
SOFTWARE PRODUCTIVITY AND QUALITY MEASUREMENT

Lowell Jay Arthur
Mountain Bell

Denver, Colorado

Methods of measuring programmer productivity and software quality
will be presented, including the author’s experience at Mountain
Bell. Static code and documentation analyzers, change management
systems, and other automated measurement tools will be discussed in
their relationship to software development and maintenance.

Information Systems (IS) managers often overlook quality improvements as a
means to achieve productivity improvements. The timeless adages “There’s never
time to do it right, but there’s always time to do it over” and “Quality is
free” overstate what should be intuitively obvious. High quality products
require less maintenance. They enhance both development and maintenance
productivity. Software quality measurement can achieve these goals.

In the average company, system maintenance and enhancement consume 50-80s
of the IS budget. Why is that? In most cases, the programs were poorly written
to begin with. Then, they were enhanced in ways that caused them to decay
rather than improve. And finally, the programs became such a burden that
management had to invest in rewriting them. Unfortunately, the next version of
the system was not written any better than its predecessor. This recurring
failure stems from the current inability to measure and improve quality.

What is Software Quality?

Software quality is composed of many factors: maintainability,
flexibility, reliability, reusability, efficiency, and a host of other quality
related metrics. Each of these factors can be measured at some time during the
software life cycle. Only when measurement is applied routinely do the benefits
become visible.

What are the benefits of measurement?

Statistical quality control (SQC) has been widely used in manufacturing to
reduce costs. Quality control, based on measurement, helps reduce costs by
eliminating defects in developing systems and by identifying maintenance
problems. Costs are also reduced because programmers and analysts eliminate
scrap (throwing away bad code), rework (fixing defective products), and
downtime (productivity losses).

Software measurement provides benefits to managers, system developers, and
maintenance personnel. Management benefits from early identification and
resolution of problem areas. Because their software products will be more
reliable and maintainable, clients will perceive IS management as more
responsive, Finally, investment in quality control and improvement typically
maximizes the corporation’s return on investment:

20% of the programs cause 80% of the costs

1985 ACM 0-89791-170-g/85/1000-0187 $00.75

187

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320435.320496&domain=pdf&date_stamp=1985-10-01

By focusing on the programs that consume the majority of the IS budget, IS
managers can work to eliminate the costs associated with maintaining these
programs. Management can even identify poor quality in developing programs and
take corrective action before the programs are compiled or tested. Coding is
only 10% of the development process. Quality changes can be effected with
little impact on the development schedule. If anything, quality changes will
shorten the development process by reducing testing costs.

In a development environment, software quality measurement can provide
programmers with immediate feedback about the quality of their emerging code.
They can take corrective action without a walkthrough. Improvements in code
quality will ultimately be reflected in the maintenance costs for the new
system. Programmers will have more time to enhance the existing system or to
develop new ones, and this means greater productivity.

In a maintenance environment, software quality measurement helps identify
reliability problems, improve estimation techniques, and improve
maintainability. Tracking the kinds and frequency of program errors helps
identify reliability problems. Knowing the size and complexity of existing code
helps estimate maintenance costs. Software metrics can help provide the
ammunition to convince management and clients to invest in correcting poor
code. You wouldn’t expect a car to run forever without an oil change or a
computer to operate without preventive maintenance. Why would you expect
anything different from your software? Software metrics can identify quality
problems and suggest solutions that can be integrated into the normal
maintenance process. To understand how all of these things are possible, you
must first understand the basics of quality measurement.

How is Quality Measured?

Software quality measurment applies to all stages of the software
development life cycle. Software quality measurement can occur in any phase of
development and maintenance using manual design inspections, prototyping,
static analysis, dynamic analysis, operational analysis, and change management
tracking.

Design inspections, although human intensive, help achieve quality in
system and program designs. Prototyping provides immediate feedback about the
system’s usability. Software metrics, based on a mechanized analysis of the
system’s code, provide a means to quantify many important quality
characteristics before a module is compiled or tested. Dynamic analysis helps
identify efficiency problems. Operational analysis measures reliability. Change
management tracking helps determine maintainability, flexibility, and
reliability. Unlike other methodologies, software quality measurement can be
applied to both the development and maintenance of code.

