
Escape Analysis for Java

Jong-Deok Choi Mannish Gupta Mauricio Serrano Vugranam C. Sreedhar Sam Midkiff
IBM T. J. Watson Research Center

F? 0. Box 218, Yorktown Heights, NY 10598
{jdchoi, mgupta, mserrano, vugranam, smidkiff}@us.ibm.com

Abstract

This paper presents a simple and efficient data flow algorithm

for escape analysis of objects in Java programs to determine

(i) if an object can be allocated on the stack; (ii) if an object

is accessed only by a single thread duriing its lifetime, so that

synchronization operations on that object can be removed. We

introduce a new program abstraction for escape analysis, the

connection graph, that is used to establish reachability rela-

tionships between objects and object references. We show that

the connection graph can be summarized for each method such

that the same summary information may be used effectively in

different calling contexts. We present an interprocedural al-

gorithm that uses the above property to efficiently compute

the connection graph and identify the non-escaping objects for

methods and threads. The experimental results, from a proto-

type implementation of our framework in the IBM High Per-

formance Compiler for Java, are very promising. The percent-

age of objects that may be allocated on the stack exceeds 70%

of all dynamically created objects in three out of the ten bench-

marks (with a median of 19%), 11% to 92% of all lock oper-

ations are eliminated in those ten programs (with a median of

5 l%), and the overall execution time reduction ranges from

2% to 23% (with a median of 7%) on a 333 MHz PowerPC

workstation with 128 MB memory.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission andlor a fee.
OOPSLA ‘99 1 l/99 Denver, CO, USA
0 1999 ACM l-581 13-238.7/99/0010...$5.00

1 Introduction

Java continues to gain importance as a language for general-

purpose computing and for server applications. Performance

is an important issue in these application environments. In

Java, each object is allocated on the heap and can be deallo-

cated only by garbage collection. Each object has a lock asso-

ciated with it, which is used to ensure mutual exclusion when

a synchronized method or statement is invoked on the object.

Both heap allocation and synchronization on locks incur per-

formance overhead.’ In this paper, we present escape analy-

sis in the context of Java for determining whether an object (1)

may escape the method (i.e., is not local to the method) that

created the object, and (2) may escupe the thread that created

the object (i.e., other threads may access the object).

For Java programs, we identify two important applications

of escape analysis:

1. If an object does not escape a method, it can be allocated

on the method’s stack frame. This has two important im-

plications. First, stack allocation is inherently cheaper

than heap allocation, which requires (occasionally) syn-

chronizing the allocator with other threads. Stack al-

location also reduces garbage collection overhead, since

the storage on the stack is automatically reclaimed when

the method returns. As well, if an object does not es-

cape a method, it opens up the possibility of strength-

reducing the object accesses and eliminating the cre-

ation of the object.

2. If an object does not escape a thread, then no other thread

I We use synchronizationand synchronizationoperation synonymously.

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320384.320386&domain=pdf&date_stamp=1999-10-01

accesses the object. This has several benefits, especially

in a multithreaded multiprocessor environment. First,

we can eliminate the synchronization associated with

this object. Note that Java memory model still requires

that we flush the Java local memory at monitorenter

and moni torexi t statements. Second, objects that

are local to a thread can be allocated in the memory of

the processor where that thread is scheduled. This local

allocation helps improve data locality. Third, with fur-

ther analysis, some operations to flush the local memory

can be safely eliminated.

In this paper, we introduce a new framework for escape

analysis, based on a simple program abstraction called the

connection graph. The connection graph abstraction captures

the “connectivity” relationship among heap allocated objects

and object references. For escape analysis, we simply perform

reachability analysis on the connection graph to determine if

an object is local to a method or local to a thread. Differ-

ent variants of our analysis can be used either in a static Java

compiler, a dynamic Java compiler, a Java application extrac-

tor, or a bytecode optimizer. To evaluate the effectiveness of

our method, we have implemented various flavors of escape

analysis in the context of a static Java compiler [1 I], and have

analyzed ten medium to large benchmarks.

The main contributions of this paper are:

l We present a new, simple interprocedural framework

(with flow-sensitive and flow-insensitive versions) for

escape analysis in the context of Java.

l We demonstrate an important application of escapeanal-

ysis for Java programs - that of eliminating unnecessary

lock operations on thread-local objects. To the best of

our knowledge, ours is the first application of escape

analysis for eliminating synchronization operations. It

leads to significant performance benefits even when us-

ing a highly optimized implementation of locks, namely,

thin-locks [2].

l We describe how to handle exceptions in Java, without

being unduly conservative. These ideas can be applied

to other data flow analyses in the presence of exceptions

as well.

We introduce a simple program abstraction called the

connectiongraph, which is well suited for the purpose of

escape analysis. It is different from points-to graphs for

alias analysis whose major purpose is memory disam-

biguation. In the connection graph abstraction, we also

introduce the notion of phantom nodes, which allows us

to summarize the effects of a callee procedure indepen-

dent of the calling context. This succinct summarization

helps improve the overall speed of the algorithm.

We present extensive experimental results from an im-

plementation of escape analysis in a Java compiler. We

show that the compiler is able to detect more than 19%

of dynamically created objects as stack-allocatable in

five of the ten benchmarks that we examined (finding

higher than 70% stack-allocatable objects in three pro-

grams). We are able to eliminate l l%-92% of lock oper-

ations in those ten programs. The overall performance

improvement ranges from 2% to 23% on a 333 MHz

IBM PowerPC workstation with 128 MB memory.

The rest of this paper is organized as follows. Section 2

presents our connection graph abstraction. Sections 3 and 4

respectively describe the intraprocedural and interprocedural

analyses, to build the connection graph and to identify the ob-

jects that do not escape their method or thread of creation.

Section 4 also describes the difference between the connec-

tion graph for escape analysis and the points-to graph for alias

analysis. Section 5 elaborates on handling of Java features like

exceptions and object finalizers. Section 6 describes the trans-

formation and the run-time support for the optimization, and

Section 7 presents experimental results. Section 8 discusses

related work, and finally, Section 9 presents conclusions.

2 Framework for Escape Analysis

We begin by presenting our framework for escape analysis.

We first define, in Section 2.1, the notion of escapement and

introduce a lattice for escapement. Then in Section 2.2, we

introduce a connection graph abstraction for our escape anal-

ysis.

2

2.1 Escapement of an Object

We begin by formalizing the notion of escapement of an object

from a method or a thread.

Definition 2.1 Let 0 be an object instance and M be a method

invocation. 0 is said to escape M, denotedas Escapes(0, M),

if the lifetime of 0 may exceed the lifetime of M.

Definition 2.2 Let 0 be an object instanceand T be a thread

(instance). 0 is said to escape T, again denoted as

Escapes(0, T), ifanother thread, T’ # T, may access 0.

Alternatively, we say that an object 0 is stack-allocatable

in M if TEscapes(0, M), and an object 0 is local to a thread

T if lEscapes(0, T).

Let M be a method invocation in a thread T. The life-

time of M is, in that case, bounded by the lifetime of T. If

another thread object, T’, is created in M, we conservatively

set Escapes(O’, M) to be true for all objects 0’ (including

T’) that are reachable from T’. Thus, we ensure the following

proposition:

Proposition 2.3 Forany object 0, -Escapes(0, M) implies

-Escapes(O, T), where method M is invokedin threadT.

