
Integrating GPS Data within Embedded Internet GIS
Arunas STOCKUS Alain BOUJU Frédéric BERTRAND Patrice BOURSIER

University of La Rochelle - L3i
Avenue Marillac

17042 La Rochelle - FRANCE
Tel. +33 (0)5 46 45 82 62

{arunas.stockus, …}@univ-lr.fr

ABSTRACT
In this paper we investigate the development of an embedded and
mobile geographic information system. Its main characteristics
concern the possibility to access various information sources and
to provide the basic functionalities of a navigation system, e.g.
positioning.

This system uses a differential Global Positioning System (GPS)
device to acquire the position of a mobile (e.g. vehicle). A cellular
phone with an Internet based connection permits to access distant
data sources and to transfer data between the components of the
system. A Web browser and a Java applet are used for data
integration and visualization.

As it is used in the context of a mobile application, the basic
software component in the architecture of our system is a local
embedded server. It ensures real time access to local GPS data,
but also to multimedia and spatially referenced data which are
stored on distant servers.

We also present some results of practical experiments that have
been carried out with this system embedded in a vehicle.

Keywords
Embedded GIS, Mobile System, GPS, Spatial Data Integration.

1. INTRODUCTION
An embedded geographic information system (GIS) is a
specialized system that could mostly be considered as a mobile
navigation system. Its typical characteristics concern the
presentation of geographical information to the driver, positioning
and guidance. However, due to their reduced computational
power and their autonomy, many actual navigation systems have
some limitations. The geographical information they can use
covers only limited areas, and its precision may be insufficient in
some situations. The autonomy of the system complicates data
updates and access to distant information sources, especially those
providing dynamic information. The specific technologies used
for communication between a mobile system and a data server

require the installation of specific infrastructures and limit the
area of its usability.

But the actual development of technologies changes the way
information can be accessed and processed. It minimizes the
differences between desktop applications and embedded ones by
bringing the power of desktop computational technologies into
mobile devices. It gives the possibility to use the same kind of
applications and data access modes with both kinds of
environments: presentation of multimedia information, connection
to the Internet, etc.

In this paper we present an embedded GIS, which is based on
such technologies. Its architecture is a client-server one, and the
system components may give access in real time to distant
information servers. We use a satellite based localization system
(GPS) for the geographical positioning of a mobile unit (e.g. a
vehicle). The connection to distant data servers at the physical
level is based on the use of a cellular phone. At the software level,
we use an Internet connection for exchanging data between the
components of the system. Information integration, visualization
and processing is made possible by using a Java enabled Web
browser and a Java applet.

We introduce a local embedded server in the architecture of our
system. Its main goal is to ensure optimal real time access to
different data sources: (i) local ones, for example data sent by the
GPS device, and (ii) distant ones, for example data stored into a
spatial database which is located on a distant server.

In the following section, we present the framework of our study,
i.e. the requirements for an embedded GIS and the possible
technological solutions. We also present the choices that we have
made and the main problem they lead to: access and integration to
data located on various sources, and especially those sent by the
GPS device. We then review various solutions, and we present the
solution that we have implemented. We describe the architecture
of the system and the principle of its functioning. We then present
some remarks coming from tests results. We finally review future
developments of ongoing work.

2. FRAMEWORK
We consider an embedded geographical information system (GIS)
as a mobile system that helps the user to locate himself. Such a
system makes possible the presentation of spatially referenced and
associated multimedia information. It is also a positioning and
guidance system that gives a user the possibility to locate himself
on a map.

As a consequence, such a system must be able to access and to
integrate in real time information of different types and precision.
It can be static (e.g. maps) or dynamic information (e.g. vehicle

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to distribute to lists, requires prior specific
permission and/or a fee.

ACM GIS ’99 11/99 Kansas City, MO USA
© 1999 ACM 1-58113-235-2/99/0011 … $5.00

134

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320134.320168&domain=pdf&date_stamp=1999-11-01

position) that must be integrated continuously. The information
may be provided by different sources: local data sent by
positioning devices (e.g. GPS), or data accessed from distant
information servers, for example traffic conditions. Spatially
referenced and multimedia information can also be embedded
locally or stored on distant servers and transmitted at the request
of the user.

So, the access to distant data sources, especially those providing
geographical data, and the integration of data in real time are
important characteristics of an embedded GIS.

