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ABSTRACT

The widening of the complexity-productivity gap witnessed in the
last years is becoming unaffordable from the application develop-
ment point of view. New design methods try to automate most
designers tasks in order to bridge this gap. In addition, new Models
of Computation (MoC), as those dataflow-based, ease the expression
of parallelism within applications and lead to higher productivity.

Rapid prototyping design tools offer fast estimations of the
soundness of design choices. A key step when prototyping an appli-
cation is to have representative performance indicators to estimate
the validity of the design choices. Such indicators can be obtained
using hardware information through the Performance API (PAPI).

In this work, PAPI and a dataflow MoC are integrated within
a Y-chart design flow. The implementation takes the form of a
dedicated automatic code generation scheme within the PREESM
tool. Preliminary results show that depending on the complexity of
the application, the computation time overhead due to monitoring
varies from being almost negligible to more than 50%. Also, on top
of offering accurate hardware performance indicators, the extracted
values can be combined to estimate power or energy consumption.

CCS CONCEPTS

+ Software and its engineering — Software performance; Data
flow languages; - Hardware — Platform power issues;

KEYWORDS

Dataflow Model of Computation, Code Instrumentation, Perfor-
mance Monitoring Counter, Performance API, Automatic Code
Generation

1 INTRODUCTION

During the last few decades there has been an ever increasing
widening of the gap between platform complexity and application
productivity, as shown for instance in the case of Cyber-Physical
Systems [6]. On the one hand, modern architectures constantly
grow in heterogeneity and number of Processing Elements (PE).
Secondly, autonomous and multimedia applications also have a con-
stant increase in both algorithmic complexity and computational
power requirements while demanding low energy consumption.
In this context, evaluating which is the best architecture for a
specific application becomes a challenging task. This is due to the
peculiarities associated to each platform, e.g., efficient workload dis-
tribution, parallelization strategies, bottlenecks, memory accesses,
etc. Dealing with these aspects with today’s methods is reaching
the frontiers of what can currently be achieved. Indeed, it requires a
lot of time for experienced developers to achieve an implementation

that meets the required non-functional criteria. Regarding this situ-
ation, the Y-chart design strategy [4] is gaining momentum among
the paradigms to bridge this productivity gap. Specifically, this strat-
egy is based on separating application and architecture concerns
and merge them under a set of developer-defined constraints.

To carry out this Y-chart design methodology, dataflow Models of
Computation (MoC), Models of Architecture (MoA), programming
methodologies and associated design tools have appeared to explore
new, improved design flows. In this way, design space exploration
by rapid prototyping of applications on these complex architectures
is being tackled through a set of different design automation tools
like compiler parallelization techniques, code generation, deadlock
analysis, task scheduling, etc. However, tools based on Y-chart
design, such as ORCC [14] or PReEsM [8], usually provide a generic
solution following a predefined methodology for any application.

In order to evaluate the quality of automatic deployments, it is
necessary to analyze the execution of the application on the target
platform. Doing so requires having a deep understanding of the spe-
cific characteristics of the architecture. Thankfully, an abstraction
layer exists that exposes an uniform interface to access hardware
Performance Monitoring Counters (PMC). The Performance Appli-
cation Programming Interface (PAPI) offers a common architecture-
independent layer coupled with an architecture-specific layer to
cope with the individual characteristics of each architecture. Us-
ing PAPI, the PMCs can be accessed to profile information such
as memory usage, code parallelization, workload distribution, I/O
utilization, etc. Additionally, some other parameters can be esti-
mated combining this information, such as power or energy [9, 10].
Having these performance indicators would contribute not only to
designers’ productivity but also to achieve an iterative design flow.
Likewise, Spider [3], a runtime manager based on PREEsM, could
benefit from this information to expand its reconfiguration criteria.

In this paper, hardware instrumentation using PAPI is integrated
within the Y-chart design strategy supported by PREESM. Specifi-
cally, a new PREESM code generator is presented, where C code is
instrumented automatically for x86 architectures. This work is a
starting point to achieve an architecture-independent monitoring
tool for dataflow applications developed with the PREESM tool-chain.
This new code generator focuses on helping developers to analyze
the performance of their dataflow applications in both compile and
execution time. The aim to do so is to increase their productivity
and efficiency. Specifically, this paper presents a prototype for char-
acterizing dataflow applications and studies the restrictions that
should be evaluated to support real-time PMC monitoring.