Intuitively, the proposition states that an object, whose life-

time is inferred by our analysis to be bounded by the lifetime

of a method, can only be accessed by a single thread.

To aid in our analysis, we define an escapement lattice

consisting of three elements: NoEscape (T), ArgEscape, and

GlobalEscape (I). The ordering among the lattice elements

is: GlobalEscape < ArgEscape < NoEscape. NoEscape

means that the object does not escape the method in which it

was created. ArgEscape with respect to a method means that

the object escapes that method via the method arguments, but

does not escape the thread in which it is created. Finally, Glob-

alEscape means that the object is regarded as escaping glob-

ally (i.e., all threads and methods). Let A E EscapeSet =

{ NoEscape, ArgEscape, GlobalEscape}, then

AANoEscape = A,and A~GlobalEscape = GlobalEscape.

Upon the completion of our interprocedural analysis, all

objects that are marked NoEscape are stack-allocatable in the

method in which they are created. Furthermore, all objects

that are marked NoEscape (due to Proposition 2.3 above) or

ArgEscupe, are local to the thread in which they are created,

and so we can eliminate the synchronization in accessing these

objects without violating Java semantics.

2.2 Connection Graph Abstraction

In Java, objects are created via new statements. To simplify

the discussion, we shall view each array as a single, monolithic

object. In this section, we introduce a compile-time abstrac-

tion called the Connection Graph that captures the connectiv-

ity relationship among objects.

Definition 2.4 A connection graph is a directed graph CG =

(NO U Np U Nf U N,, Et W Ed U Er), where

l No represents the set of objects. We create at most one

object node per statement.2

l N, represents the set of reference variables (locals and

formals) in the program.

l Nf represents the set of non-scaticjield nodes.

l N9 represents the set of static~eldnodes, i.e., all global

variables in the program.

l E, is the set of points-to edges. If x + y E E,, then

xEN+UNfUN,andyENo.

l Ed is the set of deferred edges. If x + y E Ed, then

X,YE NruNjuN,.

l Ef is the set of$eld edges. If x + y E Ef, then

x~N,andy~NjUN,.

Figure 1 illustrates an example of a connection graph. In

figures, we represent each object as a tree with the root rep-

resenting the object and the children of the root representing

the reference fields within the object.’ Also, in our figures, a

solid-line edge represents a points-to edge, and a dotted-line

edge represents a deferred edge. In the text, we use the nota-

tion z 5 y to represent a points-to edge from node E to node

y, x 3 y to represent a deferred edge from x to y, and E 5 y

to represent a field edge from x to y.

‘We use a l-limited naming schema which creates one node for each new
statement in the program.

‘Since Java does not allow nested objects, the tree representation of an object
consists of only two levels -the root and its children.

3

Sl: T a = new T(...) S2:Tb=a

Sl

F 7-i&3 F F

f g h

0 b ““’

Figure 1: A simple connection graph. Boxes indicate object nodes and circles indicate reference nodes (including field reference
nodes). Solid edges indicate points-to edge, dashed edges indicate deferred edges, and edges from boxes to circles indicate field
edges.

We assign to each field f in an object a unique number

fid(f) that corresponds to the field identifier (or offset) in the

class defining the object. Let 01 and 0s be two objects con-

structed from the same class C. Let f be a field defined in C,

then fGf(0l.f) = fid(0a.f).

We use deferred edges to model assignments that merely

copy references from one variable to another. Deferred edges

defer computations during connection graph construction, and

thereby help in reducing the number of graph updates needed

during escape analysis. Deferred edges were first introduced

for flow-insensitive pointer analysis in [7].

Given a reference node m E N, U Nf U Ng, the set of

object nodes 0 2 N, that it (immediately) points-to can be

determined by traversing the deferred edges from m until we

visit the first points-to edge in the path. The destination node

of the points-to edge will be in 0. We formalize this as fol-

lows:

Definition 2.5 Let m E NT U Nf U Ns. A points-to path

of length one, denoted as m 9 n, is a sequence of edges

m = mo 5 ml 5 . . . 5 n that terminates in a points-to

edge and contains exactly one points-to edge in the path (all

other edges, tf any, are deferred edges).

Definition 2.4 Let m E N, U Nf U N,, then the set ofobject

nodes that nodes m points-to is:

PointsTo = {nlm +-+’ 71).

With each node n E N, we associate an escape state, de-

noted as EscapeState[n], that is an element of EscapeSet. The

initial state for each node in Ne is Global&cape, whereas the

initial state for each node in N, U N, U Nf, unless other-

wise stated, is NoEscape (in Sections 4 and 5, we shall dis-

cuss nodes representing parameters, thread objects, and ob-

jects with non-trivial finalizers, which are initialized as ArgEscape,

GlobalEscape, and GlobalEscape, respectively).

2.3 Basic Idea for Escape Analysis

In the next several sections, we will show how to compute the

connection graph abstraction and use it to compute escape-

ment of objects. The intuition behind our algorithm is based

on the following key observation: Let CG be a connection

graph for a method M, and let 0 be an object node in CC. lf

0 can be reached in CC from any node whose escape state is

not NoEscape, then 0 escapes M. The intuition easily extends

to the escapement of an object from a thread.

3 lntraprocedural Analysis

Given the control flow graph (CFG) representation of a Java

method, we use a simple iterative scheme for constructing the

intraprocedural connection graph. We describe two variants of

our analysis, a flow-sensitive version, and a flow-insensitive

version. To simplify the presentation, we assume that all multiple-

level reference expressions of the form a. b. c . d. . . are

split into a sequence of simple two level reference expres-

sions that are of the form a. b. Any bytecode generator au-

tomatically does this simplification for us. For example, a

Java statement of the form a. b. c. d = new T () will be

transformed into a sequence of simpler statements: t = new

TO; tl = a.b; t2 = t1.c; t2.d = t; wheret,

t 1, and t 2 are new temporary reference variables of the ap-

propriate type.

To simplify our presentation, we introduce a function called

&Pass(p) that when applied to a nodep E N, U Nf redi-

4

Figure 2: Illustrating ByPass (p> function

rects the incoming deferred edges of p to the successor nodes

of p. The type of redirected edge is the same as the type of

edge from p to the corresponding successor node. It also re-

moves any outgoing edges from p. Figure 2 illustrates the

Bypass(p) function. More formally, let R = (rlr -% p),

S = {sjp 5 s}, andT = (tip 5 t}. &Pass(p) removes

the edges in the set {r % plr E R} U ti 5 81s E s} U (p s

tl t E T} from the connection graph (CC) and adds edges in

theset{r~slrERandsES}U{r%tlrERandtE

T} to the CC. Note that Bypass(p) can always be applied to

a reference node to eliminate its incoming deferred edges.

Given a node s in the CFG, the connection graph at entry

to s (denoted as C,S) and the connection graph at exit from s

(denoted as C,“) are related by the standard data flow equa-

tions:

We definea merge between two connection graphs Cl = (Nl , El)

and Cz = (Nz, Ez) to be the union of the two graphs. More

formally, Cl A CZ = (Nl U N2, El U Ez).

