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Network-on-Chip Evaluation for a Novel Neural Architecture 

 

ABSTRACT 

This paper provides a performance evaluation and trade-off 

analysis of a novel chip architecture for neuromorphic 

computing, especially focused on the memory subsystems and 

the Network-On-Chip (NoC). More precisely, we study the 

performance-related effect of the number of memory modules, 

as well as that of allowing direct core-to-core communication. 

Our simulation-based experimental work throws many 

interesting results on the above aspects and allows to ensure 

that congestion at the NoC-level is unlikely to degrade 

performance. 
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1 INTRODUCTION 

In the era of high-performance computing, industry leaders are 

recognizing the slow-down of the 50-year long trend known as 

Moore’s Law. The strategy of increasing computing power via 

adding more logic into individual chips has had to change 

significantly, as transistor miniaturization is approaching 

physical limits. Moreover, the Power Wall limits the amount of 

logic that can be active at the same time within silicon-based 

chips. A variety of solutions for this problem are currently 

prevalent; using custom ASIC systems or including FPGA 

technology are popular techniques and research for novel 

manufacturing materials that can exhibit better characteristics 

for computation (e.g. using MoS2) [1] is a topic of interest. 

Nevertheless, currently the most widely adopted practice is to 

use more, simpler processors through parallelism.  

However, high-performance computing (HPC) requires 

massive processor counts, and conventional parallelization is 

hard-pressed to deal with the problem, leading to the need for 

novel parallelism paradigms.  

In addition, the significant increase in computing power 

exhibited over the past few decades has invigorated the field of 

machine learning, especially neural networks research. Neural 

networks are highly parallelized structures based on the 

workings of nervous systems, which show great potential for 

modelling biological constructs such as brains [2]. At the same 

time, neurobiology and human-brain research are progressing 

at a rapid pace. This has led to further understanding of the 

most massively parallel computational unit known to human 

kind, a mammal’s brain. The domain’s knowledge is being 

applied to the computing world to create new types of 

computers. These biologically inspired computers (i.e. 

neuromorphic computers) could provide the computing 

community with the paradigms required for continued 

progress, while at the same time contributing our 

understanding of the human brain.  

Many projects that involve large-scale neuromorphic 

computing have been developed over the past few years, e.g., 

SpiNNaker [3], the Blue Brain project [6] or Neurogrid [10]. 

While these systems can perform simulations with millions of 

neurons, they still only represent a small proportion of the 

human brain (about 2 orders of magnitude less), so new 

architectures and modelling systems are needed.  

Our goal within the SpiNNaker2 project is to produce a machine 

capable of modelling at least ten times the number of neurons 

as these systems. This would allow for models scaling up to 

10% of the human brain in terms of neuron count, thereby 

enabling further research into more sophisticated aspects of 

neural models. For this reason, our design aims at providing 

improved scalability, at increasing the communication 

bandwidth per card, at extending the support for software 

applications (e.g. support more neuron models and features, 

more synaptic plasticity models etc.) and at providing low-

power configurations for robotics. This can be achieved 

through higher orders of parallelism throughout the system 

and especially within our System-on-Chip (SoC). We are 

putting together over a hundred low-power cores to provide 

these improvements. However, we are still in the earlier design 

phases and core counts and the final architecture is not decided 
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yet. Indeed, this paper’s objective is to perform a design space 

exploration of the communications and memory to ascertain 

the trade-offs of their different aspects. 

More specifically, we aim to understand the effects of the 

number of memories on the performance of the memory and 

interconnection subsystems. We also investigate the trade-offs 

incurred when allowing processing cores to communicate 

directly with each other, rather than allowing them to 

communicate only indirectly, through memory. 

2 RELATED WORK 

Modelling the entire human brain requires levels of 

computation that have not been achieved yet. Estimations 

suggest that a rate of 1018 operations per second is required for 

modelling a human brain [4][5], or the performance of an exa-

scale machine. 

Additionally, conventional HPC systems are not optimized for 

the type of communication that occurs in biological systems, i.e. 

broadcasting many small pieces of information to many 

recipients, but rather for point-to-point transmission of large 

blocks of data. This leaves HPC machinery at a disadvantage 

within the context of neural modelling. Therefore, novel 

architectures that can handle the intricacies of the neural 

problems are imperative. 

2.1  Neuromorphic Computing 

A variety of approaches exist for modelling biological neural 

networks through software (i.e. neural models), sometimes run 

on top of HPC platforms. For instance, the EPFL Blue Brain 

project combines traditional neuroscience with HPC to model 

biological neural systems [6] using an IBM Blue Gene 

supercomputer. Another example is the Izhikevich point-

neuron model, developed at the Neuroscience Research 

Institute in San Diego, which consists of 100 billion neurons [7].  

