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Abstract

The current interface provided by the C+417 parallel
algorithms poses some limitations with respect to par-
allel data access and heterogeneous systems, such as
personal computers and server nodes with GPUs, smart-
phones, and embedded System on a Chip chipsets. In
this paper, we present a summary of why we believe the
Ranges TS solves these problems, and also improves both
programmability and performance on heterogeneous plat-
forms.

The complete paper has been submitted to WG21 for
consideration, and here we present a summary of the
changes proposed alongside new performance results.

To the best of our knowledge, this is the first paper
presented to WG21 that unifies the Ranges TS with
the parallel algorithms introduced in C++17. Although
there are various points of intersection, we will focus on
the composability of functions, and the benefit that this
brings to accelerator devices via kernel fusion.
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1 Contrasting Ranges, Views, and
Actions with Iterators

As already presented in PO687R0 [12], the limitations
of the iterator-based interface for Standard algorithms
have a significant performance impact on systems where
memory must be copied before applying the algorithms
to the data, which can be problematic. A potential solu-
tion to this problem is to use the interface introduced in
the Ranges TS [8] and Eric Niebler’s current proposal for
range adaptors and utilities. [10] Among several other
modifications, the range-based algorithms’ interface re-
places iterator-pairs with ranges. A range is a concept
that defines the requirements of a type that allows itera-
tion over its elements by providing a begin iterator and
a sentinel object. [11] In a general context, a range is
typically a container, but is not required to be one (for ex-
ample, an input iterator abstracting over std: :istream
is a range if it is associated with some object denoting
the end of the input sequence).

The Ranges TS also revises the C++14 Standard al-
gorithms, so that they provide iterator-sentinel pairs in-
stead of homogeneously-typed iterator-pairs. This means
that we no longer need to specify the end of a range using
an iterator, and can use other objects instead; provided
that the object has some sort of tangible relationship
with our iterator type. One such example where this
is useful is doing something to the first n elements of
a range. The C++ standard library approximates this
with functions such as std::fill_n, but completeness
requires providing this for every algorithm, and that is an
enormous number of additional overloads that need to be
ratified, implemented, confirmed to be correctly imple-
mented, and maintained. [2] An example of adding such
an overload to std: : find using standard algorithms can
be seen in Listing 1. The Ranges TS version in Listing 2
more clearly communicates the fact that you only want
to move forward count number of steps.

Eric Niebler’s range-v3 [9] library is a cross-platform,
experimental implementation of the Ranges TS, and is
compatible with C+411. Unlike the Ranges TS refer-
ence implementation, cmcstl2 [4], range-v3 does not rely
on the Concepts TS, and is thus suitable for use with
implementations that don’t support Concepts.
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template <typename ForwardIterator,

typename T>
ForwardIterator find_n(ForwardIterator first,
T const& value)

typename N,

N count,
{
return std::find(first,
std::next (first, count), value);

}

Listing 1. findn implementation using Standard ;
algorithms.

namespace ranges = std::experimental::ranges;

template <ranges::Inputlterator I, typename T>

I find_n(I first, ranges:
count, T const& value)

:difference_type_t<I>

{

return ranges::find(
ranges::make_counted_iterator(first, count),

ranges::default_sentinel{}, value);

}

Listing 2. find_n implementation using the Ranges TS.

)

std::vector<float> x = //
std::vector<float> y = //
float a = //

auto out = std::vector<float>(size(x));
{
auto temp =
std::transform(begin(x),

[al] (const auto x) { return a * x;

std::vector<float>(size(x));
end(x), begin(temp),
b

std::transform(begin(temp), end(temp),
begin(y), begin(out), std::plus<>{});
}

Listing 3. Slow-path saxpy implementation using STL.

Central to range-v3 are views and actions, which im-
prove algorithm composability, and allow users to con-
struct pipelines of operations using operator|. Views
behave as range-based algorithms; but unlike algorithms,
lazily perform non-modifying computation only when
requested. Actions represent mutating operations and
perform in-place modifications to ranges. P0789 [10]
proposes adding views to the Ranges T'S.

2 An Example Use-Case

Given two vectors, x and y, and a scalar «, the result of
the BLAS (Basic Linear Algebra Subprograms) primitive,
saxpy, is defined as ax+y. A natural way of writing this
using the STL is to scale x by « using std: :transform,
and then add the scaled vector with y using a second
call to std: :transform as in Listing 3.

1
2
3
4
5
6
7
8
9
0

std::vector<float> x = //
std::vector<float> y = //
float a = //

auto out = std::vector<float>(size(x));

{

std::transform(begin(x), end(x), begin(y),
begin(out), [al(auto x, auto y) {
return a * x + y; 1});

}

Listing 4. Fast-path saxpy implementation using a
single transformation with addition.

