will be too huge.

id x y
i1 1,56 1,3
i2 12 1,2

IPR Blocks

id x y
i2 12 1,2
i3 22 2,6

IPS Blocks

spot1 x1 y1 r1 spot2 x2 y2 r2

s1 6,5 1,2 1 s2 9 2,6 1
s1 6,5 1,2 1 s3 7,5 4,8 1

SxS Blocks

id x y
p11 1,56 1,3
p12 12 1,2 +ids2

Spot1 Block of R

id x y
p21 1,56 1,3
p22 12 1,2 +ids2

Spot2 Block of R

id x y
p31 12 1,9
p32 14 1,3
p33 22 2,3 +ids3

Spot3 Block of S
Figure 7: Physical representation for one SDS

For the SDS, only identifiers [8] and information about spots
locations, points contained in spots, and isolated points are
necessary. To reduce the storage cost, three categories of storage
structure are taking place. Thus, according to figure 7, the storage
structure consists of:

• IP_R and IP_S blocks that store isolated points of each
collection. These data are used to calculate the IxI distances.
For each point we store the identifier and the coordinates
according to the structure of type {(id,x,y)}. id is an
identifier that refers a tuple of R or S collection [8].

It is more economical to store all isolated points in two
collections of blocks instead of storing directly all IxI
distances for two reasons:

1. The quantity of isolated points is small. Parameters for
the spot seeking algorithm described above trie to
minimize the number of isolated points. At the end of
this process, all of isolated points are taken in a few disk
blocks. In the majority of cases, this allows to load all
these blocks in main memory in one scan. The join is
therefore executed in main memory.

2. Computing IxS distances is necessary. As all the
isolated points are loaded in the main memory, this
accelerates the processing.

• Spot block that stores all points belonging to spots. This is
used to compute IxS and SxP distances. Each spot block
has a structure of type ({(id, x, y)}, ids). To each
spot block we associate one spot identifier ids. For each
point in the spot, id is the identifier of a tuple in R or S data
set to which belongs the point. x and y are the absolute
coordinates of the point on the map. The storage cost is
proportional to the number of points in the map.

• SxS blocks that are used as join indices at the internal level
to find couples of points, which are candidate to the
evaluation of distances. It is stored in a structure of type
{(ids1, x1, y1, ids2, x2, y2)} which contains
the location of the two spots. ids1 and ids2 are spot
identifiers. In our case, ids is a reference to a block that
contains all points of the spot. The distance is calculated
using the two coordinates. This structure stores the cartesian
product of all possible associations between spots. It is a
kind of join-indices used by the algorithm described in
section 4.

3.3 Internal data constraints
The disks I/O are bottlenecks for algorithms implemented in
DBMS. So, to decrease these I/O, we adopt two rules which
optimize our algorithm execution.

For the first rule, all points belonging to one spot are stored in one
block. The maximum number of points in a spot is chosen such as
it can contain all of them in one block. This parameter is fixed in
the spot calculation algorithm described in the section 2. The aim
of this clustering rule is to enable to process in main memory the
distance cartesian product of points contained in two spots with a
minimum of blocks to load.

The second rule imposes for the SxS blocks to store all the
couples of spots sorted by the first spot identifier (column spot1

on figure 7). Each spot s1 and s2 in the couple (s1,s2)

106

necessitates to load the corresponding spot block for making the
cartesian product. With this rule, we need to load only one time
the spot block corresponding to the spot s1 as it is explained in
the next section.

4. COMPUTATION OF JOIN INDICES
This section describes the construction of join indices from SDS.
In our spatial query processing, computation of distances based
join is achieved in two steps. The first step builds the join indices
matching a given distance criterion. The representation of the join
indices is traditional [12, 13] as illustrated by C on figure 1. Each
join index contains a couple of tuple identifier [8] allowing to
seek the tuples of sets R and S.

Then, for the second step, these join indices are used to join the R
and S collections that contain spatial values. The result is a
collection of tuples produced from the concatenation of R and S
collections. These two joins are made by traditional join operators
[10]. That is why, we describe only the first step processing.

S 1
IP 1

S 2
IP 2

 S x S

Figure 8: Buffers used for constructing join indices

All spatial queries based on distance are equivalent to distance
computations that are included in range value [9]. Considering the
low and high boundaries, we mainly discern three categories of
query based distances:

1. The first is seeking couples of points which distance is
included in an interval. For example, "which inns are located
at a distance included between 100 and 350km from NY ?”.

2. The second category is computing couples of points
separated with a distance at most equal to a given value. For
example, "Find all houses at most distant of 10km from the
commercial centers". For this case, the inferior boundary of
the interval is equal to the particular value 0.