Static Analysis

Software quality measurement should be applied as soon as possible in a
developing system to identify and eliminate quality problems. Since measurement
during the design phase is largely manual, you should look to the coding phase
as the first opportunity to mechanize quality measurement. Static analysis, in
the form of code analyzers, can take many quality measurements. Since code is
the major product of the development process, these software metrics analyzers
form a major defense against quality problems. Because code analysis is easily
automated, static analysis has received the lion’s share of study and
verification--another reason for relying on static analysis, It can be used in
both the development and the maintenance of software.

Static analyzers predict code quality using two forms of measurement: size
and complexity. Size measurement using executable lines of code (ELOC),
functions, and software science metrics has been widely correlated to
development and maintenance costs. Complexity measurement, using decision-based

metrics, has also been widely validated and correlated with productivity. Both
size and complexity measurements give managers, analysts, and programmers
information to aid in quality control.

The size of a module can vary from a few executable lines to many
thousand. Yourdon has recommended modules no larger than 50 ELOC. Barry Boehm
found that 100 was equally reasonable. I have found that for a module to
possess Glenford Myers’ two reliability criteria--data coupling and functional
strength--it will almost always fall within 100 ELOC. There are only two
exceptions: large CASE constructs that evaluate hundreds of possibilities (for
example, item numbers) or modules that edit transactions with hundreds of
fields. At the code level, no better, simple metric of size exists than ELOC.

Functions can be determined from the number of paragraphs in a COBOL
module or PROCEDURE statements in a PL/l module. Functions have been correlated
with productivity (Crossman 1979). Alan Albrecht’s function point metrics based
on inputs, outputs, inquiries, master files, and external interfaces, have
gained wide acceptance for estimating system complexity and developmental
costs. Both of these size metrics can be applied at a module level, but are
normally used at the system level.

Software science metrics are a more complex set of size measurements that
depend on both the executable lines of code and the number of data items used
in a module. Based on these elementary metrics, Halstead suggested many quality
related metrics: Length, Volume. Difficulty, and Effort. Volume and Effort have
been widely correlated with program defects, quality, and productivity. An IBM
study, however, found no significant difference between ELOC and the software
science metrics as measures of size.

Decisions--IF-THEN-ELSE, CASE, DOWHILE, and DOUNTIL--are the basis of most
complexity measures. Intuitively, this seems reasonable because each decision
adds two or more test paths to the code. The complexity of the logic depends on
the number of paths through the code. Reliability, maintainability,
flexibility, and testability have all been correlated to decision complexity. A
simple count of the number of decisions in the code gives a basic metric of
complexity. A module of 100 ELOC can have complex decision logic without
affecting its quality; people can understand two pages of code. In modules
larger than 100 ELOC, however, productivity and quality suffer as the number of
decisions increase.

A widely validated extension to decision metrics, called Cyclomatic
Complexity, was introduced by Thomas McCabe. It is based on graph theory, but
boils down to the addition of logical operators (AND. OR, and NOT) to the count
of decisions. Each logical operator is a thinly veiled IF statement and must be
included to truely reflect complexity. McCabe found that modules possessing a
Cyclomatic Complexity of 10 or less contained no errors. Most modules under 100
ELOC contain 10 or fewer decisions.

The use of GOTOs (a decision with only one outcome) also increases
complexity. McCabe found that there were only four kinds of structure
violations: branches into or out of a decision or loop. What has to exist to
allow these violations? The GOTO. GOTOs also make it difficult to reduce the
complexity of a program by spliting it into functional modules.

Size and complexity metrics like ELOC and Cyclomatic Complexity are easily
obtainable from code. Since coding is one of the earliest phases in which to
detect and correct quality problems to minimize future costs, static analyzers
should be implemented to improve code quality.

Dynamic Analysis

During testing, dynamic analysis helps identify efficiency problems. If a
program runs for two hours in testing, you know it will run longer in
production. Efficiency improvements and checkpoint restart capabilities can be
added at this time.