2.1 Access to Distant Geographical Data
The use of the Internet and a Web browser for accessing,
processing and visualizing spatial information is one of the
aspects that actually give strong interest in the field of research
and development of GIS. We distinguish two techniques which
are used to access spatial information through the Internet: server-
side oriented methods and client-side ones, depending on which
side data processing and calculations are done.

The use of Common Gateway Interface (CGI) scripts [Gun96] is a
typical example of the first method. This is a “classic” means of
interaction between a browser and a Web server. A form of an
HTML page is used to collect information and to send it to the
server, where a special program – a CGI script – processes it and
sends back an answer (the generated HTML page). In the case of
spatial data, we usually collect the parameters for a spatial query,
send them to the server and receive the HTML page containing a
map image.

This method has some drawbacks. The calculations are basically
made on the server, and the client only visualizes the result. It
implies a high server load and intensive communications with
clients. Besides, it is impossible to establish a permanent
connection between the client and the server for a work session.
This complicates the reuse of calculation results and the responses
to previous queries.

One solution to this problem, as well as its application for the
processing of geographical data, is presented in [12]. CGI scripts
are used to perform the calculations, and intermediate results are
stored on the server. “Cookies” (small packets of information
memorized by the browser) are used to simulate a permanent work
session by navigating trough HTML pages. Thus the results of
queries that were executed previously can be re-used.

Plug-ins, Java applets and ActiveX components are the main tools
used with client-side oriented methods.

A plug-in is a software component, which processes a particular
type of data. A browser uses it each time it receives an HTML
page containing references to such data. A plug-in offers more
flexibility on the client side than CGI scripts. As modules
containing an executable code, they cater for local calculations
and for a more advanced exchange of data with a server
(permanent connections, progressive data loading, etc.)

Autodesk MapGuide [1] is an example of a plug-in, which makes
it possible to visualize spatial data within a browser. It also allows
the evaluation of queries locally and on the server, the loading of
different groups of data according to the needs of the users.

A drawback of plug-ins is that the component must be installed on
a browser before it can be used. Thus, it is dependent both on the

browser and on the operating system, and it has to be developed
for each platform.

As is the case for plug-ins, Java applets and ActiveX modules are
software components executed by a browser or by an operating
system. The difference lies in the fact that the corresponding code
is loaded from a server and does not have to be installed
previously. It can be used on any platform and by any Java or
ActiveX enabled browser (the latter is currently limited to
Microsoft Windows operating system).

[5] introduces a system prototype called GeoLens which visible
part to the user is a Java applet. It accesses data by means of
various exchange formats. The prototype itself is based on the
OpenGIS specification [3]. A similar approach is used in the
prototype Lava [6] which uses an Internet connection to access
geographical data and a Java applet for its processing and
visualization, as well as in [10] where the GAEA Java applet is
presented.

[9] presents a software component called GeoLib, which uses an
ActiveX module for the visualization of vector-based spatial data.

In all that cases, software components get geographical data
“directly” from a Web server ([10]) or by some middleware
(special purpose servers) used in conjunction with that one ([9],
[6], [1]).

2.2 Our Solution
The embedded system that we present in this paper is also based
on the use of the Internet to access geographical and multimedia
data from distant servers. It uses a Web browser and a Java applet
for data presentation and processing. As we said before, we
consider it as a mobile navigation system connected to distant data
sources. We use a differential GPS device to obtain the position of
the mobile. Communication between the embedded system and
distant servers is based on the use of a cellular phone. These
technological choices allow us to have a system easily workable
and accessible. It does not need heavy investments, so much for
its implementation as for its use.

Indeed, current GPS devices, and especially differential GPS,
have a good precision which enables positioning on the map in
real time. Mobile communication networks are widely practicable,
and they now cover very large parts of the territory, especially in
urban areas. Web browsers are now common tools for the
presentation of almost all kinds of multimedia data. They also
become the execution environment of more and more
sophisticated applications. Finally, they can be considered as
indispensable tools, found on almost all computers and allowing
to reach information anywhere on the Internet.

The Java language allows to develop small portable applications
(“applets”) that can be easily and safely downloaded from distant
servers, and then executed by Web browsers on various operating
systems. Applets can download the required data and process
them locally, without having to reconnect to the server and send a
query. It reduces the cost of connection. Applet’s code can also be
loaded from a server at each new work session, which ensures
easy updating of applications.