The rest of the paper is organized as follows: both PAPI and
PRrREESM are detailed in Section 2 together with their integration.



After that, the results obtained during the assessment of the Papify-
PREESM code generator are presented in Section 3 and the main
conclusions and future work discussed in Section 4.

2 MATERIALS AND METHODS

In this section, the tools used to automatically generate instru-
mented C code for PAPI using PREESM are presented. Specifically,
this section is divided in three main parts: (i) description of PAPI;
(if) PREESM main aspects; (iii) integration of both tools as a new
code generator called Papify-PREESM.

2.1 Performance API (PAPI)

PAPI aims at providing a standard API focused on easing the access
to hardware monitoring information [13] through a set of PMCs.
Even though PAPI can be used as a standalone tool for system
and application analysis, it has been widely employed as a middle-
ware component in profiling, tracing and sampling toolkits such as
HPCToolkit [1], Vampir [5] and Score-P [11].

With the arrival and expansion of multi-core processors and
heterogeneous platforms, PAPI has been divided into two layers:
on the one hand, an upper layer, which is platform-independent,
providing a standard hardware monitoring interface; on the other
hand, a lower, platform-dependent layer, which is transparent for
the user, configured at compile time to automatically deal with the
specific characteristics of each architecture [13].

Additionally, PAPI can be linked with several independent com-
ponents at compile time, each of them representing a different
resource within the same platform (e.g. a GPU and an x86 proces-
sor). Likewise, even when a heterogeneous platform is taken into
account, the different hardware resources can be accessed through
the same interface. Consequently, the PMC information can be
obtained from a set of software and hardware resources such as
CPUs, GPUs, memory or user defined components [2].

2.2 PREESM

PREESM is an open-source rapid prototyping tool [8] that works
with three inputs: a dataflow graph defining the application; a
System-Level Architecture Model (S-LAM) describing the target
architecture; and a scenario including a set of parameters and con-
straints to link both of them. To deploy the algorithm over the
target architecture, PREESM maps and schedules automatically the
dataflow specification over the available PEs, e.g, over the available
CPU cores in a multicore environment as the one used in this work.

Applications in PREESM are specified using the Parameterized
and Interfaced Synchronous Dataflow (PiSDF) [8] MoC, an exten-
sion of the Synchronous Dataflow (SDF) [7], where computations
are represented by nodes, called actors, and communications oc-
cur through First In, First Out data queues (FIFOs). PiSDF extends
SDF by introducing consistent graph hierarchy using interfaces,
parameterized FIFO sizes and runtime reconfiguration [3].

Likewise, S-LAM [8] describes parallel architectures as a set of
PEs transmitting data through a set of communication nodes and
data links. By doing so, it supports the definition of SW, HW or
heterogeneous platforms [12] connected through different levels of
granularity (i.e. Ethernet, shared memory, etc).

The join point of the Y-chart design flow is the scenario. It relates
both the application (PiSDF) and the architecture (S-LAM). Addi-
tionally, it provides user defined information to drive the automatic
steps of the flow, e.g., actor timing information or actor < PE affin-
ity. Using this information, PREESM schedules, maps and simulates
the execution of the application and generates a compilable code
in a language supported by the architecture, thus providing both
metrics for system design and a prototype for testing, respectively.

It should be noted that, to the best of the authors knowledge,
not only the decoupling between application and architecture de-
sign, but also its static nature and deadlock-free execution makes
PREESM a suitable method for an architecture-independent strategy
compared to others like, for example, ORCC [14].

2.3 Papify-PREESM

In order to integrate PMC monitoring based on PAPI library into
PREESM code generation, Papify-PREEsm has been developed. This
code generator aims at instrumenting C code automatically, in-
cluding both timing and event monitoring using PAPI capabilities,
hereafter called papification. Papify-PrEEsM includes function calls
for monitoring each actor individually. These extra functions have
been developed and included in a new library called eventLib, adding
a new level of abstraction to PAPI. As a result, the user is able to
decide whether to characterize each actor or not in design time.
During the execution, a csv file is generated for each instrumented
actor storing both timing and PMC values.

