
Line Intersection in a Geographic Information System

(Extended Abstract)

Anthony V. Ercolano
Interactive Systems Corporation

Littleton, Colorado USA

This talk will discuss the line intersection function,
essential to the overlay operations available with some
Geographic Information Systems (GIS’s). We will discuss
the intersection function’s use in the context of the
overlay operation, its use to correct “bad” input data
inherent to the world of GIS’s, and its sensitivity to
placing cartographic data in fixed sized partitions of
space. Also addressed are line shift and performance
characteristics of a line intersection function over an
entire geographic database.

Introduction

A Geographic Information System will generally
utilize a large graphic database containing line segments
used to define cartographic features: the boundaries of
polygonal features (property ownership, soil type,
contours) and linear features (roads, underground cables,
delivery routes). A GIS will also associate with
cartographic features additional nongraphic
information. Such information, not obvious from the
“draw from here to there” specifications that manifest on
a graphics device, are generally stored separately from
the line segment data. This associated information has of
late been stored in relational data management systems
or other data management systems having an ad-hoc
query capability.

An important aspect of a GIS is the ability to
perform operations on the cartographic data, extracting
information not available from simply looking at a display
of the data. To illustrate this idea, suppose that in a
geographic database there are lines bounding all land for
which ownership information is available. In addition,
there are lines bounding all beaver populations, along
with lines defining all the counties, cities, townships, tax
districts, soil types, leases on government lands, roads,
and so on. Finding all instances of a particular
corn bination of features using a simple graphical
presentation can be arduous and fraught with error.

A planner for a government agency might wish to
ask the GIS to highlight all beaver populations on United
States Forest Service land. This kind of query is known
as an overlay operation. Queries of this type can be

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1985 ACM o-89791-170-9/85/1000-0085 $00.75

strung together using operators such as AND , OR , NOT,
INTERIOR . and EXTERIOR. The difficult thinn about
answering the query is not the finding of line sggments
that belong to the USFS or the finding of lines that bound
beaver populations (which is generally a straightforward
operation). The difficulty is in taking each of those line
segments that make up each cartographic feature
satisfying an operand of the query and finding where
segments from the different operands interact. Segments
that make up the cartographic features in general have
no “knowledge” of the existence of other cartographic
features in the database and in at least one GIS the
segments that make up a feature usually have no
“knowledge” that they are part of a feature. In essence,
the line intersection function is used to make line
segments “aware” of what’s going on around them. It
should also be noted that interactions can take place such
that no segments cross each other. A good proportion,
however, do involve segment crossings.

Inherent Problems with Digital Cartographic Data for a
GlS

When a geographic database is created for analytic
purposes, it is not the case that they slap a map on a
digitizing table and start digitizing line information. This
procedure might be done for a very small amount of
information, but for vast data sets most of the line
information is obtained from previously hand digitized
line data resident in diversely formatted files. The
problem is that most of these files deal with only one
kind of information. One file might contain only state
boundaries, while another file contains all of the township
information. It is very likely that this line information
came from two different systems, each with their own
biases. It is nearly always the case that one set of
information will be skewed with respect to another set.
Thus, lines meant to be coincident may actually be
separated by a small distance in the digitized data. As a
brief example, the state boundaries for a study area
might come from a federal tape while county boundaries
come from a state source. One could have a case where
the county borders lie outside the state borders. Part of
Colorado would creep into Kansas, an act which both
populations would consider heinous. There also are cases
where lines that are supposed to be straight jump back on
themselves due to human error during digitization. To
put it simply, the data that is normally placed into a GIS
is very “dirty” and one must assume that it has to be
%leanedl’ before useful analyses can be done. One must
introduce an operation which either cleans up these
problems or draws them to the attention of the analyst.
The intersection function is one technique for dealing
with these problems.

85

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320435.320463&domain=pdf&date_stamp=1985-10-01

Placing Data in a Fixed Size Partition of the Plane

When line data is placed into a system that uses a
partition, where each “cell” of the partition has a unique
“address”, and this address refers to an area rather than a
point, there will be a shift in the placement of the lines.
This occurs because the end-point specifications for the
line will rarely fall in the exact center of a cell. To
overcome the effect of the shift, one can store the actual
end points at the cell, but this means using extra space in
the file to store the original points and additional code to
handle this information. As the original data is usually
not exact, this rarely produces a good return on the code
investment. It could be conjectured that populating all
the cells along the line segment path retains more
information than simple end-point storage, but this is
extremely expensive and the jagged line segments lead to
additional data-handling problems. These inaccuracies
inherent in a partitioned system, however, rarely lead to
significant error.