As we will se in the next section, the use of Web browsers and
Java applets for data visualization and processing introduces some
difficulties concerning data access. But it has some advantages
too, because the field of use of a system based on such

135

technologies is very wide and not limited to mobile and embedded
applications. It can also be used to access geographical and
associated multimedia data everywhere we can connect to the
Internet : desktop workstations connected to local networks, home
computers connected to the Internet by a telephone line, etc.

2.3 Problematics
The development tools that we have chosen are already available,
and they can easily be used by developers. But some difficult
problems still remain, namely : (i) the diversity and increasing
number of information sources, (ii) the diversity of information
types, especially for spatial data, (iii) the low speed of
communications between the components of the system, and (iv)
the diversity and increasing number of users.

Information can be in different forms (geographical maps, images,
video or audio data) and in different formats (for example, raster
or vector images in the case of maps). With spatial data, we also
have to cope with differences in the precision of data, projection
systems, visualization parameters, etc.

Another aspect linked to the diversity of information is the
diversity of its sources, whether situated on distant servers or
stored locally. One example of this aspect would be GPS data,
acquired and then transmitted by a device connected to the
computer, and having to be displayed on a map loaded from a
server.

The use of communications based on cellular phones seriously
limits the speed of data transfer. Moreover, multimedia
information tends to occupy large amounts of memory. It may
happen that the usual means of transferring information on the
Internet (e.g. using Hypertext Transfer Protocol (HTTP) or File
Transfer Protocol (FTP)) are no longer acceptable.

In the following sections, we present a prototype of an embedded
system which must cope with two main problems : (i) access to
information acquired by a GPS device, and (ii) integration of GPS
data and map data in real time.

The first problem is due to the diversity of information sources
having to be processed in a mobile unit, and to security
restrictions imposed to Java applets executed within a Web
browser [7]. Indeed, an applet executed by a Web browser has to
gather information coming from a distant data server. At the same
time, the applet has to receive positioning information sent by the
GPS connected to the computer, which correspond to local
resources. As these belong to the physical resources of a computer
(for example, connected to a serial port), they can only be
retrieved and processed by the native code of the operating
system.

Because of security restriction imposed on an applet, it can only
gather data coming from the same source as itself. Thus it cannot
access to local resources that include the file system and
peripherals connected to the computer. A method must be
designed to communicate data from a GPS to an applet.

The second problem is due to the difference of information
precision and the different projection systems used with maps and
GPS. Several transformations of GPS data have to be done to
integrate them with maps.

3. ACCESSING GPS DATA
We have considered several methods to communicate the GPS
data to the Java applet. The applet should then process them and
integrate them with other data, possibly downloaded from distant
servers.

3.1 Principle
One solution would be to create a specific application (program
executed by the local operating system) that can access GPS data
and send them to the server. In this case, the applet can receive
data from the server, the same source as its code.

The problem with this solution is that the server should cope with
many more connections : those of the applications processing
GPS data, and those of the applet requesting it. Also, in the case
of connection interruption between the client and the server, the
applet could receive no data from the GPS, even if they were
available on the client.

Another solution would be to use an electronically signed
(“trusted”) applet. The navigator can no longer impose security
restrictions on such an applet. In this way, applets can access
directly various data sources, including local ones. But this
solution has also some drawbacks. Access to the GPS is made by
the native code of the operating system. So the applet has to be
able to check if it has already been executed on the client, analyze
its execution environment, load and install all necessary software
components, etc.

Experience gained during our first developments has shown that
the applet code should be as simple as possible, if we want to run
it on different browsers and operating systems without making
any prior modifications. Access to the physical resources of a
computer would make it very dependent on the operating system.

The solution that we have adopted derives from the first one. We
use a local mini-server installed in the computer (an embedded
server). The principle of this solution is that the applet accesses all
the necessary data via this server (see figure 1). The server
redirects the applet’s connections to the other servers or access
local data. Then it communicates the answer to the applet. In this
case the local server is the single source of data for the applet (and
the Web browser). The applet does not have to violate security
restrictions by connecting to various data sources, because the
local server takes care of it.

A disadvantage of this solution is that the user has to think to
install supplementary software in order to ensure the good
functioning of the system (as in the first solution). But there are
also some very important advantages.