Figure 3 illustrates the connection graphs at various pro-

gram points computed using the analysis described in this section.4

Given the bytecode simplification of Java programs, we iden-

tify four basic srurernents that affect intraprocedural escape

analysis: (i) p = new T(), (ii) p = q, (iii) p.f = q, (iv)

p = q.f. We present the transfer functions for each of these

statements.

p = new T() We first create a new object node 0 (if one does

not already exist for this site). For flow-sensitive analy-

‘In order to keep the figure simple, we have not transformed a statement like
a.f = new 2’11) toitsequivalentform: t = new Tl(); a.f = t;.

sis, we first apply &Pass(p) and then add a new points-

to edge from p to 0. For flow-insensitive analysis, we

do not apply &Pass(p), but simply add the points-to

edge from p to 0.

p = q As in the previous case, for flow-sensitive analysis, we

first apply &Pass(p), and then add the edgep 3 q.

Again, for flow-insensitive analysis we ignore &Pass(p)

but add the edgep 3 Q. The difference is that we can

kill whatp points to with flow-sensitive analysis, but not

with flow-insensitive analysis.

p.f=q Let U = PointsTo(If U = 0, then either (i)

p is null (in which case, a null pointer exception will

be thrown), or (ii) the object thatp points to was created

outside of this method (this could happenif p is a formal

parameter or reachable from a formal parameter). We

conservatively assume the second possibility (if U =

8) and create a phanrom object node O,,, and insert a

points-to edge from p to Oph (if p is null, the edge from

p to O,, is spurious, but does not affect the correctness

of our analysis).

During interprocedural analysis, the phantom nodes will

be mapped back to the actual nodes created by the ap-

propriate procedure. (We also use a l-limited scheme

for creating phantom nodes.) Now let V = (vlu 5

u and u E U and fid(u) = f}. Again, it is pos-

sible that V is empty. In this case, we create a field

reference node (lazily) and add it to V. Finaliy we add

edges in {V 3 q/v E V} to the connection graph. Note

that even for flow-sensitive analysis, we cannot in gen-

eral kill whatever p.f was pointing to, and so we do not

5

Sl: Tl 8 = ncnr Tl(.,.);

S2: Tl b = a;

if0
83: a.f = new Tl(...);

13: b,f i new Tl(,.,);

55: a : b.f;

Input S5: @--4

Sl: s3:

--l-l

fg fg

TYi

Sk:

f g

Figure 3: An example illustrating connection graph computation. The connection graphs at Sl and S2 are not shown.

apply ByPass(p.f) .’

p = q.f Let U = {utq 3 u}, V = (I+ 3 ZJ and u E

U and fid(v) = fid(f)}. As in the previous case, if

U is empty, we create a phantom node and add it to U,

and if V is empty, we create a field reference node and

add it to V.

For flow-sensitive analysis, we first apply ByPass(

and then add the edges in (p 5 ulu E V} to the con-

nection graph. For flow-insensitive analysis we once

again ignore ByPass(but add the edges in (p -%

ulzl E V} to the connection graph.

4 Interprocedural Analysis

The intuition behind our interprocedural analysis is based on

the following observation. Assume that a method A calls an-

other method B. Now if the method B has already been an-

alyzed for escape analysis, then when A is analyzed intrapro-

cedurally, it can simply use the summary information of B

‘This is because even a single object that p points to in any k-limited rep-
resentation may correspond to more than one program object. One can easily
construct examples to show that a kill in this case can be incorrect.

without going through the body of method B (this makes es-

cape analysis different from alias analysis, as described further

in Section 4.6). This analysis process is akin to elimination-

style of data flow analysis. We use a program call graph to

represent the caller-callee relation. Since Java supports virtual

method calls, we use type information to refine the call graph6.

We iterate over the nodes in the call graph graph in a reverse

topological order until the data flow solution converges.’

We handle Java thread objects conservatively. Consider a

Java thread objectin a method M: t = tzez~ Thread(); t.start().

t.start() starts the execution of the new thread t. Since the

lifetime oft may exceed the lifetime of (an invocation of) M

and since the object t is accessed by more than one thread (the

creating and the created thread), we mark t as GlobalEscape.

In general, we mark any object that implements the Runnable

interface as GlobalEsape. This ensures, although conserva-

tively, that any object used as a thread, or any object that is

reachable from such a thread object globally escapes. Note

that this does not mean that objects created during the execu-

6We could further refine the call graph by constructing the graph in tandem
with the construction of the points-to graph [191.

‘We ignore back edges in determining the reverse topological order.

6

class ListElement
c

int data;
ListElement next;
static ListElement g = null;
ListElement {data = 0; next = null;)

static void L(int p, int q)
1

so: ListElement u = new ListElementO;
ListElement t = u;
while(p > q)
{

Sl: t.next = new ListElementO;
t-data = q++;
t = t.next;

3
S2: ListElement v = new ListElementO;

NewListElement.T(u, v);

class NewListElement

ListElement org; 0%
NewListElement next;
NewListElementO {erg = null; next = null;)

static void T(ListElement fl, ListElement f2)
i

53: NewListElement r = new NewListElementO;
while(fl != null)
i

s4: r.org = fl.next;
s5: r.next = new NewListElement();

. . . // do some computation using r

. . . // w/o changing the data structure
S6: r = r.next;

if(fl.data == 0)
1

s7: ListE1ement.g = f2;
1
fl = fl.next;

1
I

(A)

Figure 4: An example program for illustrating interprocedural analysis and its call graph.

7

Connection graph
.-before call to TO

UP.@ 7 r------I

CD):
__----__

-.
*.

‘.
*_--

-o------e
--.

\ T’ LocalGraph ‘\

--_______------

Figure 5: Connection graphs at various points in the call graph. Nodes that escape globally are shadowed.

tion of thread t will be marked GlobulEsape.

We will use the Java example shown in Figure 4 to illus-

trate our interprocedural framework. In this example, method

L() constructs a linked list and method T() constructs a tree-

like structure. Figure 4(B) shows the caller-callee relation for

the example program shown in Figure 4(A). In Figure 4(B)

we identify four points of interest to what are relevant for in-

terprocedural analysis: (1) method entry, (2) method exit, (3)

immediately before a method invocation, and (4) immediately

after a method invocation. We will present our analysis at each

of these four points of interest in the following subsections.

4.1 Connection Graph at Method Entry

We process each formal parameter (of reference-type) in a

method one at a time. Note that the implicit this reference

parameter for an instance method appears as the first parame-

ter. For each formal parameter fi, there exists an actual param-

eter ai in the caller of the method that produced the value for

fi. At the method entry point, we can envision an assignment

of the form f; = ai that copies the value of a; to fi. Since

Java advocates call by value semantics, f; is treated like a lo-

cal variable within the method body, and so it can be killed by

other assignments to f;. We create a phantom reference node

for a; and insert a deferred edge from fi to a;. The phan-

tom node serves as an anchor for the summary information

that will be generated when we finish analyzing the current

method.s We initialize EscapeState[f;] = NoEscape and

EscapeState[a;] = ArgEscape. Figure 5(B) illustrates the

reference nodes f 1 and f 2. the phantom nodes al and ~2, and

the corresponding deferred edges at the entry of method T () .

4.2 Connection Graph at Method Exit

We model a return statement that returns a reference to an

object as an assignment to a special phantom variable called

return (similar to formal parameters). Multiple return state-

ments are handled by “merging” their respective return val-

ues. After completing intraprocedural escape analysis for a

method, we use the Bypass function (defined in Section 3) to

eliminate all the deferred edges in the CG, creating phantom

nodes wherever necessary. For example, the phantom node R

in Figure 5(E) is created during this process.