INT-T3

Real Intersections in a Node-to-Node Structure

One can define a 9eaP1 intersection for two
arbitrary line segments to be that place which the two
line segments have in common. This will generally be a
single point, although in a partition this point refers to an
area of space. There are also line segments that are
parallel and overlapping (coincident).

We have found it convenient to classify
intersections into several categories. The five following
figures give examples of our classifications. End points
are referred to by integer labels. In these examples,
point 1 and point 2 always know that they are
connected. This information is placed in the records for
point 1 and point 2. Likewise, point 3 is always
connected to point 4. Points 1 and 2 have no knowledge,
however, that points 3 and 4 exist.

INT-CROSS

1 3

:;-:
4 2

INT-Tl

3 1 4

--I-
2

1 3 2

---I-
4

INT-P1342

1 3 . 4 2
.

INT-PI 324

1 3 e 4
. .

The INT P####-type intersections are parallel
overlapping iniersections. As an implementational
matter, these intersection types can be stored as
permanent symbols and if suitably encoded can be quite
useful in the generalization of code for updating the
records involved in an operation. There are 13 types of
intersections encountered in this way of handling line
data: INT CROSS, INT-TI, INT-TP, INT-T3, INT-T4,
INT P134$ INT P1432, INT P1324, INT P1423,
INT-P2314, INT fi413, INT P3fi4, INT P321;i; All
intersections fair into one OT these categories or the
mirror reflection of one of these categories.

Pseudo-Intersections in a No&-to-Node Structure

As mentioned previously, data sets used by the GIS
will usually be skewed in relation to each other. When a
county boundary and a city boundary are supposed to be
on the same line, the segments might actually be
separated by a very small distance. It is desirable (and
more space efficient) to store the separate segments as
single segments. This problem can be approached by
introducing a tolerance (t) to the intersection
computation algorithm. Generally, the intersection types
defined above can be used to represent these pseudo-
intersections, and the same code can be used to update
the records. In the next figure the intersection code
would return an INT-T3 type of intersection.

86

In the next figure the intersection type of INT-P1342 could be more efficient than repeated intersection
would be returned. testing in response to ad-hoc queries.

In summary, inherent data inaccuracy, line shift,
and processing speed can be major problems in overlay
operations on Geographic Information Systems. Well-
defined intersection operations can be used to alleviate
these difficulties.

It is worth mentioning that in all of the intersections
discussed, no new records need to be added to the
database except in INT CROSS type intersections. In all
of the other types s%ply reassigning which point is
connected to which point is sufficient,

Unfortunately, some end point to end point
proximity problems cannot be easily dealt with by
intersection operations. These problems will be discussed
in the talk.

Ramifications of Intersection Computation Over an
Entire File

Calculation of intersections can be a very intensive
procedure due to the size of current production
databases, which can approach several HUNDRED
thousand line segments. Demonstration databases have
been created with between 1 and 2 million segments.

The previous identification and update methods are
quite suitable for finding the intersection of two line
segments in an interactive environment. It is another
matter to implement a function to find all lines
intersecting a given segment in an automated manner.
As above, line shift comes into play. Rather than adding
new records, we are simply reassigning which point is
connected to which point. In an over-the-file operation,
this can cause a line to shift significantly. This shift can
become even more pronounced when a tolerance is used.

One very important consideration in the design and
implementation of algorithms to handle this problem is
processing speed. As has been noted, GIS databases can
be very large. It is too expensive to simply choose an
arbitrary segment and check all other segments in the
database to see if they intersect. A clustering approach
needs to be used in which only those segments close to
the segment to be checked should be retrieved from the
database. Another matter to be considered in this kind of
operation is the question of updating the database. It can
be reasoned that it is better to first find all the segments
that intersect a given segment and then perform the
updates on the records involved to prevent excessive
database requests and to minimize the shift involved. It
might also be desirable to let the analyst specify only
certain kinds of lines in the database to check for
intersections: it might be the case that religious
preference would never be involved in queries involving
soil type polygons. An additional consideration is that for
large, infrequently changed databases that are queried
frequently it might be better to do a single over-the-file
intersection operation on all of the data and store the
results. This would consume a large amount of time but

a7