The embedded server can take care of communications between
the server part and the client part of the system and hide it from its
other components. This allows us to consider some methods of
connection optimization, at the same time keeping the same mode
of communication with the other components. For example, the
local server can use the HTTP protocol to exchange data with the
browser and the applet, while some specific protocol should be
used to exchange them with distant servers. The possibility of
optimizing communications presents a considerable interest in the
context of an embedded system, as this system limits the speed of
data transfer.

136

3.2 Organization of the System
The organization of the system is shown in figure 1. A Java
enabled Web browser, a data visualization applet and an
embedded server are the software components on the client side.
The browser and the applet are the components used for
processing and visualizing the information. The embedded server
acts as an intermediary between the browser or the applet on one
side, and the "whole world" on the other side.

HTML pages containing the references of the applet’s code and
the applet code itself are data available on the server. It is
accessed firstly and it corresponds to the HTTP requests sent by
the Web browser or the applet.

Other data transmitted from a server to a client are stored in
databases or file system. They are processed by the applet. It can
be geographical data (vector-based and/or images) as well as
associated alphanumeric data. It might also be information of
practical nature, such as the number of free places in a car park.

The software components on the server side are an HTTP server
and a specific system server. The system server acts as the entry
point for all clients, and it processes only data requests
(geographical, alphanumeric or multimedia data). It redirects the
HTTP requests towards the HTTP server. There are several
reasons for separating the tasks between the two servers.

We “reuse” the code of the HTTP server and ensure the correct
processing of HTTP requests. A system server can in turn process
the data requests more efficiently. It can connect directly to a
database (the Web server has to use CGI scripts in this case). It
can process the data of a map locally and send it in parts
according to the needs of the client (the Web server can only send
whole files). The system server increases data security, because
there is no direct access to the databases, or to the image files
from the client. Finally, some communication optimization can be
used between the embedded server and the system server.

3.3 Working principle
The system’s working principle is given in figure 1 (the arrows
show the data flows).

The Web browser connects to the embedded server and loads an
HTML page and the applet’s code. Once loaded, the applet starts
its execution, connects to the embedded server, loads and

visualizes the required data, i.e. raster images and/or vector
images making up a map. At the request of the user, the applet
sends a query to the embedded server to obtain GPS data, receives
the reply, processes it by making all necessary transformations
and visualizes the position of the vehicle on the map. The applet
can also obtain the positions of vehicles stored in the database.

In turn, the embedded server works on the client computer. It can
receive requests from the applet or the Web browser. After
receiving a request, it connects to the distant server, sends the
request, receives the answer and sends it back to the caller. It
processes the request locally if access to GPS is needed. It sends
to the applet the GPS data recovered by a serial port. It can also
send GPS data to the system server so that they can be stored in
the database and reused by other system components.

The operating principle of the system server is similar to the one
of the embedded server, and it depends on the type of request. It
can establish a connection to the HTTP server and send back the
answer (HTML page, applet code or other data) to a client. The
system server can read and send raster or vector-based data stored
within files. It can also make a connection to a database for
processing a query and send back the answer to a client. A query
can be a request for updating data or a simple selection query.

Thus, we solve the problem of GPS data access from a Java applet
by introducing an embedded server. GPS data integration with
geographical data is done by the applet, which transforms it into
the projection system of the map.

4. TESTS AND RESULTS
4.1 Implementation
All parts of the system are implemented as Java applications.
Consequently, they are portable applications and they can be
executed on any operating system supporting the Java Runtime
Environment.

The GPS being connected to the serial port, the embedded server
accesses it using a javax package, extension of the Java
Development Toolkit. The system server establishes a connection
to a database using JDBC (Java Database Connectivity) functions.
Moreover, the system server is independent from the actual HTTP
server, since it communicates with it only by means of HTTP
queries.

The visible part of the client is a Java applet (figure 2). It allows
loading and visualization of data that make up the different layers
of a map, i.e. vector-based layers and raster images. These layers
constitute static information that do not change during a work
session and do not need to be updated, once they have been
downloaded. A map can also contain dynamic layers that
represent the position of the vehicle(s). In this case, the applet
regularly sends queries to the embedded server to obtain new GPS
data. After receiving the answer, the applet converts GPS data
within the map projection system and visualizes them. The applet
behavior is the same in the case of a connection to a database.