3. The third category is computing couples of points that are
distant of at least a certain distance. For example, "Find all
houses that are distant of at least 10km from schools". For
this case, the superior boundary is set to the +∞ value.

4.1 Reducing I/O based cost
According to SDS, the speed increasing is partly due to data in
SxS blocks, which contain the distance information between
spots. These data indicate that some "spot blocks" can not contain
points verifying the criterion of distance.

There exist two cases where it is not useful to load the spot blocks
contents spots. Thus,:

1. for the superior boundary dmax, if the minimum distance d-
(r1+r2) between centers of the two spots is superior to dmax.
r1 (respectively r2) is the radius size of the first spot
(respectively the second spot) and dmax is the superior
boundary given by the query. This means that all couples of
points from the two spots are too distant to verify the
maximum boundary. Then the spot blocks are not loaded.

2. for the inferior boundary dmin of a query, it imposes the
constraint that the maximum distance d+(r1+r2) has to be
inferior to dmin value.

If one of these two conditions is verified, the spot blocks are not
loaded in main memory. This allows to reduce appreciably the
number of disk I/O.

4.2 Buffers for processing
To compute distances, the algorithm is based on five buffers (cf.
figure 8). The SxS buffer loads SxS blocks which contain join
indices between two spots s1 and s2. For each spot s1, the
corresponding spot block is loaded in the S1 buffer. Then the
block corresponding to the spot s2 is loaded in the S2 buffer.

On S1 and S2 buffers, the cartesian product of points is carried
out according to the algorithm described below. This processing
computes the dsxp distances. On the right of the figure, the IP1
and IP2 buffers contain all isolated points. With these buffers, the
algorithm computes dIxI and also dIxS distances as described in
next section.

The IP buffers have a particular structure. Each buffer is divided
in two parts. The first one loads a maximum of isolated points.
This buffer has an important size, generally several hundred of
disk blocks. The buffer size is big enough to be able to load all IP
blocks. This is guaranteed in the majority of cases by the spot
calculation algorithm that tries to minimize the number of isolated
points. If it is not the case, the second part of the buffer
representing one block size (in black on figure 8 is used as
overflow buffer. Blocks beyond the n first ones are loaded
successively from IP disk blocks of blocks in this part of the
buffer. n represents the number of blocks of the first part of the
buffer. This organization allows, when it is necessary, to read the
overflow blocks and not to remove one of the blocks in the first
part buffer. Indeed, the probability to use these first blocks is in
our case very high.

4.3 Algorithm principle
1. Input : SDS, dmin, dmax
2. Output: join-indices in result collection
3. d1_sxp,d2_sxp : array [] = {false,...,false}
4. load bufIP1 and bufIP2
5. r←{Dist_Join(buf_IP1, buf_IP2, dmin, dmax)}
6. for each p(s1,s2)in SxS buffer do
7. if spot_dist_is_possible(s1,s2,dmin,dmax) then
8. if !load bufS1xP(s1) then load bufS1xP with s1
9. if !load bufS2xP(s2) then load bufS2xP with s2
10. r←rU{Dist_Join(bufS1xP, bufS2xP, dmin,dmax)}
11. end if
12. if d1_sxp[s1] = false then
13. d1_sxp[s1] <- true
14. if !load bufS1xI(s1)then load bufS1xI with s1
15. r←r U {Dist_Join(bufS1xI, bufIP2,dmin,dmax)}
16. endif
17. if d2_sxp[s2] = false then
18. d2_sxp[s2] ← true
19. if !load bufS2xI(s2)then load bufS2xI with s2
20. r←r U {Dist_Join(bufS2xI, bufIP1,dmin, dmax)}
21. endif
22. done
23. return r

Figure 9: algorithm to compute indices join

The algorithm receives two boundaries dmin and dmax to evaluate
the predicate. In the case where these boundaries would not
receive a particular value described above, the cases to process
depend on the category of join indices. Only the three categories
above follow a test of predicate. Thus, in the case:

107

• dIxI distances (lines 4-5). For each distance d in dIxI that
respects d≥dmin and/or d≤dmax condition, join indices are
produced by Dist_Join function. To calculate this result,
the algorithm loads in the IP1 and IP2 buffers data from
isolated points blocks (line 4). With these two buffers, the
distance join is done in traditional way [10]. Calculations
using these buffers are very rapid if the whole blocks of IP
blocks may be taken in the main memory. In the opposite
case, only the first part is accelerated. For the second part,
the cost is equivalent to make a traditional nested-join on
secondary memory [10].

