CHALMERS

UNIVERSITY OF TECHNOLOGY

Cinders: The continuous integration and delivery architecture framework:
Journal-first selected article - Extended abstract

Downloaded from: https://research.chalmers.se, 2024-04-26 22:40 UTC

Citation for the original published paper (version of record):

Stahl, D., Bosch, J. (2018). Cinders: The continuous integration and delivery architecture framework:
Journal-first selected

article - Extended abstract. ACM International Conference Proceeding Series: 128-129.
http://dx.doi.org/10.1145/3202710.3203165

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Cinders: The Continuous Integration and Delivery Architecture
Framework
Journal-First Selected Article — Extended Abstract

Daniel Stahl
Ericsson AB
Linkdping, Sweden
daniel.stahl@ericsson.com

ABSTRACT

This extended abstract summarizes an article, which has been pub-
lished in Information and Software Technology and was selected
for the Journal-First presentations at the International Conference
on Software and System Process (ICSSP 2018).

Full Article Reference. Daniel Stahl and Jan Bosch. 2017. Cinders:
The continuous integration and delivery architecture framework.
Information and Software Technology 83 (2017), 76-93.

CCS CONCEPTS

« Software and its engineering — Architecture description
languages; Software development methods; Software config-
uration management and version control systems; Agile software
development;

KEYWORDS

cinders; software integration; software testing; continuous integra-
tion; continuous delivery; architecture framework

ACM Reference Format:

Daniel Stihl and Jan Bosch. 2018. Cinders: The Continuous Integration and
Delivery Architecture Framework: Journal-First Selected Article — Extended
Abstract. In ICSSP ’18: International Conference on the Software and Systems
Process 2018 (ICSSP ’18), May 26-27, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3202710.3203165

1 SUMMARY

The popular agile practices of continuous integration and delivery
have become an essential part of the software development process
in many companies, yet effective methods and tools to support
design, description and communication of continuous integration
and delivery systems are lacking. This paper addresses the problem
of constructing systems for rapidly and frequently transforming
source code changes into verified and deliverable software product
revisions with known content, known functionality and known
quality — through software integration and test — in a controlled
and methodical way.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6459-1/18/05.

https://doi.org/10.1145/3202710.3203165

128

Jan Bosch
Chalmers University of Technology
Gothenburg, Sweden
jan@janbosch.com

Historically, the problem of transforming lines of source code
into functioning, verified products running in their target environ-
ment could be regarded as a question of enterprise architecture:
of organizational responsibilities and manual processes. With the
advent and growth of continuous integration [2, 3] and delivery
[4, 5], however, and the automation this brings, this is increasingly
becoming a domain of software engineering: we see ever more so-
phisticated software systems being constructed, with the purpose
of compiling, integrating, testing, delivering and deploying other
software.

While such systems are generally perceived as adding value
and increasing the efficiency of the development project, we have
found in previous work that the exact nature of these benefits is
highly uncertain and varies from case to case [8]. Furthermore,
even though there are numerous popular tools that do much of
the heavy lifting in these integration systems, they only address
isolated parts of a very large problem domain. In all our industry
case studies [8, 9, 11, 12] we have never found a complete off-the-
shelf solution for continuous integration. Rather, the integration
systems we find often use similar tools, but configured differently,
put to different purposes and integrated with one another in varying
constellations. Not surprisingly, a review of literature reveals that
reported continuous integration systems display a high degree of
variance [10]. In other words, as a rule, continuous integration and
delivery systems are highly customized and purpose-built software
products in their own right.

This recognition leads up to the research question that drives
the study presented in this article: In what way can the paradigm of
architecture frameworks favorably be applied to facilitate the design
and description of continuous integration and delivery systems?

Similarly to the variance in system design, there is little consen-
sus on the exact definition of continuous integration and delivery,
particularly as opposed to related terms such as continuous testing,
continuous release or continuous deployment. For the purposes
of this paper, we use the term continuous integration and delivery
system to mean any system of automated activities performed in
order to transform source code into working and potentially ship-
pable and deployable products with known quality, content and
functionality, i.e. including compilation, linking, packaging, testing,
profiling, documentation generation and much more, serving to
ensure that “the software can be released to production at any time”
[4].

In this paper we investigate the applicability of existing architec-
tural frameworks and two built-for-purpose modeling techniques


https://doi.org/10.1145/3202710.3203165
https://doi.org/10.1145/3202710.3203165

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

— ASIF [10] and CIViT [7] — to the problem of designing and docu-
menting continuous integration and delivery systems. Based on this
investigation a new architectural framework, Cinders, is proposed
and subsequently evaluated in an industry context.

2 NEW INSIGHTS

There have been two noteworthy developments since the original
journal article was published. First, as noted in the summary above,
there is a lack of consensus in industry as well as in research as
to the exact meaning of terms such as continuous integration and
continuous delivery. In subsequent work we have investigated this
further and analyzed usage of the terms in published literature.
Based on this investigation we then propose less ambiguous defi-
nitions of a set of related terms [13]. Relevant in this context, we
argue that continuous integration is a “developer practice where
developers integrate their work frequently, usually each person
integrates at least daily, leading to multiple integrations per day”
and that continuous delivery is a “development practice where every
change is treated as a potential release candidate to be frequently
and rapidly evaluated through one’s continuous delivery pipeline,
and that one is always able to deploy and/or release the latest work-
ing version, but may decide not to, e.g. for business reasons”. These
definitions are in line with, but more elaborate than, the definition
of a continuous integration and delivery system provided in this
article.