Notice the use of the temporary vector temp in line 7;
this can be expensive on accelerators. The temporary
vector not only requires additional memory, but the exe-
cuting code also performs additional stores and loads to
access the temporary which can hinder performance. To
avoid the temporary variable, the scaling operation can
be manually done in a single transformation operation
together with the addition as seen in Listing 4.

A similar problem arises when performing the dot-
product operation on two vectors. To avoid a tempo-
rary variable, the programmer needs to be aware that
std: :inner_product is a more suitable alternative to a
combination of std: :transform and std: :accumulate.

However, there is not always a predefined function —
such as std::inner_product — available for all the pos-
sible cases that application developers can concoct with
Standard algorithms. For example, std: :transform and
std: :transform_reduce are limited to one or two in-
put ranges. If a user wants to combine more ranges in a
single call, they are required to convert the input data
to be formatted as an array of structures (AoS), and
then apply the algorithm.

On CPUs, the AoS format hinders the compiler’s
ability to perform vectorisation — as allowed by the
std::execution: :par_unseq execution policy — since
vector registers can typically only hold homogeneous
data. Thus, the conversion might have negative perfor-
mance implications. On GPUs, this format causes uncoa-
lesced memory-accesses, since threads will be performing
non-contiguous accesses as shown in Figure 1.

Range-based algorithms and views enable developers
to compose the provided algorithms more flexibly, and
simultaneously offer the opportunity to increase per-
formance by eliminating temporary storage. The lazy
nature of views also enables automatic fusion of mul-
tiple algorithms into a single, efficient, computational
kernel when using heterogeneous systems. By providing
a compile-time function-composition mechanism, device-
kernels can be generated to minimise register pressure on
custom algorithms that have been written by developers.
This kernel-fusion technique is widely used in libraries,
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AoS - uncoalesced accesses

[

Figure 1. Access pattern differences on GPU memory !

when using AoS vs SoA. Coalesced access is preferred
for performance reasons.

std::vector<float> x = //
std::vector<float> y = //
float a = //
auto ax = ranges::view::zip(view::repeat(a), x)

| ranges::view::transform(mult);

auto out = ranges::view::zip(ax, y)
| ranges::transform(plus)
| ranges::to_vector;

Listing 5. saxpy implementation using range-v3.

such as Eigen [6], to improve performance of various
computational kernels.

A range-based interface also mitigates the problem of
ensuring that an iterator-pair addresses the same range.
A range has a beginning and a sentinel object to describe
its termination, and its contents can be transparently
converted using range-based actions and views.

saxpy can now be implemented as shown in Listing 5.
The variable out now contains a view of the compu-
tation result and no computation has yet been per-
formed. The result can be materialised by copying it
to a std::vector when necessary. Accessing out will
perform the actual computation.

3 Implementation Prototype of
Parallel STL with Ranges

We have implemented a prototype [1, 3] of some parallel
algorithms using range-v3 and SYCL. This builds upon
work using views and actions with PACXX. [7]

saxpy is then implemented as it is in Listing 6. We
first create a SYCL execution policy, exec, in line 7.
It provides parallel implementations of Standard algo-
rithms, and wraps a SYCL queue attached to a device, so
that it can enqueue work. std: :experimental: : copy
internally creates a SYCL buffer that keeps track of the

WO Utk W
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std::vector<float> x = //
std::vector<float> y = //
float a = //

std::vector<float> out(size(x));
{

gstorm::sycl_exec exec;

using std::experimental::copy;

auto ax = ranges::view::zip(
ranges::view::repeat(a), copy(exec, x))
| ranges::view::transform(mult);
std::experimental::transform(exec,

ranges::view::zip(ax, copy(exec, y)),
copy (exec, out), plus);

}

Listing 6. saxpy implemented using SYCL and range-
V3.

usage of memory, and holds all the required metadata.
The SYCL buffer then provides access to the data from
the different accelerators via accessors. Our prototype
implements a wrapper that provides an InputRange-
compatible interface for SYCL buffers to allow them to
be used as input to views.

Since views are lazy and don’t perform any compu-
tation, we change the final ranges: :view: :transform
to a call to std: :experimental::transform on the ex-
ecution policy, to execute the resulting operation and
enqueue the kernel onto the device. It is important to
understand that this code will only execute a single ker-
nel on the device, despite the use of four view algorithms
to describe the computation. As views never execute
eagerly, and only algorithms and action do, this gives a
very easy to understand cost model to the programmer.

The lifetime of SYCL objects ends at the end of the
enclosing scope; following their lifetime rules, any data
modified on the device will be updated on the host.

Views from range-v3 access data using iterators from
the provided input range. To access device memory, it-
erators need to use SYCL accessors when dereferenced.
We implement a SYCL-aware wrapper, gvector, that
allocates a SYCL buffer, and registers itself with the
execution policy. The execution policy will provide regis-
tered gvectors with cl::sycl::handlers when launch-
ing a kernel, so that they can create accessors to be used
in device code, and return iterators from them using
begin and end. The authors intend to propose to extend
the SYCL buffer to implement the behaviour currently
implemented by gvector.