We then do reachability analysis on the CG holding at the

return statement of the method to update the escape state of ob-

‘We use a; as the anchor point rather than fi, since, in Java, f, is treated as
a local variable, and so the deferrededge from f, to ai can be deleted.

8

jects. The reachability analysis partitions the graph into three

subgraphs:

1. The subgraph induced by the set of nodes that are reach-

able from a GlobalEscape node. The initial nodes marked

GlobalEscape are: static fields of a class and Rum-table

objects. This subgraph is collapsed into a single boffom

node that efficiently represents all the nodes whose es-

cape state is GlobalEscape.

2. The subgraph induced by the set of nodes that are reach-

able from an ArgEscape node, but not reachable from

any GlobalEscape node. The initial ArgEscape nodes

are the phantom reference nodes that represent the ac-

tual arguments created at the entry of a method, such as

al and a2 in Figure 4(B).

3. The subgraph induced by the set of nodes that are not

reachable from any GlobalEscape or ArgEscape node

(which remain marked NoEscape).

We call the union of the first and the second subgraphs the

NonLocalGraph of the method, and the third subgraph the Lo-

calGraph. Figure 6 gives an efficient implementation of the

reachability analysis by propagating escape state from nodes

with initial state of GlobalEscape, then from nodes with ini-

tial state of ArgExape. It is easy to show that there can only

be edges from LocalGraph to NonLocalGraph, and not vice

versa. The NonLocalGraph represents the summary connec-

tion graph of the method. This summary information is used

at each call site invoking the method, as described below in the

next section.’

All objects in LocalGraph that are created in the current

method are marked stack-allocatable. Among the objects (in

NonbcalGraph) marked GlobalEscape, those propagated from

a callee of the method need to have their original nodes in each

callee procedure marked GlobalEscape. The original nodes of

a propagated node in the current method are identified using

the concept of MapsTo between two nodes of a caller CG and

a callee CG, which is described in Section 4.4. Marking the

‘As a further optimization to reduce the size of the summary representation,
each reference node in NonL.ocalGraph is bypassed by connecting its predeces-
sors directly to its successors, so that the NonL.ocalCraph consists only of the
nodes representing actual parameters, objects accessed via the parameters, and
a single bottom node.

ReachabilityAnalysis

: WorkList = 0

2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

I

/* Nodes in N, escapes globally */
foreach node m such that

EscapeStote[m] = GlobalEscape do
Add m to WorkList.

while WorkList is not empty do
Remove a node m from WorkList
foreach outgoing edge m + n do

if (EscapeStute[n] # GlobalEscape) then
EscapeState[n] = GlobaIEscape
Add n to WorkList.

endif
endfor

endwhile
WorkList = 8
/* Phantom argument nodes */
/* state = ArgEscape */
foreach node m such that

EscapeState[m] = ArgEscape do
Add m to WorkList.

while WorkList is not empty do
Remove a node m from WorkList
foreach outgoing edge m + n do

if (EscapeState[n] > ArgEscape) then
EscapeState[n] = ArgEscape
Add n to WorkList.

endif
endfor

endwhile

Figure 6: Reachability analysis over connection graph to com-
pute escape state of objects.

original nodes GIobalEscape can be performed after the com-

pletion of the inter-procedural escape analysis in a top down

pass over the call graph.

Figure S(C) - Figure 5(E) show the connection graph at the

exit of method T () . In this connection graph, the object node

S4 is a phantom node that was created at Statement S4 during

intraprocedural analysis of T (1. The object nodes S3 and S5

were created locally in T () . In the figure. we can see that the

structure in Figure 5(C) is local to method T () , and so will

not escape T t) . We also see that the assignment to the global

reference variable, “g = f2”, makes the formal parameter

f 2 and the phantom actual parameter a2 all GlobalEscape as

shown in Figure 5(E). (In the figure, a deferred edge from g to

a2 is shown for exposition.) The summary graph for method

T () will consist of the hJonL.ocalGraph shown in Figure 5(D).

This summary graph will be mapped back to caller’s connec-

tion graph (see Section 4.4).

9

UpdateCallerNodes ()

(
27: foreach ail cii actual parameter pair do
28: UpdateNodes (ai, {&I>;
29: endfor
1
UpdateNodes t fc.: field node;

MapsToF: set of field nodes)
// MapsToF is the set of MapsTo
/ / field nodes of fee

(
30: foreach object node no E PointTo(fee) do
31: foreach & E PointTo(f,,)
32: such that f.? E MapsToF do
33: if & C$ MapsToObj(n,) then
34: MapsToObj(n,)
35: = Maps To Obj(nO) U (&};

36: foreach fi:. such that no 5 fk do
37: tmpMapsToF = {f:? 1 rL -% f&,
38: fid(f:e) = fid(f:r)};
39: UpdateNodes (f&, tmpMapsToF) ;
40: endfor
41: endif
42: endfor
43: endfor
1

4.3 Connection Graph Immediately Before a Method
Invocation

At a method invocation site, each parameter passing is handled

as an assignment to an actual parameter cii at the caller. Let ur

be a reference to an object Ur . Consider a call ur . foo(~2, . . . un),

where 212 . . . u,, are actual parameters to foo(). We model the

call as follows: Q = u1 ; 62 = us; . . . ; foo(dl, 62, . . . &).

Note that iffoo is a virtual method, we will merge the solution

after processing each method to which ul.foo could possibly

resolve. Each a”, at the call site will be matched with the phan-

tom reference node ai of the callee method. In Figure 5(A),

two nodes, dl and a>, are created with deferred edges point-

ing to the first and the second actual parameters to the call, u

and v, respectively.

4.4 Connection Graph Immediately After a Method
Invocation

At this point, we essentially map the callee’s connection graph

summary information back to the caller connectiongraph. Three

types of nodes play important role in updating the caller’s con-

nection graph (CG) with the callee’s CG right after a method

invocation: 4’s of the caller’s CG, a;‘s of the callee’s CG, and

the return node of the callee’s CC. Updating the caller’s CC

is done in two steps: (1) updating the node set of the caller’s

CG using &‘s and ai’s; and (2) updating the edge set of the

caller’s CG using 6;‘s and ai’s. Updating the return node

is done during the first step by treating the return node the

same as oi and treating the target node of the method invoca-

tion the same as di.

Updating Caller Nodes

Figure 7 describes how we map the nodes in the callee’s CG

with the nodes in the caller’s CG. This mapping of nodes from

callee CG to caller CG is based on identifying the MapsTo re-

lation among object nodes in the two CGs. As a base case, we

ensure that ai maps to 6;. Given the base case, we also ensure

that a node in PointTo maps to any nodein PointTo(

We formally define the relation MupsTo (e), among objects

belonging to a callee CG and a caller CG recursively as fol-

Figure 7: Algorithm to Update the Caller’s Connection Graph
Nodes.

l 0, E PointsTo C) 0, E PointsTo(if

1. (p= a;) A (q = a;), or

2. (p = 0.f) A (q = 6.g) A

(0 t--+ 8) A (fid(f) = fid(g)).

In Figure 7, MapsToObj(n) denotes the set of objects that

n can be mapped to using the above MapsTo relation. In the

figure, we use the subscript er to denote caller nodes and ee

to denote callee nodes. The algorithm starts with ai and &

as the original “fields” that map to/from each other, and then

recursively finds other objects in the caller CG that are Map-

sTo nodes of each corresponding callee object. If there is no

MapsTo node in the caller CG. we create one with an escape

state of NoEscape. Then, the escape state of the nodes in

MapsToObj(n) is marked GlobalEscape if the escape state

of n is GlobalEscape.