189

Operational Analysis

Reliability problems will crop up first in testing. Program A will fail
several times compared to program B that never fails. Management should invest
in reliability analysis and correction of program A. In testing as well as in
production, analysis of operational logs can provide reliability metrics like
mean time between failures (MTBF) and mean time to repair (MTTP). Operational
analysis can be mechanized via a variety of products that evaluate operating
system logs.

Change Management Tracking

Across all of the phases of development and maintenance, problems and
enhancements will be identified. Tracking these requested changes gives insight
into the reasons for quality problems and offers an opportunity to prevent the
same problems in newly developed systems. Change management tracking also
identifies systems, programs, and modules that require the most changes. This
data can then be used in combination with actual work effort to propose quality
improvements that will reduce maintenance costs. Problem tracking systems are
few, but they will gain acceptance as software engineers observe, like their
manufacturing counterparts, that quality tracking is the most important element
in developing a quality improvement plan. Without historical data, Information
Systems personnel are doomed to repeat mistakes that could otherwise be
avoided.

How do you use software quality measurement?

As we have seen in the past, the development of each new system adds to
the burden of maintenance. The maintenance of existing systems becomes more
difficult with each enhancement or program fix. To maximize the company’s
return on investment, each new product must be built to minimize maintenance
costs, program failures, and run time. These new systems need to be designed to
maximize maintainability, flexibility, reliability, and efficiency. To improve
productivity, new systems will have to take advantage of reusable code.
Security will be an issue. Programmers can code toward specific quality goals.
Coding to maximize productivity only serves to minimize software quality and
maximize long-term costs.

Development

Using the qualities previously discussed, YOU should establish early in
the development process the qualities that are most desireable in the finished
product. Analysts and programmers can meet those goals.

One quality that is crucial to productivity is reusability. On one
software project I worked on at Bell Labs, the first version of the system
relied on extensive use of reusable code and modules. Maintainability and
reusability were the software quality goals of the development team. The
development team delivered 70,000 ELOG. Expanding the system to account for all
occurrences of reusable code, the delivered system contained 260,000 ELOC. It
would have taken four times as many people to develop and maintain the system
without reusability.

Once software quality goals like these have been established, YOU should
use as many of the forms of measurement as possible to track the development of
quality in the emerging system. Take corrective action whenever necessary. Do
not allow quality problems to slip into the finished product.

190

Maintenance

There are three types of maintenance: repair, enhancement, and preventive.
Most Information Systems organizations practice repair and enhancement
maintenance; few practice preventive maintenance. Repair and enhancement
maintenance has to get done. Preventive maintenance happens when there is time.
There is never time. Yet preventive maintenance offers the maximum potential
for productivity and quality improvement.

Maintenance consumes 80% of the typical IS budget. Yet there seems to be a
reluctance or an inability to find ways to reduce that burden. Software quality
measurement will help identify the 20% of the programs in maintenance that
incur 80% of the costs. These programs should be modified, upgraded, or
rewritten to reduce maintenance costs. Rewriting programs comes under the
heading of new development--quality goals should be selected, measured, and
achieved. Modifications and upgrades are the province of preventive
maintenance.

Once a program or module has been identified as a candidate for preventive
maintenance, an editor (not the programmer) should be chosen to review and
revise the code. In programs where size is a problem, the editor should look
for and eliminate redundant code. In a typical program over 100 ELOC in length.
lo-20% of the program code is redundant. In the case of one program that was
over 2200 ELOC, I was able to remove 700 ELOC, insert references to the
reusable code, and test the program in a single day. Based on current research,
this means that I permanently reduced the future maintenance costs by 30%.

Once an editor has removed the duplicate code, he or she should then
attempt to reduce decision complexity. Eliminating NOT logic is one of the
simplest ways to reduce decision complexity--Cyclomatic Complexity decreases
every time a NOT is removed. Next, the editor should look for any way to
restructure the logic to reduce the number of decisions and decision nesting.
Eliminating all GO TOs will further reduce complexity because there can be no
structure violations.