However, as stated above, neural simulations do not fit very 

well to current computing systems, leading to many other 

projects that aim to develop new hardware approaches. 

The Stanford Neurogrid project’s neuromorphic hardware can 

emulate 1 million neurons in real time, approximately the 

capability of 200 BlueGene racks [8], while being able to scale 

the modelling capacity to 64 million neurons. The University of 

Manchester’s SpiNNaker machine is a massively parallel, 

special purpose computer designed for low-power neural 

network simulation [9]. SpiNNaker’s main innovation is its 

multicast interconnection network which perfectly meets the 

communication needs of the neural application. 

2.2  Many-Core SoCs 

In principle, the mesh-like architecture we propose (detailed in 

next section) follows a similar approach to most many-core 

chips available in the market, such as the Tilera Tile64 [10], the 

Intel Xeon-Phi Knights Landing family of processors [11] or the 

Sunway‘s SW26010 [12]. All of them are devised as an array of 

processor cores with all the needed subsystems (including I/O) 

connected to the boundaries of the chip, while relying on mesh-

like interconnects to perform inter-chip communication. 

However, there exist many differences between the above SoCs 

and our SpiNNaker2 SoC. The most important is related to data 

coherence and the way it affects the workloads the 

interconnect needs to support. 

Both the Tile64 and the Xeon Phi, rely on traditional cache 

coherence architectures and so their NoCs have been optimized 

accordingly, by using very small control packets together with 

slightly larger data packets, most of which are originated in 

(and addressed to) the cores. The Sunway SW26010 attempts 

to avoid coherence altogether by isolating the dedicated cache 

in each core (scratch pad memories) and not allowing inter-

processor communication (IPC). Indeed, one of the most 

significant design decisions for us is whether to allow direct 

IPC, as this would greatly assist neural simulations, or to stick 

to IPC being carried out through main memory only. 

3 ARCHITECTURE DESCRIPTION 

The central compute element of the SpiNNaker2 NoC is a Quad-

Processing Element, or QPE, comprised of four processing 

 
a) Single-memory design 

 
b) Dual-memory design 

 
c) Quad-memory design 

Fig.  1 Proposed NoC Designs 
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modules and an AHB bus crossbar that includes a DMA 

controller and a NoC router. Each module contains an ARM 

Cortex M4F processor [13], an SRAM module of 128KB, single-

precision floating point hardware, a fixed-point exponential 

accelerator and a random number generator. QPEs will be 

connected to form a mesh NoC to which external modules will 

be connected. However, we are still investigating the optimal 

component arrangement as well as the features the NoC 

interface and infrastructure need to support. Currently, we are 

looking at three different designs for the SpiNNaker2 SoC, 

presented in Fig.  1 above. All three topologies comprise of a 

4×8 QPE mesh, a Packet router connected to the south edge of 

the mesh and either 1, 2 or 4 memory controller modules to 

access external memories. The memory modules are connected 

to the eastern and western edges of the mesh. 

The main purposes of our evaluation are two; to see whether 

the single-memory module architecture creates a bottleneck on 

the eastern edge of the mesh, as the links on the eastern edge 

would need to accommodate traffic from the whole row, and to 

assess the effect of allowing for inter-QPE communication. In 

the first case, we want to assess to what extent adding more 

modules would affect performance. In principle, we are 

assuming a localized use of the memory modules in which QPEs 

will access their closest memory, effectively splitting the SoC 

into halves or quadrants (i.e. for Fig.  1c, all north-western QPEs 

communicate with memory module 0, north eastern ones with 

memory module 1 etc.). 

4  EXPERIMENTAL ANALYSIS 

In order to understand these performance aspects and explore 

the design space of the interconnection and memory 

subsystem, we modelled all our different architectures in 

INSEE [14], an open-source, time-accurate network simulator. 

4.1  Experimental Setup & Methodology 

Although the architecture of the NoC is not defined yet, we 

considered traditional crossbar-based routers using the bubble 

strategy for VC management [15], with a bubble size of 2. For 

simplicity we use oblivious dimension-order routing and 

Round-Robin arbitration. Also, given that no large bursts are 

expected we apply no congestion control to the traffic. This is 

based on practicalities rather than design limitations, since not 

applying congestion control will help us to see whether there is 

any performance degradation upon saturation, in which case 

we could explore such mechanisms. We modelled packets of 

fixed length (16 phits of 4 bytes). In our simulations, each QPE 

is abstracted into a single traffic generation instance. 

