
The University of Manchester Research

Network-on-Chip Evaluation for a Novel Neural
Architecture
DOI:
10.1145/3203217.3203268

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Kynigos, M., Navaridas, J., Plana, L. A., & Furber, S. (2018). Network-on-Chip Evaluation for a Novel Neural
Architecture. In Computing frontiers conference https://doi.org/10.1145/3203217.3203268

Published in:
Computing frontiers conference

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1145/3203217.3203268
https://research.manchester.ac.uk/en/publications/0d09d81e-0d02-47f5-bda2-5e0876d61104
https://doi.org/10.1145/3203217.3203268

Network-on-Chip Evaluation for a Novel Neural Architecture

ABSTRACT

This paper provides a performance evaluation and trade-off

analysis of a novel chip architecture for neuromorphic

computing, especially focused on the memory subsystems and

the Network-On-Chip (NoC). More precisely, we study the

performance-related effect of the number of memory modules,

as well as that of allowing direct core-to-core communication.

Our simulation-based experimental work throws many

interesting results on the above aspects and allows to ensure

that congestion at the NoC-level is unlikely to degrade

performance.

CCS CONCEPTS

Computer systems organization → Interconnection

architectures

Computer systems organization → Neural networks

KEYWORDS

Biologically Inspired Architecture, Neuromorphic Computing,

Networks on Chip, Performance Evaluation, Systems on Chip.

1 INTRODUCTION

In the era of high-performance computing, industry leaders are

recognizing the slow-down of the 50-year long trend known as

Moore’s Law. The strategy of increasing computing power via

adding more logic into individual chips has had to change

significantly, as transistor miniaturization is approaching

physical limits. Moreover, the Power Wall limits the amount of

logic that can be active at the same time within silicon-based

chips. A variety of solutions for this problem are currently

prevalent; using custom ASIC systems or including FPGA

technology are popular techniques and research for novel

manufacturing materials that can exhibit better characteristics

for computation (e.g. using MoS2) [1] is a topic of interest.

Nevertheless, currently the most widely adopted practice is to

use more, simpler processors through parallelism.

However, high-performance computing (HPC) requires

massive processor counts, and conventional parallelization is

hard-pressed to deal with the problem, leading to the need for

novel parallelism paradigms.

In addition, the significant increase in computing power

exhibited over the past few decades has invigorated the field of

machine learning, especially neural networks research. Neural

networks are highly parallelized structures based on the

workings of nervous systems, which show great potential for

modelling biological constructs such as brains [2]. At the same

time, neurobiology and human-brain research are progressing

at a rapid pace. This has led to further understanding of the

most massively parallel computational unit known to human

kind, a mammal’s brain. The domain’s knowledge is being

applied to the computing world to create new types of

computers. These biologically inspired computers (i.e.

neuromorphic computers) could provide the computing

community with the paradigms required for continued

progress, while at the same time contributing our

understanding of the human brain.

Many projects that involve large-scale neuromorphic

computing have been developed over the past few years, e.g.,

SpiNNaker [3], the Blue Brain project [6] or Neurogrid [10].

While these systems can perform simulations with millions of

neurons, they still only represent a small proportion of the

human brain (about 2 orders of magnitude less), so new

architectures and modelling systems are needed.

Our goal within the SpiNNaker2 project is to produce a machine

capable of modelling at least ten times the number of neurons

as these systems. This would allow for models scaling up to

10% of the human brain in terms of neuron count, thereby

enabling further research into more sophisticated aspects of

neural models. For this reason, our design aims at providing

improved scalability, at increasing the communication

bandwidth per card, at extending the support for software

applications (e.g. support more neuron models and features,

more synaptic plasticity models etc.) and at providing low-

power configurations for robotics. This can be achieved

through higher orders of parallelism throughout the system

and especially within our System-on-Chip (SoC). We are

putting together over a hundred low-power cores to provide

these improvements. However, we are still in the earlier design

phases and core counts and the final architecture is not decided

 Markos Kynigos, Javier Navaridas, Luis A. Plana, Steve Furber

School of Computer Science
The University of Manchester

Manchester, United Kingdom

2

yet. Indeed, this paper’s objective is to perform a design space

exploration of the communications and memory to ascertain

the trade-offs of their different aspects.

More specifically, we aim to understand the effects of the

number of memories on the performance of the memory and

interconnection subsystems. We also investigate the trade-offs

incurred when allowing processing cores to communicate

directly with each other, rather than allowing them to

communicate only indirectly, through memory.

2 RELATED WORK

Modelling the entire human brain requires levels of

computation that have not been achieved yet. Estimations

suggest that a rate of 1018 operations per second is required for

modelling a human brain [4][5], or the performance of an exa-

scale machine.