At this point, the module has been reduced to its simplest form. If the
module conforms with basic quality goals, it can be tested and released. If
not, it should be broken down into several functional pieces that meet the
quality goals. Most programs contain a significant number of reusable
functions. A payroll program might contain a Social Security number edit that
is reusable. Another module could contain report headers, footers, and data
formatters that could be separated. The editor should make these further
alterations, although they may take several days. In the end, the program will
be maintainable, flexible, and more reliable. Because reusable modules have
been isolated, future development efforts can use them to improve productivity.
Maintenance costs will shrink to a fraction of their previous levels because
there is less code to maintain and each module is less complex. These benefits
are available for the investment of l-5 days per module. Compared to the cost
of rewriting such a program (possibly several weeks), preventive maintenance
offers a way to ease out from under the IS maintenance burden, releasing
programmers and analysts to tackle the system development backlog.

Productivity Measurement

Traditionally, Information Systems managers have measured productivity by means
of subjective performance evaluations. Performance evaluations aim at
understanding the physical, technical, and economic phenomena that contribute
to changes in productivity, costs, and profits. These measures only indicate
what an Information Systems department has done, not what it is capable of
doing. How much is enough, when looking a productivity? How is productivity
measured?

Productivity measurement most often refers to the relationship between
inputs and outputs, typically a ratio of outputs to a single input such as

191

output per person day, or in the IS case, lines of code (LOC) per person day.
These ratios tend to lead to misinterpretations; increases in output may or may
not be desirable. Elementary productivity theory indicates that productivity
changes occur through changes in the quantity and quality of the inputs, For
example, reducing responste time to two seconds may optimize a programmer’s
productivity at the terminal. The use of non-procedural languages or office
automation systems can also affect productivity. Training IS professionals in
the latest methodologies (adjusting the quality of the people resource) can
also increase productivity. From these simple examples, it should be apparent
that the analysis of productivity has to recognize the interaction of all
inputs, integrating them into a set of meaningful measurements.

The essential inputs to the development and maintenance process are:

People - days worked
Machines - CPU hours
costs - Capital and Expense

The essential outputs to be measured are summaries of the quality metrics
already available:

Executable Lines of Code (ELOC)
Functions
Pages of Documentation
Software Science Metrics

Productivity metrics are then nothing more than ratios of each output to
each input: output/input. Rather than depend on any one productivity metric,
which tends to cause misinterpretation and all kinds of problems, managers
should examine the entire network of productivity ratios and determine what
they mean as a whole rather than individually.

This examination simply tells whether the IS department is on the right
track, if new technology is working, if new methodology is improving quality,
and so on. Ratios like functions/person day, ELOC/$, and effort/CPU hour each
paint a different picture of the productivity of IS. Management should examine
each metric’s validity in their work environment. Don’t say “It doesn’t work!”
Say instead that “1 can’t use it in my work area,” because the manager next to
you may find the metric to be most helpful.

Remember that:

1. Productivity analysis serves a variety of masters, requiring a
corresponding variety of carefully designed metrics.
2. The productivity of any system should refer to an integrated network of
output/input ratios. No single measure can depict accurately all of the
vagaries of productivity.
3. Productivity adjustments depend on changes in the output/input ratios
and managerial choices for harnessing the increased productivity.
4. The network of output/input ratios must be supplemented with cost
measures and other criteria until they correctly reflect the objectives of
productivity measurement.

Future Directions

Each IS organization has a large base of existing code that eats a
significant portion of the budget. Remaining resources are used for new
development using conventional technology. Organizations that are just
beginning to use fourth generation technology find that productivity and
quality decline during the first few projects. You will need measurements to
determine the benefits of new technology and methodology. Quality assurance
groups are needed to develop, maintain, and collect productivity quality
measurements.

Productivity and quality measurements are tools to aid in the development
and maintenance of high quality software. They not only stimulate better
quality, but also higher productivity. As a result, software measurement serves
as a basis to elevate software development one more notch toward the goal of
software engineering.

192