The main body of procedure UpdateNodes is applied

to all the callee object nodes pointed to by the callee field

node fee (Statement 30). Given a callee object node no, State-

ment 32 computes the set of n,‘s MapsTo object nodes in the

10

caller graph. This is done by identifying the set of caller object

nodes “pointed” to by the caller field node fer, which is itself a

MupsTo field node of callee node fee (i.e. fcr E MapsToP).

A caller object node, &, and its field nodes are created at

Statement 32 if no MapsTo caller object node exists. State-

ment 33 is for termination: it skips the body of the loop for &

that is already in MapsToObj(n,). Given a callee object node

n, and its MapsTo caller node &, Statement 38 computes, for

each field node of no (i.e. fk), the set of MupsTo field nodes

of the caller (i.e. tmpMapsToF). It then recursively invokes

UpdateNodes, passing fLc and tmpMapsToF as the new

parameters (Statement 39).

Updating Caller Edges

Recall that following the removal of deferred edges, there are

two types of edges in the summary connection graph: field

edges and points-to edges. Field edges get created at State-

ment 33 in Figure 7 while the nodes are updated.

To handle points-to edges, we do the following: Let p and

q be object nodes of the callee graph such that p 5 fp 5 q.

Then, for each6 E MapsToObj(p) and 4 E MapsToObj(q),

both of the caller, we establish $ 3 fP 5 a by inserting a

points-to edge iP 4 4 for each field node fP of fi such that

fi4fP) = fMP,).

Example

Considerthe summaryconnectiongraphNonLocalGraphsshown

in Figure 5(D) and Figure 5(E). First, all nodes that are reach-

able from global variable g are marked I (or GlobalEscape).

Then, all nodes reachable from the phantom node al, but not

reachable from g are marked as ArgEscape. Now when we

analyze method L () intraprocedurally we would construct the

connection shown in figure that is right after the method site

of T () . We will first mark the phantom node al of the callee

(in Figure 5(D)) and the phantom node & of the caller (in

Figure 5(F)) as the initial “field” nodes. Then we will map the

phantom node S4, pointed to by al, to SO, pointed to by i1.

The cycle in the NonLocalGraph of T () results in also map-

ping Sl as a MapsTo node of S4. The cycle also results in

inserting edges from the next fields of SO and Sl to both SO

and Sl. This is a result of the l-limited approach we take in

creating a phantom node: we create at most one phantom node

at a statement for each type. Now since a2 is marked I, all

the nodes of the caller reachable from a?? will also be marked

as 1.

4.5 Java’s Strong Type Information

We can exploit Java’s strong type system in computing the

connection graph for a method whose body cannot be (or, has

not been) analyzed. The representation for such a method,

called a bottom method, is called the bottom graph, which

has one node for each class of the program that has been in-

stantiated. Given two nodes Nl and Na in the bottom graph

that represent two classes Cr and CZ , respectively, there is a

points-to edge from LVl to Nz if Cl contains a field that is a

reference to CZ. There is a deferred edge from iVi to NZ if

CZ is a sub-type of Ci . In effect, the bottom graph is the most

conservative connection graph of the program allowed under

Java’s type system. The bottom graph can be used to (conser-

vatively) establish connections among nodes that are reachable

from the actual parameters passed to a bottom method. Exam-

ples of bottom methods are native methods implemented in a

non-Java language. Our current implementation does not take

advantage of the type information in bottom methods.

In a dynamic optimization system, a method that has not

been analyzed and optimized by the compiler also becomes a

bottom method when the compiler generates code for a caller

of the method. In this case, the bottom method may have

been interpreted or compiled without analysis/optimization.

The combination of the bottom graph and the summary graph

makes our approach for escape analysis well suited for dy-

namic Java compilation systems such as Jalapefio at IBM Re-

search [8].

4.6 Escape Analysis versus Points-to Analysis

Connection graph for escape analysis andpoints-to graphs for

pointer-induced alias analysis [16,19] are similar to each other

in that both are static abstractions of dynamic data structures

with pointers (or references in Java). The main goal of alias

analysis, however, is memory disambiguation to answer the

question whether two reference (pointer) expressions (of the

form a.b.c.d.. .) can resolve to the same memory loca-

11

tion during execution. The points-to graph, for correctness, ables within a try block, we kill only those that are declared

should lead to the same node in the graph if the two reference

expressions might resolve to the same memory location during

execution.

The main goal of escape analysis, on the other hand, is

to identify objects that might escape a (dynamic) scope such

as a method invocation or a thread object. The connection

graph may lead to different nodes in the graph for two pointer

expressions that might resolve to the same memory location,

and can still be correct. We can, therefore, safely ignore the

calling context for escape analysis, although not for pointer

analysis.

5 Handling Exceptions and Finalization of Java

In this section, we show how we handle Java-specific features

such as exceptions and object finalization.

within the block. Local reference variables declared outside

the try block should not be killed, as they can be live at the

termination of the block if an exception is thrown. We will use

the following example to elaborate on this point. In the exam-

ple, x is local to the method, but non-local to the try-catch

statement.

mO(Tl fl, T2 f2) C
Tl x;

Sl: try {
s2 : x = new Tl(); // creates object 01
53 : x.b = f2;

// sets up a path from x to f 2.
s4: . . . // an exception is thrown here.
s5: x = new Tl(); // creates object 02

} catch (Exception e) {
s6: System.out.println (“Don’t worry” 1 ;

S7: f1.a = x;
3

5.1 Exceptions Assume that an exception is thrown at S4. After the catch

We now show how our framework handles exceptions. Ex-
block, when S7 is executed, f 2 will become reachable from

ceptions are precise in Java, hence any code motion across
f 1. If we were to kill the points-to edge from x to object node

the exception point should be invisible to the user program.
01 at S5, then we would lose the path information from f 1

An exception thrown by a statement is caught by the closest
to f 2, and hence, would have an incorrect connection graph.

dynamically enclosing catch block that handles the excep-
Recall that our strategy is not to kill information for variables

tion [17].
in a try block that are not local to the block. Hence, in this

One way to do data flow analysis in the presence of excep-
example, we will not delete the previous edge from x to 01

tions is to add a control flow graph edge from each statement
(whose field node b has an edge to f2) while analyzing $3.

that can throw an exception to each catch block that can po-
Hence, at S7, after putting an edge from f 1 to x, we would

tentially catch the exception, or to the exit of the method if
correctly have a connection graph path from f 1 to f 2.

there is no catch block for the exception. The added edges
A method (transitively) invoked within a try-catch block

ensure that data flow information holding at an exception-throwing
can be handled in the same manner as a regular statement

statement will not be killed by statements after the exception
block in its place: we can kill any locals declared within the

throwing statement, since the information incorporating the
nested block, be it a regular statement block or a method block.