Additionally, conventional HPC systems are not optimized for

the type of communication that occurs in biological systems, i.e.

broadcasting many small pieces of information to many

recipients, but rather for point-to-point transmission of large

blocks of data. This leaves HPC machinery at a disadvantage

within the context of neural modelling. Therefore, novel

architectures that can handle the intricacies of the neural

problems are imperative.

2.1 Neuromorphic Computing

A variety of approaches exist for modelling biological neural

networks through software (i.e. neural models), sometimes run

on top of HPC platforms. For instance, the EPFL Blue Brain

project combines traditional neuroscience with HPC to model

biological neural systems [6] using an IBM Blue Gene

supercomputer. Another example is the Izhikevich point-

neuron model, developed at the Neuroscience Research

Institute in San Diego, which consists of 100 billion neurons [7].

However, as stated above, neural simulations do not fit very

well to current computing systems, leading to many other

projects that aim to develop new hardware approaches.

The Stanford Neurogrid project’s neuromorphic hardware can

emulate 1 million neurons in real time, approximately the

capability of 200 BlueGene racks [8], while being able to scale

the modelling capacity to 64 million neurons. The University of

Manchester’s SpiNNaker machine is a massively parallel,

special purpose computer designed for low-power neural

network simulation [9]. SpiNNaker’s main innovation is its

multicast interconnection network which perfectly meets the

communication needs of the neural application.

2.2 Many-Core SoCs

In principle, the mesh-like architecture we propose (detailed in

next section) follows a similar approach to most many-core

chips available in the market, such as the Tilera Tile64 [10], the

Intel Xeon-Phi Knights Landing family of processors [11] or the

Sunway‘s SW26010 [12]. All of them are devised as an array of

processor cores with all the needed subsystems (including I/O)

connected to the boundaries of the chip, while relying on mesh-

like interconnects to perform inter-chip communication.

However, there exist many differences between the above SoCs

and our SpiNNaker2 SoC. The most important is related to data

coherence and the way it affects the workloads the

interconnect needs to support.

Both the Tile64 and the Xeon Phi, rely on traditional cache

coherence architectures and so their NoCs have been optimized

accordingly, by using very small control packets together with

slightly larger data packets, most of which are originated in

(and addressed to) the cores. The Sunway SW26010 attempts

to avoid coherence altogether by isolating the dedicated cache

in each core (scratch pad memories) and not allowing inter-

processor communication (IPC). Indeed, one of the most

significant design decisions for us is whether to allow direct

IPC, as this would greatly assist neural simulations, or to stick

to IPC being carried out through main memory only.

3 ARCHITECTURE DESCRIPTION

The central compute element of the SpiNNaker2 NoC is a Quad-

Processing Element, or QPE, comprised of four processing

a) Single-memory design

b) Dual-memory design

c) Quad-memory design

Fig. 1 Proposed NoC Designs

Network-on-Chip Evaluation for a Novel Neural Architecture

 3

modules and an AHB bus crossbar that includes a DMA

controller and a NoC router. Each module contains an ARM

Cortex M4F processor [13], an SRAM module of 128KB, single-

precision floating point hardware, a fixed-point exponential

accelerator and a random number generator. QPEs will be

connected to form a mesh NoC to which external modules will

be connected. However, we are still investigating the optimal

component arrangement as well as the features the NoC

interface and infrastructure need to support. Currently, we are

looking at three different designs for the SpiNNaker2 SoC,

presented in Fig. 1 above. All three topologies comprise of a

4×8 QPE mesh, a Packet router connected to the south edge of

the mesh and either 1, 2 or 4 memory controller modules to

access external memories. The memory modules are connected

to the eastern and western edges of the mesh.

The main purposes of our evaluation are two; to see whether

the single-memory module architecture creates a bottleneck on

the eastern edge of the mesh, as the links on the eastern edge

would need to accommodate traffic from the whole row, and to

assess the effect of allowing for inter-QPE communication. In

the first case, we want to assess to what extent adding more

modules would affect performance. In principle, we are

assuming a localized use of the memory modules in which QPEs

will access their closest memory, effectively splitting the SoC

into halves or quadrants (i.e. for Fig. 1c, all north-western QPEs

communicate with memory module 0, north eastern ones with

memory module 1 etc.).

4 EXPERIMENTAL ANALYSIS

In order to understand these performance aspects and explore

the design space of the interconnection and memory

subsystem, we modelled all our different architectures in

INSEE [14], an open-source, time-accurate network simulator.