The applet thus allows visualizing of different information layers:
raster layers, vector layers, and also the position of the vehicle. It
also allows basic operations on maps displayed on the client: scale
change, zooming and panning.

System
server

DB

HTTP
Server

HTML
page

Embarked
server

GPS

Browser

Java applet

Applet
code

Vector
images

Raster
images

Server Client

Figure 1: Architecture of the system

137

We have also implemented in the embedded server a function that
simulates the operation of the GPS. It works on GPS data which
have been recorded during tests, conducted under real use
conditions. It allows to test the operation of system components
when the GPS is not available.

4.2 Tests
We have tested our system under different configurations and
different platforms. For the mobile tests, we have used a portable
computer with Microsoft Windows 95 operating system along
with a connected GPS device and a cellular phone. The last one
was used to make connection with distant data servers.
Geographical data were transferred from the server to the
embedded client by establishing Internet connections. GPS data
acquired during the tests were sent to the server as User Datagram
Protocol (UDP) packets and then stored into a Postgres database.

Workstations with Windows NT, HP-UX, Sun Solaris and Linux
operation systems connected to a local network along with
simulation of the GPS were used for non-mobile tests.

Figures 3 and 4 show samples of GPS positions acquired during
our (real mobile) tests. Figure 4 presents GPS data (in bold)
compared to a map. Figure 5 shows GPS data acquired during two
different tests.

As we can see, data precision is the main problem with
geographical and GPS data integration [11]. It can have different

causes: the imprecision of measurements of the GPS and the
geographical data or the errors of data transformation between
projection systems.

We have used for our tests maps in the Lambert II Carto
projection system (which is standard for maps produced in
France). Data sent by the GPS were in the WGS84 projection
system and have been converted into Lambert II.

We also encountered some difficulties for connecting to distant
data sources. In fact, connection with a cellular phone is too slow
and not very reliable for transferring large amounts of multimedia
and other data in real time. However, its speed is quite acceptable
for exchanging small packets of information, like the vehicle
position, traffic conditions, some reduced maps or some parts of
more detailed maps.

5. FUTURE WORK
The optimization of communications between servers and clients
is one objective of our future work and experimentation. We
anticipate two main directions:

− The use of a data cache, which consists in doing a local
copy of the data that have been downloaded by the applet. It
will relieve us from having to reload them at the beginning
of the following work session. We should also use some
data stored on a local disk or CD-ROM with those loaded
from a server. In all cases, the synchronization of data must
be implemented, as it was done in [2].

− The definition of new modes and protocols for
communication between servers, in order to reduce the
amount of information to be transmitted. Such an
optimization can be based on data compression and on its
serialization. In the first case, we reduce the size of
information to be transmitted. In the second case, we reduce
information itself by selecting only some parts of it.

Another direction of ongoing work concerns the integration of
map data and GPS data. A simple transformation of data between
different projection systems is not sufficient because of precision.
Map matching methods must be applied to find the exact location
on the map (a point on a street) to which the GPS position
corresponds. Some of them are presented in [2]. They permit the
integration of the GPS position into a vector-based map and use
the calculation of distance between geographical objects : points,
lines, curves.

Redraw image

Show / hide
GPS position

Zoom in

Reset zoom

Show all image

Zoom out

GPS position

Change layers
visibility

Figure 2: A Java applet running on the client

Figure 3: A vehicle trajectory
indicated by the GPS.

Figure 4 : Two trajectories indicated
by the GPS.

138

Finally, we plan to study different organizations of the system in
order to adapt it to the user needs in various contexts : mobile
computer, desktop computer, computer with no GPS data
available, etc. The actual architecture of the system offers a large
flexibility, and many configurations are possible :

− The removal of the local server. If we do not need to access
local information sources, and if the communication speed
is sufficient, then we can operate such a modification. For
example, it can be the case for accessing distant data servers
from a desktop computer connected to the local network;

− The removal of the system server. This situation is similar to
the previous one, as the local server can take care of some of
the functionalities of the system server (for example the
connection to distant databases);

The removal of both servers. This case is the simplest and it
permits to have a lightweight system, because the Java applet is
the only part to be used. It accesses data directly through an HTTP
server.