The traffic patterns we use require special consideration due to 

the atypical communication needs of the machine. Traffic is 

injected by the nodes into the network using a Bernoulli 

process with a variable injection rate. Traffic distribution is 

regulated by two parameters that control the ratio of QPE-to-

Memory (Q2M) and QPE-to-Router (Q2R), with the rest of the 

traffic representing QPE-to-QPE (Q2Q) traffic, which is 

uniformly distributed across the mesh. Packets addressed to 

the memories will be sent to the nearest memory using only 

horizontal links, while packets addressed to the Packet Router 

will travel vertically within the same column of the injecting 

QPE. Traffic is reactive, meaning that packets arriving to the 

memories trigger a response packet to the source. Packets 

addressed to the Packet Router trigger new packets to one QPE 

at random. To perform our analysis, we used the maximum 

injection load and set the Q2R traffic ratio to be 5% of the 

traffic. The rest of the traffic iterates over the Q2M ratio, in 

order to compare Q2Q and Q2M in terms of network 

throughput. 

4.2  Effects of QPE-QPE Communication 

The impact of Q2Q communication on the NoC’s throughput for 

the 3 designs is shown in Fig.  2. Clearly, Q2Q communication 

can be advantageous in all cases. As the Q2M ratio decreases 

(and therefore the Q2Q ratio increases), we see a gradual 

performance increase which is most pronounced for the single-

memory architecture. For more than half (two thirds in the 

single-memory case) of the traffic being sent among the QPEs, 

however, the throughput of the NoC starts decreasing. The 

dual- and quad-memory counterparts also exhibit significant 

gains as the Q2Q ratio increases; however, in both cases, using 

Q2Q traffic only will be counterproductive as its performance 

will be lower than doing all the communications through 

memory. Conversely, it is noteworthy that in this scenario, each 

Q2Q communication, which consists of 2 packet transmissions, 

would represent 4 packet transmissions in a Q2M-only 

implementation of inter-QPE communication (one QPE would 

write a value in memory while the other would read that value, 

each transaction requiring two packets to be transmitted). As 

such, the Q2M-only implementation would require twice the 

throughput to maintain the same application performance. 

Nevertheless, results with Q2M traffic only suggest that the 

mesh alone would yield a throughput of roughly 0.46 

phits/node/cycle in the best case, that is without considering 

additional traffic scenarios where a QPE sends to more than 

 

Fig.  2 Impact of Q2Q and Memory Traffic on Throughput 
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one memory. Therefore, Q2Q communication can be a 

favourable addition. With one memory, allowing Q2Q traffic 

always improves upon not allowing it; indeed, the curve’s 

maximal point exhibits twice the throughput with respect to no 

Q2Q traffic (i.e. Q2M traffic only). For the quad- and dual-

memory architectures, significant gains of up to 50% more 

throughput can also be achieved by allowing Q2Q traffic.  

With respect to memory module usage, using a single memory 

is too restrictive as memory access seems to become a 

significant bottleneck. Using more memory modules is better in 

terms of throughput but moving from two memories to four 

yields relatively small improvements. With one memory, the 

throughput achieved using only the memory is a mere 0.27 

phits/node/cycle. The dual- and quad-memory alternatives 

nearly double that by reaching 0.55 and 0.61, respectively. 

When considering the optimal cases in which QPE-to-QPE is 

enabled, this difference is not as substantial, 0.63 versus 0.8 

(dual) and 0.86 (quad) phits/node/cycle respectively.  

With more than one memory module in the periphery of the 

chip, the saturation problem presented by the single-memory 

alternative is alleviated, since twice as many links can be used 

with each link serving half the number of QPEs. Having 4 

memory modules would not greatly improve the memory 

throughput but would allow to reduce the frequency of the 

memories by half, with the subsequent reduction in energy 

consumption. It also would allow for more graceful 

degradation in case of failures, as the dual-memory case would 

perform as the single-memory case in case of a memory fault, 

whereas the quad-memory would keep a more consistent 

behaviour. Obviously, with one memory, memory module 

faults would lead to the whole NoC potentially losing access to 

the synaptic information held in memory, causing the 

equivalent of a “stroke” for the neural network being modelled. 