4.1 Experimental Setup & Methodology

Although the architecture of the NoC is not defined yet, we

considered traditional crossbar-based routers using the bubble

strategy for VC management [15], with a bubble size of 2. For

simplicity we use oblivious dimension-order routing and

Round-Robin arbitration. Also, given that no large bursts are

expected we apply no congestion control to the traffic. This is

based on practicalities rather than design limitations, since not

applying congestion control will help us to see whether there is

any performance degradation upon saturation, in which case

we could explore such mechanisms. We modelled packets of

fixed length (16 phits of 4 bytes). In our simulations, each QPE

is abstracted into a single traffic generation instance.

The traffic patterns we use require special consideration due to

the atypical communication needs of the machine. Traffic is

injected by the nodes into the network using a Bernoulli

process with a variable injection rate. Traffic distribution is

regulated by two parameters that control the ratio of QPE-to-

Memory (Q2M) and QPE-to-Router (Q2R), with the rest of the

traffic representing QPE-to-QPE (Q2Q) traffic, which is

uniformly distributed across the mesh. Packets addressed to

the memories will be sent to the nearest memory using only

horizontal links, while packets addressed to the Packet Router

will travel vertically within the same column of the injecting

QPE. Traffic is reactive, meaning that packets arriving to the

memories trigger a response packet to the source. Packets

addressed to the Packet Router trigger new packets to one QPE

at random. To perform our analysis, we used the maximum

injection load and set the Q2R traffic ratio to be 5% of the

traffic. The rest of the traffic iterates over the Q2M ratio, in

order to compare Q2Q and Q2M in terms of network

throughput.

4.2 Effects of QPE-QPE Communication

The impact of Q2Q communication on the NoC’s throughput for

the 3 designs is shown in Fig. 2. Clearly, Q2Q communication

can be advantageous in all cases. As the Q2M ratio decreases

(and therefore the Q2Q ratio increases), we see a gradual

performance increase which is most pronounced for the single-

memory architecture. For more than half (two thirds in the

single-memory case) of the traffic being sent among the QPEs,

however, the throughput of the NoC starts decreasing. The

dual- and quad-memory counterparts also exhibit significant

gains as the Q2Q ratio increases; however, in both cases, using

Q2Q traffic only will be counterproductive as its performance

will be lower than doing all the communications through

memory. Conversely, it is noteworthy that in this scenario, each

Q2Q communication, which consists of 2 packet transmissions,

would represent 4 packet transmissions in a Q2M-only

implementation of inter-QPE communication (one QPE would

write a value in memory while the other would read that value,

each transaction requiring two packets to be transmitted). As

such, the Q2M-only implementation would require twice the

throughput to maintain the same application performance.

Nevertheless, results with Q2M traffic only suggest that the

mesh alone would yield a throughput of roughly 0.46

phits/node/cycle in the best case, that is without considering

additional traffic scenarios where a QPE sends to more than

Fig. 2 Impact of Q2Q and Memory Traffic on Throughput

0

0.2

0.4

0.6

0.8

1

0% 20% 40% 60% 80% 100%

T
h

r
o
u

g
h

p
u

t

Q2Q Ratio

Fixed Q2R Ratio

single

dual

quad

4

one memory. Therefore, Q2Q communication can be a

favourable addition. With one memory, allowing Q2Q traffic

always improves upon not allowing it; indeed, the curve’s

maximal point exhibits twice the throughput with respect to no

Q2Q traffic (i.e. Q2M traffic only). For the quad- and dual-

memory architectures, significant gains of up to 50% more

throughput can also be achieved by allowing Q2Q traffic.

With respect to memory module usage, using a single memory

is too restrictive as memory access seems to become a

significant bottleneck. Using more memory modules is better in

terms of throughput but moving from two memories to four

yields relatively small improvements. With one memory, the

throughput achieved using only the memory is a mere 0.27

phits/node/cycle. The dual- and quad-memory alternatives

nearly double that by reaching 0.55 and 0.61, respectively.

When considering the optimal cases in which QPE-to-QPE is

enabled, this difference is not as substantial, 0.63 versus 0.8

(dual) and 0.86 (quad) phits/node/cycle respectively.

With more than one memory module in the periphery of the

chip, the saturation problem presented by the single-memory

alternative is alleviated, since twice as many links can be used

with each link serving half the number of QPEs. Having 4

memory modules would not greatly improve the memory

throughput but would allow to reduce the frequency of the

memories by half, with the subsequent reduction in energy

consumption. It also would allow for more graceful

degradation in case of failures, as the dual-memory case would

perform as the single-memory case in case of a memory fault,

whereas the quad-memory would keep a more consistent

behaviour. Obviously, with one memory, memory module

faults would lead to the whole NoC potentially losing access to

the synaptic information held in memory, causing the

equivalent of a “stroke” for the neural network being modelled.