6. CONCLUSION
The embedded geographical information system that we have
presented in this paper is based on very popular and widely
accessible technologies, namely an Internet based connection for
accessing various data sources, and a Web browser with a Java
applet for its processing and visualization. They become universal
means of information diffusion and presentation, especially for
multimedia information.

Such technologies are usual for desktop applications. But our first
development and our tests show that they can also be used in the
framework of an embedded and mobile application. It gives
several advantages because it makes differences between desktop
based and embedded application disappear. From one side, it
facilitates the reuse and adaptation of existing applications and
solutions. From another side, some solutions to crucial problems
of mobile application can be adopted for non-mobile ones too. An
example could be the optimization of communication based on
mobile connection. The same principles of optimization can also
be adopted in the case of “usual” Internet connections, which
often suffer from limited data transfer speed.

Finally, it gives the possibility to develop and reuse some
components of the system without taking care of the actual
context of its utilization. In our case, an example is the spatially
referenced information presentation part, i.e. the Java applet.
Without any supplementary modification, this component is used
as part of the system developed in the framework of the Magic
Tour Net project. This project is an evolution of Magic Tour [4],
the ESPRIT Project 8752, concluded in 1997. Its major emphasis
was devoted to the development of a multimedia authoring system
specifically oriented towards the development of tourism-oriented
applications. Magic Tour Net extends Magic Tour by adding the
possibility to develop such applications through the Internet. The
applet that allows the visualization of spatially referenced
information is used as one of the multimedia information
presentation tools.

7. ACKNOWLEDGMENTS
The research which is described in this paper has been funded
partly by the region Poitou-Charentes and the city of La Rochelle.

8. REFERENCES
[1] Autodesk MapGuide : State-of-the-art network-centric

GIS application architecture for publishing and
accessing geodata, 1997. Autodesk White Paper.
http://www.autodesk.com/products/whtpaper/

[2] D. Bernstein and A. Kornhauser. Map Matching for
Personal Navigation Assistants. Transportation
Research Board, 77th Annual Meeting, Washington,
January, 1998.

[3] K. Buehler and L. McKee. Introduction to Interoper-
able Geoprocessing and the OpenGIS Specification.
Open GIS Consortium Technical Committee, Third
Edition, June 3, 1998.

[4] P. Boursier, D. Kvedarauskas, S Iris and A. Guilloteau.
MAGIC TOUR : the Integration of Multimedia and
Geographic Information Technologies in an Authoring
System. In Spatial Multimedia and Virtual Reality,
Research Monographs in GIS, Eds. A. Camara and J.
Raper, Taylor & Francis, 1998.

[5] C. Behrens, L. Shklar, C. Basu, N. Yeager, and E. Au.
The Geospatial Interoperability Problem : Lessons
Learned from Building the GoeLens Prototype. 1st Int.
Conf. on Interoperating Geographic Information
Systems, Santa Barbara, CA, December 1997.

[6] C. Berg, F. Tuijnman, T. Vijlbrief, C. Meijer, H.
Uitermark, and P. Oosterom. Multi-server Internet GIS:
Standardization and Practical Experiences. 1st Int.
Conf. on Interoperating Geographic Information
Systems, Santa Barbara, CA, December 1997.

[7] J. S. Fritzinger and M. Mueller. Java Security. Sun
Microsystems, Inc., Java White Papers, 1996.
http://www.javasoft.com/docs/white/index.html

[8] S. Gundavaram. CGI programming on the world wide
web, O’Reilly, 1996.

[9] D. Kvedarauskas, P. Boursier, X. Culos, T. Deltheil,
and S. Iris. GEOLIB : A Software Component for
Making GIS Tools Interoperable. 1st Int. Conf. on
Interoperating Geographic Information Systems, Santa
Barbara, CA, December 1997.

[10] D. Kotzinos and P. Prastacos. GAEA, a Java-based
Map Applet. 1st Int. Conf. on Telegeoprocessing, Lyon,
France, May 1999.

[11] V. Noronha. Towards ITS Interoperability – Database
Error and Rectification. Int. Workshop on GIS-T and
ITS, Chinese University of Hong-Kong, April, 1999.

[12] M. Szmurlo and J. Madelaine. A Network of
Asynchronous Micro-Servers as a Framework for
Server Development. 6th Int. World Wide Web Conf.,
Santa Barbara, CA, April 1997.

139