Using more memory modules removes this single point of 

failure and allows for the introduction of more graceful failover 

mechanisms, where QPEs can be re-tasked to use a different 

memory module. This would allow them to have access to 

synaptic information and potentially to enable the algorithmic 

re-creation of lost data. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we evaluated the proposed designs for the NoC to 

be included in SpiNNaker2. More precisely, we have justified 

supporting QPE intercommunication and answered key 

questions about the number and configuration of memory 

controller modules the design should have. We have 

demonstrated that using more than one module is 

advantageous, as this should allow for higher memory 

throughput. Additionally, adding extra memory modules 

removes the risk of having a single point of failure for the chip 

and allows for introducing fail-over mechanisms. Finally, a 

failure in a single memory module would mean a complete loss 

of the synaptic information for the chip, something which is 

alleviated by introducing a form of redundancy.  

This work is a first step in examining the characteristics of the 

SpiNNaker2 NoC. In the future, we plan to perform a more 

detailed evaluation and analysis of this design with respect to 

lower level hardware characteristics of the routers, such as 

buffer depth and the number of virtual channels. Additionally, 

we intend to examine whether adding inter-chip traffic onto 

the same NoC causes any significant performance issues. This 

is a key point of interest, as it would define whether extra NoC 

infrastructure is needed. We also intend to evaluate the merits 

of using multicast at the NoC level to better accommodate to the 

nature of neural traffic. 

ACKNOWLEDGEMENTS 
The design and construction of the SpiNNaker machine was 

supported by EPSRC under grants EP/D07908X/1 and 

EP/G015740/1, in collaboration with the universities of 

Southampton, Cambridge and Sheffield and with industry 

partners ARM Ltd, Silistix Ltd and Thales. Ongoing 

development of the software is supported by the EU ICT 

Flagship Human Brain Project (FP7-604102 & H2020-720270). 

Exploration of the capabilities of the machine is supported by 

the European Research Council under the European Union’s 

Seventh Framework Programme (FP7/2007-2013) / ERC 

grant agreement 320689. Dr. Navaridas is supported by the 

ExaNeSt project, which is funded by the EU’s H2020 

programme under grant agreement No 671553. 

REFERENCES 
[1] S. B. Desai et.al, “lengths, MoS2 transistors with 1-nanometer gate,” 

Science AAAS, pp. 99-102, 7 October 2016. 
[2] M. L. Forcada and R. C. Carrasco, “Finite-State Computation in Analog 

Neural Networks: Steps towards Biologically Plausible Models?”, 
Lecture Notes in Computer Science, pp. 480-493, 2001. 

[3] S. B. Furber, F. Galluppi, S. Temple and L. A. Plana, “The SpiNNaker 
Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, 2014. 

[4] H.-H. Suzana, “The human brain in numbers: a linearly scaled-up 
primate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009.  

[5] S. B. Furber, “Brain-inspired computing,” IET Computers & Digital 
Techniques, vol. 10, no. 6, pp. 299 - 305, 2016.  

[6] H. Markram, ““The Blue Brain Project,” Nature Rev. Neuroscience, vol.7, 
pp. 153-160, 2006.  

[7] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on 
Neural Networks, vol. 14, no. 6, pp. 1569 - 1572, 2003.  

[8] B. V. Benjamin, P. Gao, et. al, “Neurogrid: A Mixed-Analog-Digital 
Multichip System for Large-Scale Neural Simulations,” Proceedings of 
the IEEE, vol. 102, no. 5, pp. 699 - 716, 2014.  

[9] S. B. Furber et.al, “Overview of the SpiNNaker System Architecture,” 
IEEE Transactions on Computers, pp. 2454 - 2467, 2012.  

[10] D. Wentzlaff et.al, “On-Chip Interconnection Architecture of the Tile 
Processor,” IEEE Micro, vol. 27, no. 5, pp. 15 - 31, 2007.  

[11] J. Jeffers, J. Reinders and A. Sodani, Intel Xeon Phi Processor High 
Performance Programming: Knights Landing Edition, Cambridge: 
Morgan Kaufmann, 2016. 

[12] H. Fu et. al, “The Sunway TaihuLight supercomputer: system and 
applications,” Science China. Information Sciences, vol. 59, pp. 1-16, 
2016.  

[13] ARM Limited, “Arm Cortex-M4 Processor, Technical Reference Manual,” 
2013. [Online]. 

[14] J. Navaridas, J. Miguel-Alonso, J. A. Pascual and F. J. Ridruejo, “Simulating 
and evaluating interconnection networks with INSEE,” Simulation 
Modelling Practice and Theory, p. 494–515, 2011 

[15] V. Puente et.al, “Adaptive bubble router: a design to improve 
performance in torus networks,” in 1999 International Conference on 
Parallel Processing, Aizu-Wakamatsu City, Japan, Japan, 1999. 

 