“kill” would be incorrect if the exception was thrown. The
An important implication of this approach is that we can ig-

factored controljow graph (FCFG) of the Jalapefio dynamic
nore potential run-time exceptions within methods that do not

optimizing compiler for Java does not add these edges phys-
have any try-catch blocks in them. Many methods in Java

ically in the control flow graphs, but still allows for correctly
correspond to this case.

identifying the potential control flows due to exceptions [9]. 5.2 Finalization

We, however, use a simpler strategy for doing data flow

analysis in the presence of exceptions. Recall that we “kill”

only local reference variables of a method. Therefore, we

only need to worry about them. Amongst those local vari-

Before the storage for an object is reclaimed by the garbage

collector, the Java Virtual Machine invokes a special method,

thefinalizer, of that object [171. The class Ob j ec t, which is a

12

superclass of every other class, provides a default definition of

the finalize method, which takes no action. If a class over-

rides the finalize method such that its this parameter is

referenced, it means that an object of that class is reachable

(due to the invocation of the finalizer) even after there are no

more references to it from any live thread. We deal with this

problem by marking each object of the class overriding the

finalizer as GlobalEscape (I).

6 Transformation and Run-Time Support

We have implemented two optimizations based on escape anal-

ysis in the IBM High Performance (static) Compiler for Java

(HPCJ) for the PowerPC/AIX architecture platform [1 I]: (1)

allocation of objects on the stack, and (2) elimination of un-

necessary synchronization operations. In this section, we de-

scribe the transformations applied to the user code (based on

the analysis described in previous sections) and the run-time

support to implement these optimizations.

6.1 Transformation

Once the analysis converges during the iteration over the call

graph (i.e., when there are no further changes being made

to any connection graph in terms of edges or the Escapes-

tare of nodes), we mark each new site in the program as fol-

lows, based on the following information: (i) if the EscupeS-

tate of the corresponding object node is NoEscape, the new

site is marked stack-allocatable, and (ii) if the EscapeState of

the corresponding object node is NoEscape or ArgEscape, the

new site is marked as allocating thread-local data. Since we

use a l-limited scheme for naming objects, a new statement

(a compile-time object name) is marked stack-allocatable or

thread-local only if all objects allocated during run time at this

new site are stack-allocatable or thread-local, respectively.

6.2 Run-Time Support

We allocate objects on the stack by calling the native alloca

routine in HPCJ’s AIX backend. Each invocation of alloca

essentially grows the current stack frame at run time by some

amount. In our current implementation, we do not reuse the

space allocated by alloca, even if that space is no longer

Program

vtrans
jgl
jacorb
jolt
jobe
javacup
hashjava
toba
wingdis
pbob

Description

High Performance Java Translator (IBM)
Java Generic Library 1 .O (ObjectSpace)
Java Object Request Broker 0.5 (U. Freie)
Java to C translator (KB Sriram)
Java Obfuscator 1 .O (E. Jokipii)
Java Constructor of Parsers (S. Hudson)
Java Obfuscator (KB Sriram)
Java to C translator (U. Arizona)
Java decompiler, demo version (WingSoft)
portable Business Object Benchmark (IBM)

Table 1: Benchmarks used in our experiments.

live. lo

A secondary benefit of stack allocation is the elimination

of occasional synchronization for allocation of objects from

the thread-common heap. In order to avoid synchronization

on each heap allocation, the run-time system in HPCJ uses

the following scheme. Each thread usually allocates objects

from its thread-local heap space. For allocating a large object

or when the local heap space is exhausted, the thread needs

to allocate from thread-common heap space, which requires a

relatively heavy-weight synchronization. Stack-allocated ob-

jects reduce the requirement for allocations from the thread-

common heap space.

Elimination of synchronizationoperations requires run-time

support at two places: allocation sites of objects, i.e., new

sites; and use sites of objects as synchronization targets, i.e.,

synchronized methods or statements. In HPCJ, synchro-

nized methods and statements are implemented using moni-

torenter and monitorexit atomic operations. The implemen-

tation of these operations in HPCJ has two parts: (1) atomic

compare-and-swap operation for ensuring mutual exclu-

sion, and (2) PowerPC sync primitive for flushing the local

cache.

We mark objects at the allocation sites using a single bit

in the object representation, indicating whether the object is

thread-local. At the use sites of objects, we modified the rou-

tine implementing monitorenter on an object to bypass the ex-

pensive atomic operation (compare-and-swap) if its thread-

“In cases where(i) the objectrequires a fixed size, and (ii) either just a single
instance of a new statement executes in a given method invocation, or the previ-
ous instance of the object allocated at a new statement is no longer live when the
new statement is executed next, it is possible to allocate a fixed piece of storage
on the stack frame for that new statement. Our current implementation does not
take advantage of this special case.

13

local bit is set, and instead use a non-atomic operation. It

is important to note that our scheme has benefits even for the

thin-lock synchronization implementation [2], which still needs

an atomic operation (compare-and-swap); we completely

eliminate the need for atomic lock operations for thread-local

objects. Note that we still flush the local memory to ensure

that global variables are made visible at synchronization points

to observe Java semantics [17]. Since the only change we

make regarding synchronization is to eliminate the instruc-

tions that ensure mutual exclusion, the semantics of all other

thread-related operations such as wait and notify remain

unchanged as well.

7 Experimental Results

This section evaluates escape analysis on several Java bench-

mark programs. We experimented with four variants of the

algorithm for the two applications: (1) Flow sensitive 0;s)

analysis, (2) Flow sensitive analysis with bounded field nodes

(BFS), (3) Flow insensitive analysis (PI), and Flow insensitive

analysis with bounded field nodes (BFI). The difference be-

tween FS and FI is that FI ignores the control-flow graph and

never kills. Bounded field nodes essentially limit the number

of field nodes that we wish to model for each object. We

use a simple mod operation to keep the number of field nodes

bounded. For instance, the kth reference field of an object can

be mapped to (k mod m)th field node. In our implementa-

tion, we used m = 3. Bounding the number of fields reduces

the space and time requirement for our analysis, but can make

the result less precise.

Our testbed consisted of a 333 MHz uniprocessor Pow-

erPC running AIX 4.1.5, with 1 MB L2 Cache and 512 Ml3

memory. We selected a set of 10 medium-sized to large-sized

benchmarks described in Table 1 to run our experiments. Ta-

ble 2 gives the relevant characteristics for the benchmark pro-

grams. Columns 2 and 3 give the number of classes and the

size of the classes in bytes for the set of programs. Columns

4 and 5 present the total number of objects dynamically allo-

cated in the user code and overall (including both the user code

and the library code). Columns 6 and 7 show the cumulative

space in bytes occupied by the objects during program execu-

tion. Finally, columns 8 and 9 show the total number of lock

operations dynamically encountered during execution.

In the rest of this section, we present our results for the

above variants of our analysis. All of the remaining measure-

ments that we present refer to objects created in the user code

alone. Modifying any operations related to object creation in

the library code would require recompilation of the library

code (not done in our current implementation). Section 7.1

discusses results for stack allocation of objects. Section 7.2

discusses results for synchronization elimination. Section 7.3

discusses the actual execution time improvements due to these

two optimizations.

7.1 Stack Allocation

Figure 8 shows the percentage of user objects that we allocate

on the stack, and Figure 9 gives the percentage in terms of

space (bytes) that is stack-allocatable.

A substantial number of objects are stack-allocatable for

jacorb, jolt, wingdis, and toba (if one does not bound

the number of fields nodes). We did not see much difference

between FS and FI (i.e. flow-sensitive and flow-insensitive

without bounding the number of fields distinguished). And in

most cases, bounding the number of field did not make much

difference in the percentage values (for example, see trans,

jgl, jolt, jobe, javacup, hashjava, and wingdis).