• dSxP distances (lines 7-11). The SxS buffer loads blocks,
which contain the join indices from the two spots (S1, S2).
For each join index, if the distance between the two spots
(line 7) fulfils the conditions provided in section 4.1, points
in both spots could verify the distance criterion. If this test is
true, for the spot S1, the corresponding block is loaded in the
S1xI buffer (line 8) when not previously loaded (see the
second clustering rule). Then the block corresponding to the
spot S2 is loaded in the S2xI buffer (line 9) so as to have
loaded S1xS2. On these two last buffers, the cartesian
product of points contained respectively in the two buffers is
carried out (line 10).

• dIxS distances (line 12-21). Distance joins are done by
Dist_Join between S1 and IP2 buffers, and
symmetrically between S2 and IP1 buffers. This distance
calculation is carried out only one time for each spot (lines
12-13, 17-18). For the first time in the distance dIxS
calculation of spot, the buffer S1 is loaded when not
previously for the former distance calculation.

4.4 Algorithm cost
For the algorithm I/O based cost, we define the function [x] that
returns the number of blocks for x and |x| that returns the number
of different values for collection x.

The I/O cost of this algorithm is:

C = CIxI + CSxS + CIxS + CSxP + Cresult with:
• M1 =max([IP1]-k,0) (resp. M2 = max([IP2]-k,0)). k is the

number of blocks for the first part of IP1 buffer. M1

determines the overflow blocks to read.
• m1 = min(k, [IP1]) (resp. m2 = min(k, [IP2])), for the number

of blocks read in the first part of IP1 buffer,
• Cresult= [result], for writing the result on disk,
• CIxI = m1+m2+ M1*M2 with the cost of the first load of the

two IP buffers to compute the dIxI distances,
• CSxS= [S1xS2] , for the scan of S1xS2 blocks disk,

• CSxP= |S1| +δ|S1xS2| for the SxP. δ is the selectivity in
seeking two spots with a probability to have points for which
their distances fulfil criteria (line 7 figure 9). |S1| is the
number of reads in S1 buffer. Due to the second rule in
section 3.3, this read is done at least for the lines 12-16 on
figure 9. The minimum reads of δ|S1xS2| is superior at |S2|
for lines 17-20 of the algorithm.

• CIxS=|S1|* M2+δ|S1xS2|* M1 for the IxS. This cost is zero if
all isolated points could fit in IP buffers.

With the defined buffers and due to the spot seeking algorithm,
M1 and M2 are often set to 0. We can say that the cost is set to C =
m1 + m2+[S1xS2]+ |S1| +|S1| +δ|S1xS2|

5. EXPERIMENTAL RESULTS
This section analyzes the behavior of this new method. The
comparison measures the relative run time, disk I/O based cost
and data volume of the two methods.

The implementation has been carried out in the GeoLis GIS
prototype. Code has been partially written in C++ and Tcl/Tk for
data visualization interface. The benchmarks were executed on a
lightly loaded PC workstation, a Pentium 200MHz with 32
MBytes of main memory running under FreeBSD.

5.1 Data volume measured
For the data volume, the comparison is done between the distance
join indices using cartesian product method and our method. The
comparison of these two methods is made on identical data sets.

The figure 10 compares the data volume to construct join indices
between the traditional and spots methods. For these measures,
the size of the spot radius is constant as well as the minimum
loading threshold of a spot. For the traditional method, each tuple
size is 32 bytes and the quantity of data evolves as the square of
point number, which is obvious. For the spot method, each tuple
size is more than 32 bytes. The curve shows that the data volume
for the spot method is nearly proportional to the number of points.
The gain is more profitable as the number of points increases.
Contrarily to the traditional method, we notice that the size of join
indices does not explode with the quantity as it is shown by the
curve. The increase of spot indices size is essentially due to the
data in SxS blocks which is due to the cartesian product of spots.

The figure 11 measures the number of I/O-based cost necessary
for a spatial query. Each query selects couples of points with a
distance included in an interval distance. For the traditional
method, the query execution is traditional join algorithm [10]
(nested loops). This collection size is equal to the square of the
number of points that are stored. In the case of a selection on spot
data, the number of I/O is perceptibly reduced due to the effect of

0

5000

10000

15000

20000

25000

30000

Number of points

T rad.

Spot

Figure 10: Data volume

0

500

1000

1500

2000

2500

Number of points

Trad.

Spot

Figure 11: Join computation disk I/O

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

R adius

Figure 12: Radius influence on number
of spots

108

buffers and the organization of data in the spot method. All data
are clustered in disk blocks to reduce the number of I/O.

5.2 Spot radius varying
The figure 12 shows the influence of the spot radius on the
number of spots. The number of points in the calculation is 5000,
the minimum loading threshold is 10. This measure shows that
beyond a certain value, the efficiency of the radius decreases.
Indeed, the number of spots decreases not appreciably. This is due
to the density of points on a map. The number of spots is directly
bound to the spot radius.