The procedure to instrument each actor during the code gen-
eration (CodeGen) is shown in CodeGen Template 1. If the actor
is being papified, a set of extra function calls are included during
code generation. In this case, actorData will store the individual
monitoring information related to the papification of each actor.
The specific information is the following: (1) the listOfEvents being
monitored during the execution; (2) the PE executing the actor
(x86 processor, GPU, etc.), which isolates the actor monitoring to
a specific core; (3) the values obtained for each PAPI event being
monitored; (4) the timings, i.e., start and stop times.

for every actor within the dataflow specification do

if actor_papified then
configure_papification(actorData, listOfEvents, PE);
event_start(actorData);
event_start_PAPI_timing(actorData);
actor_execution();
event_stop_PAPI_timing(actorData);
event_stop(actorData);
event_write_file(actorData);

else
‘ actor_execution();
end

end
CodeGen Template 1: Papify-PREEsm Code Instrumentation

As mentioned before, all the functions required to monitor ac-
tor execution have been developed together with the aforemen-
tioned eventLib library. The resulting extra abstraction layer aims
at unifying the procedure of monitoring each actor independently,



hence, to configure the instrumentation in terms of the hardware
resource that is executing the actor (the so-called PAPI components)
and/or the specific events being monitored. This is a preliminary
step where both heterogeneous platforms (including several PAPI
components) and some Key Performance Indicators (KPI), such as
energy consumption estimation, will be supported [9].

3 RESULTS

Relying on PAPI monitoring correctness, this section gathers the
performance results of the Papify-PREEsM code generator while
working with different use case applications. Additionally, the over-
head associated to the papification of the application is also eval-
uated. The results obtained are for a quad-core Intel Core i5-4440
processor running at 3.10 GHz with 8 GB of RAM memory.

3.1 Application Monitoring

In the experiments, two applications widely utilized by PREEsM
developers are tested, Sobel filter [12] and Stereo matching [8]. The
former features simple actors (in terms of computational complex-
ity) while the latter has complex ones. This allows to characterize
the monitoring overhead for different actor granularities.

In this work, the set of experiments used to evaluate the system
behavior is based on varying the number of PAPI events being
monitored from 0 to 8. Specifically, Figure 1 gathers the Through-
put, i.e., executions per second, associated to each experiment. C
execution, which refers to the standard C code execution generated
by PREEsM, is compared with two Papify-PREEsM configurations:
timing, in which PAPI just times the execution (0 events); and N
events, the configurations monitoring from 1 to 8 PAPI events.

The experiments show that the behavior of the application with
complex actors (Stereo matching) is not affected by PAPI monitoring
and its average performance remains constant for every configura-
tion. On the other hand, for simple actors (Sobel) the performance
is hugely reduced when the number of monitored events increases.
Specifically, as can be seen in Figure 1, when compared with the C
executions, the maximum performance loss for the Stereo matching
application is 5% (for the 1-Core and 8 Events experiment) while the
Sobel performance loss reaches a 67% for the 4-Core and 8 Events
experiment. It should be pointed out that the minimum values of
Stereo matching 3-4 Events are outliers and represent less than a
0.1% of the performed experiments.

3.2 Overhead Study

In order to understand the performance loss cause, a deeper study of
the papification has been performed. Specifically, the extra functions
execution time has been measured for the 1-Core configuration of
both applications. As this study focuses on computing the overhead
associated to the instrumentation, only the sequential execution
of the application will be evaluated. This case will provide more
realistic results as only sequential kernel requests will be involved.

During this study the event_write_file() function has not
been taken into account, as it is considered part of the proto-
type version of the Papify-PREESM code generator, which will be
changed for a lighter approach. Nevertheless, its contribution can
be considered negligible when compared to the rest of the papifi-
cation function set. Likewise, both event_start_PAPI_timing()
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Figure 1: Throughput comparison for Sobel (top) and Stereo
matching (bottom) applications and 1-Core (solid line), 2-
Core (dashed line) and 4-Core (dotted line) configurations
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and event_stop_PAPI_timing() execution times are also insignif-
icant. Consequently, the overhead is mainly associated to the PAPI
event monitoring, i.e., event_start() and event_stop() func-
tions. Specifically, the time contribution of the last ones are 100
times larger (above the ps) than the one associated to the others.