The second development is that the Eiffel protocol for real time
automated documentation of continuous integration and delivery
activities, which is mentioned in passing in the original article, has
since been released as open source along with multiple service
implementations [1]. The Eiffel protocol is based on similar con-
cepts as Cinders, and even though there is currently no open source
implementation of Cinders descriptions generated from Eiffel data,
the data model of Cinders is well suited for such automated genera-
tion and would fit well into the Eiffel community’s implementation
architecture.

3 CONCLUSION

In this article we establish that the construction of continuous inte-
gration and delivery systems is an area of considerable investment
in the industry, yet lacking in supporting tools and methods, co-
inciding with a tendency by studied industry cases to not address
its challenges using as rigorous an approach as in regular product
development. Based on thematic analysis of statements in literature,
twelve requirements for an architectural framework for continuous
integration and delivery are phrased. Using these requirements,
existing architecture frameworks as listed by ISO/IEC/IEEE [6] are
evaluated, finding that none satisfactorily addresses the identified
requirements.

Consequently Cinders, a new architecture framework designed
to address the identified requirements, is presented. Influenced
by prominent enterprise and software architecture frameworks,
Cinders offers four separate viewpoints of the same underlying data
model, with six optional layers of additional information which can

129

D. Stahl and J. Bosch

be used to adjust the focus and level of detail within each of those
viewpoints, as fits the particular use case and circumstances. This

framework is then applied in a workshop format in two separate
industry cases, and interviews are conducted with a total of twelve

practitioners.

Based on this work it is shown that a single architectural frame-
work can be designed to encompass the previous continuous in-
tegration and delivery modeling techniques ASIF and CIViT, rep-
resenting their specific concerns as viewpoints rendered from the
same underlying data model. It is also shown that this architecture
framework represents an improvement over these techniques, in
that it separates different types of entity relationships into separate
viewpoints, allows the level of abstraction of each viewpoint to
be modified, shows confidence afforded by conducted activities,
represents both manual and automated test activities, can map ac-
tivities onto physical environments and can visualize overlapping
test activities. In workshops and interviews with practitioners of
continuous integration and delivery in two separate companies it
is confirmed that Cinders is viewed as relevant and useful in an
industry setting, even while areas of possible improvement are iden-
tified. Therefore we find that Cinders represents a significant step
forward in continuous integration and delivery architecture design
and description, constituting a relevant and helpful tool for industry
professionals to better document, analyze and communicate their
systems.

REFERENCES

[1] 2018. Eiffel Community. http://eiffel-community.github.io. (2018).
accessed 27-March-2018].

Kent Beck. 2000. Extreme programming explained: embrace change. Addison-
Wesley Professional.

Martin Fowler. 2006. Continuous Integration. http://www.martinfowler.com/
articles/\continuousIntegration.html. (2006). [Online; accessed 12-February-
2016].

Martin Fowler. 2013. Continuous Delivery. http://martinfowler.com/bliki/
\ContinuousDelivery.html. (2013). [Online; accessed 20-November-2015].

Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.
ISO/IEC/IEEE 42010. 2015. ISO/IEC/IEEE 42010 Survey of Architecture
Frameworks. http://www.iso-architecture.org/42010/afs/\frameworks-table.html.
(2015). [Online; accessed 12-March-2015].

Agneta Nilsson, Jan Bosch, and Christian Berger. 2014. Visualizing testing activi-
ties to support continuous integration: A multiple case study. In Agile Processes
in Software Engineering and Extreme Programming. Springer, 171-186.

Daniel Stéhl and Jan Bosch. 2013. Experienced benefits of continuous integration
in industry software product development: A case study. In The 12th IASTED
International Conference on Software Engineering. 736-743.

Daniel Stahl and Jan Bosch. 2014. Automated software integration flows in
industry: a multiple-case study. In Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 54-63.

Daniel Stahl and Jan Bosch. 2014. Modeling continuous integration practice
differences in industry software development. Journal of Systems and Software
87 (2014), 48-59.

Daniel Stahl and Jan Bosch. 2016. Industry application of continuous integration
modeling: a multiple-case study. In Proceedings of the 38th International Conference
on Software Engineering Companion. ACM, 270-279.

Daniel Stahl, Kristofer Hallén, and Jan Bosch. 2017. Achieving traceability in large
scale continuous integration and delivery: Deployment, usage and validation of
the Eiffel framework. Empirical Software Engineering 22, 3 (2017), 967-995.
Daniel Stahl, Torvald Martensson, and Jan Bosch. 2017. Continuous Practices and
DevOps: Beyond the Buzz, What Does It All Mean?. In 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE, 440-448.

[Online;

[2]

(10]

[11

[12

[13


http://eiffel-community.github.io
http://www.martinfowler.com/articles/\continuousIntegration.html
http://www.martinfowler.com/articles/\continuousIntegration.html
http://martinfowler.com/bliki/\ContinuousDelivery.html
http://martinfowler.com/bliki/\ContinuousDelivery.html
http://www.iso-architecture.org/42010/afs/\frameworks-table.html

	Abstract
	1 Summary
	2 New Insights
	3 Conclusion
	References