Using more memory modules removes this single point of

failure and allows for the introduction of more graceful failover

mechanisms, where QPEs can be re-tasked to use a different

memory module. This would allow them to have access to

synaptic information and potentially to enable the algorithmic

re-creation of lost data.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the proposed designs for the NoC to

be included in SpiNNaker2. More precisely, we have justified

supporting QPE intercommunication and answered key

questions about the number and configuration of memory

controller modules the design should have. We have

demonstrated that using more than one module is

advantageous, as this should allow for higher memory

throughput. Additionally, adding extra memory modules

removes the risk of having a single point of failure for the chip

and allows for introducing fail-over mechanisms. Finally, a

failure in a single memory module would mean a complete loss

of the synaptic information for the chip, something which is

alleviated by introducing a form of redundancy.

This work is a first step in examining the characteristics of the

SpiNNaker2 NoC. In the future, we plan to perform a more

detailed evaluation and analysis of this design with respect to

lower level hardware characteristics of the routers, such as

buffer depth and the number of virtual channels. Additionally,

we intend to examine whether adding inter-chip traffic onto

the same NoC causes any significant performance issues. This

is a key point of interest, as it would define whether extra NoC

infrastructure is needed. We also intend to evaluate the merits

of using multicast at the NoC level to better accommodate to the

nature of neural traffic.

ACKNOWLEDGEMENTS
The design and construction of the SpiNNaker machine was

supported by EPSRC under grants EP/D07908X/1 and

EP/G015740/1, in collaboration with the universities of

Southampton, Cambridge and Sheffield and with industry

partners ARM Ltd, Silistix Ltd and Thales. Ongoing

development of the software is supported by the EU ICT

Flagship Human Brain Project (FP7-604102 & H2020-720270).

Exploration of the capabilities of the machine is supported by

the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC

grant agreement 320689. Dr. Navaridas is supported by the

ExaNeSt project, which is funded by the EU’s H2020

programme under grant agreement No 671553.

REFERENCES
[1] S. B. Desai et.al, “lengths, MoS2 transistors with 1-nanometer gate,”

Science AAAS, pp. 99-102, 7 October 2016.
[2] M. L. Forcada and R. C. Carrasco, “Finite-State Computation in Analog

Neural Networks: Steps towards Biologically Plausible Models?”,
Lecture Notes in Computer Science, pp. 480-493, 2001.

[3] S. B. Furber, F. Galluppi, S. Temple and L. A. Plana, “The SpiNNaker
Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, 2014.

[4] H.-H. Suzana, “The human brain in numbers: a linearly scaled-up
primate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009.

[5] S. B. Furber, “Brain-inspired computing,” IET Computers & Digital
Techniques, vol. 10, no. 6, pp. 299 - 305, 2016.

[6] H. Markram, ““The Blue Brain Project,” Nature Rev. Neuroscience, vol.7,
pp. 153-160, 2006.

[7] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on
Neural Networks, vol. 14, no. 6, pp. 1569 - 1572, 2003.

[8] B. V. Benjamin, P. Gao, et. al, “Neurogrid: A Mixed-Analog-Digital
Multichip System for Large-Scale Neural Simulations,” Proceedings of
the IEEE, vol. 102, no. 5, pp. 699 - 716, 2014.

[9] S. B. Furber et.al, “Overview of the SpiNNaker System Architecture,”
IEEE Transactions on Computers, pp. 2454 - 2467, 2012.

[10] D. Wentzlaff et.al, “On-Chip Interconnection Architecture of the Tile
Processor,” IEEE Micro, vol. 27, no. 5, pp. 15 - 31, 2007.

[11] J. Jeffers, J. Reinders and A. Sodani, Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition, Cambridge:
Morgan Kaufmann, 2016.

[12] H. Fu et. al, “The Sunway TaihuLight supercomputer: system and
applications,” Science China. Information Sciences, vol. 59, pp. 1-16,
2016.

[13] ARM Limited, “Arm Cortex-M4 Processor, Technical Reference Manual,”
2013. [Online].

[14] J. Navaridas, J. Miguel-Alonso, J. A. Pascual and F. J. Ridruejo, “Simulating
and evaluating interconnection networks with INSEE,” Simulation
Modelling Practice and Theory, p. 494–515, 2011

[15] V. Puente et.al, “Adaptive bubble router: a design to improve
performance in torus networks,” in 1999 International Conference on
Parallel Processing, Aizu-Wakamatsu City, Japan, Japan, 1999.