5.3 Processing time

0

100

200

300

400

500

600

1000 2500 5000 7500 10000

Number of points

Pr
oc

es
si

ng
 ti

m
e

(s
ec

.)

1_75

75_150

150_225

225_300

Figure 13: Processing time
The figure 13 shows the run time for a distance based query.
These 4 curves correspond to variations of interval of distances of
several queries. These intervals increase and show that queries are
depending on interval of distance seeking. This result shows that
weaker is the interval of distances, stronger is the selectivity of
join indices. At the opposite, when the seeking interval increases,
a more important number of points is involved by the seeking
process. The method is more efficient when we are seeking
couples of points distanced by a small value.

6. CONCLUSION
Computing distance based join is a fundamentally problem for
spatial query and data analysis. However, as all distances - two by
two - between entities can be interesting, it implicates to compute
the cartesian product which necessitates an important number of
disk I/O and generates a huge data volume.

In this paper we have developed a new data structure based on
join indices. The key idea consists in using virtual circles named
"spots". A spot is a virtual point that gathers a set of points. Only
the relationships of points belonging to their virtual spots are
stored in an adapted data structure. This avoids to store the
cartesian product in a traditional join indices approach. The data
structure clusters data in 3 types of blocks, which optimize the
disk I/O-based cost.

Our prototype implementation and the performance study have
shown that the algorithm is superior to traditional methods.
Experimental results show that it optimizes the storage size while
the penalty for the processing is modest but outperforms non-spot
approach by an order of magnitude.

Currently, this algorithm is used in a research project for a spatial
study about car accidents. More precisely this algorithm is used in
the development of databases for data mining study. To compare,
the computation time of a contiguity matrix made under ArcView
GIS takes more than 1 hour. The same matrix calculated under our
prototype takes about less than 8 minutes for 30000 points.

7. ACKNOWLEDGEMENTS
The author thanks K. Zeitouni for her help and discussions having
led to this paper, and is grateful to a number of critical reviewers.
A special thank to S. Chanchole for his valuable contribution in
improving this paper.

8. REFERENCES
[1] T. Brinkhoff, H.P. Kriegel, R. Schneider, B. Seeger,

Multi-Step Processing of Spatial Joins, in proceeding
of Spatial SIGMOD 94. Intl. Conf. on Management of
Data. Minneapolis. Vol. 23, Issue 2, June 1994.

[2] P. Ciaccia and M. Patella and P. Zezula. M-tree: An
Efficient Access Method for Similarity Search in
Metric Space. Proceedings of the 23rd VLDB
Conference Athens, Greece, 1997, pp. 426-435

[3] M.J. Egenhofer and J. Sharma, Topological Relations
Between Regions in R2 and Z2. Advance in Spatial
Databases, 5th International Symposium, SSD'93. pp
316-331. Singapore, June 1993, Springer-Verlag.

[4] M. Ester, H-P. Kriegel, J. Sander and X.Xu, A Density-
Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proceeding of the 2nd
International Conference on Knowledge Discovery and
Data Mining, Portland, OR, 1996, pp. 226-231.

[5] O. Günther, Efficient Computation of Spatial Joins, In
Proceeding of Data Engineering, April 19-23, 1993,
Vienna, Austria, pp 50-59.

[6] R.H. Güting, M. Schneider.,Realm Based Spatial Data
Types : The ROSE Algebra. VLDB Journal, vol. 4,
pp. 100-143, 1995

[7] G.R. Hjaltason and H. Samet, Incremental distance
Join Algorithms for Spatial DataBases, Sigmod 98,
Seatle. USA. Pp. 237-247.

[8] S.N. Khoshafian and G.P. Copeland, Object Identity.
In Proc. of the ACM Conf. on Object-Oriented
Programing Systems and Languages (OOPSLA), pages
408-416. Nov 86

[9] Wei Lu and Jiawei Han, Distance-Associated Join
Indices for Spatial Range Search. Eighth International
Conference on Data Engineering, Feb 2-3, 1992
Tempe, Arizona, pp. 284-292.

[10] D. Maier, The Theory of Relational Databases,
Computer Science Press, 1983.

[11] P.O' Neil, and G.Graefe, Multi-tables joins through
bitmapped join indices. SIGMOD Record, 24(3), 8-11,
Sep 95.

[12] Doron Rotem, Spatial join indices, Proc. 7th Conf.
Data Engineering, Kobe, Japan, 1991, 500-509

[13] P. Valduriez, Join indices. ACM Trans. on Database
Systems, 12(2); 218-246, June 1987.

109