Interestingly, toba and jolt (both of which are Java to C

translators) have similar characteristics in terms of stack al-

locatability of objects. Both of these benchmarks have a sub-

stantial number of objects that are stack-allocatable. But in the

case of toba, limiting the number of fields drastically reduces

the number of objects that are stack-allocatable.

7.2 Lock Elimination

For lock elimination, we collected two sets of data (again for

different variants of the analysis). First we measured the num-

ber of dynamic objects that are thread-local and then we mea-

sured how many lock operations are executed over these ob-

jects. Figure 10 shows the percentage of user objects that are

local to a thread, and Figure 11 shows the percentage of lock

operations that are removed for these thread-local objects dur-

ing execution. It can be seen that our most precise analysis ver-

14

tGiIlS

jizl

jacorb
jolt
jobe
javacup
hashjava
toba
wingdis
pbob

Number
of

classes
142
135
436
46
46
59
98
19
48
65

of
classes

503K
217K
308K
90K
60K

IOlK
183K
86K

178K
333K

a
user

263K
3808K

103K
94K

204K
67K

173K
154K
840K

19787K

lcated
user + library

727K
4157K

48036K
593K
339K
330K
248K

2201K
2561K

48206K

Size of objects in bytes Total number of
al cated

user user + library
7656K 3 1333K

124409K 139027K
2815K 3423323K
3006K 17511K
7957K 13331K
1672K 8454K
4671K 827K
5878K 59356K

25902K 9223813
639980K 2749520K

Table 2: Benchmarks characteristics

sion finds a lot of opportunities to eliminate synchronization,

removing more than 50% of the synchronization operations

in half of the programs. One can deduce certain interesting

characteristics by comparing the two graphs. For pbob, one

can see that the percentage of thread-local objects (Z 50%) is

higher than the percentage of locks removed (r~ 15%). Our

observation is that relatively few thread-local objects are actu-

ally involved in synchronization.

For wing-die., we have found a large percentage of ob-

jects that are thread-local (Z 75%), and were able to remove

M 91% of them. Notice that jobe has very few thread-local

objects. (The percentages range between 0.3% and 0.8%, too

small to have any significance.) However, the versions of our

analysis using unbounded number of field nodes are able to

remove a much higher percentage of synchronization opera-

tions than the bounded version. We conjecture that this dif-

ference comes from the fact that in the bounded cases, some

GlobalEscape fields and NoEscape fields can be mapped onto

the same node, resulting in loss of precision. Another inter-

esting characteristic we observed is that for most cases, a11

four variants of the analysis performed equally well (except for

jacorb, hashj ava, toba, and pbob). For toba, bound-

ing the number of fields, again, significantly reduced the per-

centage values of both the number of thread-local objects and

the number of synchronization operations that could be elimi-

nated.

7.3 Execution Time Improvements

Table 3 summarizes our results for execution time improve-

ments. The second column shows the execution time (in sec-

user
868K

10391K
546K

1030K
77K

191K
158K

1060K
2105K

35691K

,cks
user + library

885K
10434K

672K
1348K

106K
287K
165K

1246K
2299K

171189K

onds) prior to applying optimizations due to escape analysis.

The third column shows the percentage reduction in execu-

tion time due to stack allocation of objects and synchroniza-

tion elimination with our flow-sensitive analysis version. The

time for pbob is not shown, because it tuns for a predeter-

mined length of time; its improvement is given as an increase

in the number of transactions in that time period. pbob was

run on a 4-way PowerPC SMP machine.

Table 3 shows an appreciable performance improvement

(greater than 15% reduction in execution time) in three pro-

grams and relatively modest improvements in other programs.

8 Related Work

Lifetime analysis of dynamically allocated objects has been

traditionally used for compile time storage management 124,

22, 31. Park and Goldberg introduced the term escape analy-

sis [22] for statically determining which parts of a list passed

to a function do not escape the function call (and hence can be

stack allocated). Others have improved and extended Park and

Goldberg’s work [12,4]. Birkedal et al. [3] propose a region

allocation model, where regions are managed during compila-

tion. A type system is used to translate a functional program to

another functional program annotated with regions where val-

ues could be stored. Hanan [I81 uses a type system to translate

a strongly typed functional program to an annotated functional

program, where the annotation is used for for stack allocation

rather than for region allocation.

Prior work on synchronization optimization has addressed

the problem of reducing the amount of synchronization [13,

20, 211. These approaches assume that the mutual exclusion

15

Figure 8: Percentage of user local objects allocated on the stack.

80

60

40

20

0

tI-a”S ,acorb jobe haEel,a”a VVi”gdlf3
JSl ,o,r lavacup tot;>a pbob

Figure 9: Percentage of user local object space allocated on the stack.

_ . . _,. _ - - (

Figure 10: Percentage of thread local objects.

Figure 11: Percentage of locks removed.

16

ordering implied by the original synchronization is needed,

and so only attempt to reduce the number of such operations

without violating the original ordering. In contrast, our ap-

proach finds unnecessary mutual exclusion lock operations and

eliminates them.

There have been a number of parallel efforts on escape

analysis for Java [15,23,6, 1.25.51. Bogda and Hijlzle use set

constraints for computing thread-local objects [6]. Their sys-

tem is a bytecode translater, and uses replication of execution

paths as the means for eliminating unnecessary synchroniza-

tion. After replication, they convert synchronizedmethods that

access only thread-local objects into non-synchronized meth-

ods. This conversion, in general, breaks Java semantics-

since at the beginning and the end of a synchronized method

or a statement, the local memory has to be synchronized with

the main memory (see Section 6). Replication, however, offers

an opportunity for specializing an allocation site that generates

both thread-local and thread-global objects along different call

chains. They also summarize the effect of native methods (al-

though manually). Using the summary information, they im-

prove the precision of their analysis. Our approach can be

extended to include specialization and native method analysis.

Aldrich et al. describe a set of analyses for eliminating

unnecessary synchronization on multiple re-entries of a mon-

itor by the same thread, nested monitors, and thread-local ob-

jects [I]. They also remove synchronization operations, which

can break Java semantics. They claim that their approach,

however, should be safe for most well-written multithreaded

programs in Java, which assume a “looser synchronization”

model than what Java provides.

Program

trans
kl
jacorb
jolt
jobe
javacup
hashjava
toba
wingdis
pbob

Execution
time (set)

percentage
reduction

5.2 7%
18.8 23 %
2.5 6%
6.8 4%
9.4 2%
1.4 6%
6.4 5%
4.0 16%

18.0 15 %
N/A 6%

Table 3: Improvements in execution time

Blanchet uses type heights (which are integer values) to

encode how an object of one type can have references to other

objects or is a subtype of another object [5]. The escaping part

of an object is represented by the height of its type. He pro-

poses a two-phase (a backward phase and a forward phase)

flow-insensitive analysis for computing escape information.

He uses escape analysis, like our work, for both stack allo-

cation and synchronization elimination. For synchronization

elimination, before acquiring a lock on an object o, his al-

gorithm tests at runtime whether o is on the stack - if it is,

the synchronization is skipped. Our algorithm uses a separate

thread-local bit within each object, and can skip the synchro-

nization even for objects that are not stack allocatable (but are

thread local).

To reduce the size of finite-state models of concurrent Java

programs, Corhett uses a techniquecalled virtual coarsening [101.