Table 1 gathers the times (in ps) obtained during this study orga-
nized by the number of events being monitored (first column) and
the application (first row). Additionally, three values are displayed
for each experiment: (i) the average computation time associated
to each event_start/stop set of instructions execution is shown
under the label PT (PAPI Time); (ii) TET gathers the Total Execution
Time of each configuration and is obtained as the inverse of the
Throughput value; (iii) the total time dedicated to monitoring in
each execution, hereafter PTT, which stands for PAPI Total Time. It
should be noted that PTT values are computed as PT multiplied by
the number of actors of each application, which are 12 and 94 for
Sobel and Stereo matching, respectively.

Comparing both scenarios, it can be observed that PT times
are larger in the Stereo matching case, which means that context
switching for PAPI kernel requests are slower in this situation due
to the higher actor complexity. Likewise, for both applications, it
can be seen that the complexity increment associated to larger event
sets also increases the time required to perform kernel requests.
Furthermore, the figure associated to PTT is also larger for the
Stereo matching application, which means that PAPI monitoring
consumes more time per execution in this scenario.

Nevertheless, analyzing Table 1 TET column, it can be deduced
that the low complexity of the Sobel application actors implies a
TET of around 1ms, which is less than a 1% of the one required for
Stereo matching. Consequently, as shown in figure 2, the overhead
associated to monitor the Sobel application (black line) in real-time,
which is computed as PTT divided by TET of each experiment, in
the worst case (monitoring 8 Events), reaches a 45.83% in this case
while for the stereo matching (red line) reaches only a 4.27%.

Therefore, both actor complexity and the monitoring strategy
should be evaluated together so as to reach an acceptable approach
where the instrumentation becomes precise and efficient. Specifi-
cally, two preliminary strategies are proposed: (i) grouping actors
with low complexity and instrumenting them as a whole; (ii) in-
crease the granularity of the instrumentation and monitor each core.



Table 1: Execution time (us) associated to PAPI monitoring
for Sobel and Stereo matching applications and monitoring
1 to 8 events. PAPI Time (PT) measures single executions of
event_start/stop() instructions. TET the Total Execution
Time of the experiment. PTT the PAPI Total Time dedicated
to execute PAPI instructions

‘ Sobel ‘ Stereo matching
Events | PT  TET  PTT | PT TET PTT
1 7.81 844.07 93.72 19.50  381,679.39  1,833.00
2 1424  912.21 170.88 | 32.28  384,615.38  3,034.32
3 19.66 1,004.24 23592 | 48.83 387,596.90 4,590.02
4 25.19 1,078.85 302.28 | 67.13  393,700.79  6,310.22
5 32.41 1,158.84 388.92 | 89.71 390,625.00 8,432.74
6 46.18 1,360.56 554.16 | 146.10 395,256.92 13,733.40
7 46.91 1,332.05 562.92 | 144.27 395,768.61 13,561.38
8 54.55 1,428.39 654.60 | 180.80 398,406.37 16,995.20
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Figure 2: Overhead in % for Sobel (triangles) and Stereo
matching (circles) applications for 1 to 8 events experiments

In future works, these strategies will be addressed and compared
with the one presented in here in terms of accuracy and overhead.

Finally, concerning the values obtained from the actor timing,
it should be noted that the actor execution time remains stable for
every experiment. In consequence, for characterization purposes,
this approach allows developers to obtain a suitable estimation of
the system behavior if no instrumentation was included.

4 CONCLUSION AND FUTURE WORK

In this work, the Papify-PREESM code generation has been presented
as a proof-of-concept where the integration of a rapid prototyping
tool such as PREEsM and PAPI monitoring has been carried out.
By doing so, an automatic instrumented code generator has been
included within PREESM Y-chart design flow. Papify-PREESM enables
transparent actor timing and hardware resource usage profiling for
developers. Moreover, it has been demonstrated that monitoring
dataflow applications with complex actors is also transparent in
terms of execution time (overhead below 5%).

However, the overhead for actors with a small execution time
can reach more than 50%. This is an issue that will be addressed
in the future by exploring new monitoring strategies. Additionally,
instrumentation of heterogeneous architectures where both FPGA
and ARM/x86 components work together will be studied within
Papify-PREEsM. Finally, the development of a real-time resource
manager will be evaluated. Using Spider [3] will then allow system
reconfiguration at runtime according to the information obtained
from the PMC values. This resource manager could work with hard-
ware information obtained directly from PAPI events or estimating
KPI based on them, e.g., power and energy consumption.
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