In virtual coarsening, invisible actions (e.g., updates to vari-

ables that are local or protected by a lock) are collapsed into

adjacent visible actions. Corbett uses a simple intraprocedural

pointer analysis (after method inlining) to identify the heap ob-

jects that are local to a thread, and also to identify the variables

that are guarded by various locks. Dolby’s analysis technique

for inlining of objects in C++ can also be extended to eliminate

synchronization in Java programs [141.

9 Conclusions

In this paper, we have presented a new interprocedural algo-

rithm for escape analysis. Apart from using escape analysis for

stack allocation of objects, we have demonstrated an important

new application of escape analysis - eliminating unnecessary

synchronization in Java programs. Our approach uses a data

flow analysis framework and maps escape analysis to a sim-

ple reachability problem over a connection graph abstraction.

With a preliminary implementation of this algorithm, our static

Java compiler is able to detect a significant percentage of dy-

namically created objects as stack-allocatable, as high as 70%

in some cases. It is able to eliminate 11% to 92% of lock oper-

ations in our benchmarks (eliminating more than 50% of lock

operations in half of them). We observe overall performance

improvements ranging from 2% to 23% on our benchmarks,

17

and find that most of these improvements come from savings

on lock operations on the thread-local objects, as these pro-

grams do not seem to incur a significant garbage collection

overhead due to relatively low memory usage. We expect to

improve these results with a more aggressive implementation

of our algorithm that treats native methods less conservatively,

and by applying our optimizations to the Java standard class

library routines as well. In the future, we also plan to extend

our algorithm to cover the more general problem of region-

based storage allocation, and to eliminate unnecessary sync

operations for flushing of local memory.

Interprocedural analysis in the presence of dynamic load-

ing and reloading of classes, as allowed in Java, is in general a

hard problem. We are currently working on extending our es-

cape analysis to Jalapeiio, a dynamic Java compilation system

at IBM Research [8].

Acknowledgement

We would like to thank David Bacon, Michael Burke, Mike

Hind, GanesanRamalingam, Vivek Sarkar, Ven Seshadri, Marc

Snir, and Harini Srinivasan for useful technical discussions.

We also thank OOPSLA’99 and PLDI’99 referees for their in-

sightful comments on early drafts of the paper.

References

r11

PI

[31

Jonathan Alridch, Craig Chambers, Emin Gun Sirer, and

Susan Eggers. Static analysis for eliminating unnes-

sary synchronization from java programs. In Proceed-

ings of the Sixth International Static Analysis Sympo-

sium, Venezia, Italy, September 1999.

D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano.

Thin locks: Featherweight synchronization for Java. In

Proc. ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Montreal, Canada,

June 1998.

L. Birkedal, M. Tofte, and M. Vejlstrup. From region in-

ference to von Neumann machines via region representa-

tion inference. In Proc. 23rdAnnualACMSymposium on

Principles of Programming Languages, January 1996.

[43 B. Blanchet. Escape analysis: Correctness, proof, im-

plementation and experimental results. In Proc. 25th

Annual ACM Symposium on Principles of Programming

Languages, pages 25-37, San Diego, CA, January 1998.

[61

r71

Bruno Blanchet. Escape analysis for object oriented lan-

guages: Application to Java. In Proceedings of ACM

SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications, Denver, Col-

orado, November 1999.

Jeff Bodga and Urs Holzle. Removing unnecessay syn-

chronization in java. In Proceedings of ACM SIG-

PLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications, Denver, Col-

orado, November 1999.

Michael Burke, Paul Carini, Jong-Deok Choi, and

Michael Hind. Flow-insensitive interprocedural alias

analysis in the presence of pointers. In K. Pingali,

U. Banejee, D. Gelemter, A. Nicolau, and D. Padua,

editors, Lecture Notes in Computer Science, 892, pages

234-250. Springer-Verlag, 1995. Proceedings from the

7th Workshop on Languages and Compilers for Paral-

lel Computing. Extended version published as Research

Report RC 19546, IBM T. J. Watson Research Center,

September 1994.

Michael G. Burke, Jong-Deok Choi, Stephen Fink,

David Grove, Michael Hind, Vivek Sarkar, Mauricio J.

Serrano, V. C. Sreedhar, Harini Srinivasan, and John

Whaley. The Jalapeno dynamic optimizing compiler for

java. In Proc. ACM SIGPLAN 1999 Java Grande Con-

ference, June 1999.

[9] Jong-Deok Choi, David Grove, Michael Hind, and Vivek

Sarkar. Efficient and Precise Modeling of Exceptions

for the Analysis of Java Programs, 1999. To appear at

PASTE ‘99.

[lo] James C. Corbett. Constructing compact models of con-

current java programs. In Proceedings of the 1998 In-

ternational Symposium of Software Testing and Analysis.

ACM Press, March 1998.

18

1111

u21

[I31

u41

WI

1163

/I71

U81

[191

Lw

IBM Corporation. IBM High Performance Compiler PII S.P. Midkiff and D. Padua. Compiler algorithms for

for Java, 1997. Information available in Web page at synchronization. IEEE Transactions on Computers, C-

http://simont0l.torolab.ibm.com/hpj/hpj.h~ml. 36(12):1485-1495, December 1987.

available for download at

http://www.alphaWorks.ibm.com/formula.

A. Deutsch. On the complexity of escape analysis. In

Proc. 24th Annual ACM Symposium on Principles of

Programming Languages, pages 358-371, San Diego,

CA, January 1997.

P. Diniz and M. Rinard. Synchronization Transforma-

tions for Parallel Computing. In Proceedings of the

9’th Workshop on Languages and Compilers for Paral-

lel Computers, January 1997.

Julian Dolby. Automatic inline allocation of objects.

In Proceedings of the 1997 ACM SIGPIAN Conference

of Programming Language Design and Implementation,

Las Vegas, Nevada, June 1997.

David Gay and Bjame Steensgaard. Stack allocating

objects in Java. Research Report, Microsoft Research,

1999.

R. Ghiya and L. J. Hendren. Putting pointer analysis to

work. In Proc. 25th Annual ACM Symposium on Prin-

ciples of Programming Languages, pages 121-133, San

Diego, CA, January 1998.

James Gosling, Bill Joy, and Guy Steele. The .IavacTM)

Language Specijication. Addison-Wesley, 1996.

J. Hannan. A type-based analysis for stack allocation in

functional languages. In Proc. 2nd International Static

Analysis Symposium, September 1995.

Michael Hind, Michael Burke, Paul Carini, and Jong-

Deok Choi. Interprocedural pointer alias analysis, ACM

Transactions on Programming Languages and Systems.

To appear.

Z. Li and W. Abu-Sufah. On reducing data synchro-

nization in multiprocessed loops. IEEE Transactions on

Computers, C-36(1):1 05-109, January 1987.

WI

1231

WI

WI

Y.G. Park and B. Goldberg. Escape analysis on lists. In

Proc. ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 117-127, July

1992.

A. Reid, J. McCorquodale, J. Baker, W. Hsieh, and

J. Zachary. The need for predictable garbage collection.

In WCSSS ‘99 Workshop on Compiler Supportfor System

Soware, March 1999.

C. Ruggieri and TX Murtagh. Lifetime analysis of dy-

namically allocated objects. In Proc. 15th Annual ACM

Symposium on Principles of Programming Languages,

pages 285-293, January 1988.

John Whaley and Martin Rinard. Compositional pointer

and escape analysis for java programs. In Proceedings

of ACM SIGPLAN Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications, Den-

ver, Colorado, November 1999.

19