The limitations of SYCL, imposed by the nature of
heterogeneous dispatch and multiple device support, re-
quired making changes to range-v3:

e Non-standard-layout std: : tuple was replaced with
an implementation that does.
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Figure 3. Speedup on an Intel i7-6700K CPU. ii
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e Making ranges: :view: : chunk standard-layout by -,

removing ranges: :box base class. 18

e Making ranges: :view: :cycle usable in SYCL by 19

removing the pointer field.
e Adding some constexpr specifiers.

The limitations of the SYCL programming model also
impose certain restrictions on device-code:

e Cannot throw in device-code.

e Cannot use views with pointer fields or non-standard-
layout types, without modification.

e Views need to support random-access for parallel
usage in SYCL. This means that views such as
filter and remove_if cannot be used as input to
SYCL parallel algorithms without first instantiat-
ing their result, as they are at most bidirectional.

4

We have run a number of performance measurements to
evaluate our implementation. We used an Intel i7-6700K
CPU and its integrated Intel HD Graphics 530 GPU.

We use the zero-copy functionality provided by the
Intel hardware and OpenCL runtime to eliminate data
transfer costs. This requires allocating memory at the
4096 byte boundary and creating the SYCL buffer with
the cl::sycl::using host_ptr property.

Performance Results
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512;
512;

const auto height =
const auto width =

const auto iterations = 100;
std::vector<pixel> image(height * width);
{
gstorm::sycl_exec exec;
auto gpu_image =
std::experimental::copy(exec, image);
auto indices = ranges::view::iota(0)

| ranges::view::take(
width * height);
std::experimental::transform(
exec, indices, gpu_image,
CalculatePixel{height, width, iterations});

}

Listing 7. Calculating the mandelbrot set using our
prototype.

We run all experiments 100 times and report the me-
dian execution time measured on the host (e.g. including
any buffer creation or kernel launch overheads).

4.1 Speedup from Fusion

Figure 2 shows speedups from fusing kernel calls using
our prototype for 5 benchmarks. The baseline implemen-
tation uses our equivalents to the std: :transform and
std: :reduce standard algorithms and the fast versions
have some of them replaced by views. The results show
that fusion does not degrade performance and results in
speedups of up to 3.5x.

4.2 Calculating the Mandelbrot Set

In particular, we would like to highlight the results we
obtained from calculating the mandelbrot set and com-
paring our implementation to the Intel Parallel STL. [5]
Implemented in Listing 7, it takes image pixel locations
as input and outputs an image containing a colorised
visualisation of the mandelbrot set.
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As seen in Figure 3, the SYCL ranges version of man-
delbrot is significantly faster than the Intel Parallel STL
although the Intel Parallel STL is based on Intel Thread-
ing Building Blocks and is highly optimised for CPUs.

This is because the STL does not have a specialised
fused function for std::iota with std::transform. In
line 13 of Listing 7 the ranges equivalent of std::iota
is used to create the pixel indices which are then passed
to the function calculating the output. Additionally, sinc
there is no parallel version of std: :iota there have to
be two library calls, one of which is always sequential.

5 Conclusion

In this paper, we have presented some problems with
the existing parallel algorithms interface when targeting
heterogeneous systems, and the current SYCL Parallel
STL solutions. We introduce a prototype implementa-
tion where we use range-v3 to show how range-based
algorithms, views, and actions leverage many of the prob-
lems with the current parallel algorithms’ interface, and
enable further optimisations, such as kernel fusion, that
are not possible with the iterator interface.

We encourage the C++ Standardisation community
to consider including views and actions in the next C++
Standard to facilitate adoption of C++ on heterogeneous
platforms. Ranges without views and actions are insuffi-
cient to address the problems faced on these platforms.

We would like to ask the authors of the Ranges TS to
consider making some requirements for standard-layout
types whenever possible. Standard-layout types are cur-
rently the only guarantee that a programming model
for heterogeneous systems can enforce so that data can
be shared across different compilers and ABIs. Non-
standard-layout types cannot be copied to a device ’as-is’
for which code is compiled with a different toolchain.

Finally, as an intermediate step, we encourage the
Library Evolution Working Group to consider adding
a mechanism for identifying contiguous iterators to the
Standard for C++, so that Parallel STL implementa-
tions can detect whether iterator ranges are contiguous
and can assume that data can be directly and contin-
uously accessed through a pointer. We also encourage
LEWG to consider extending the Ranges TS to support a
ContiguousIterator and a ContiguousRange concept.

6 Future Work

Future work will continue to explore the combination of
parallel algorithms with ranges, with special attention
paid to fusion. We would like to explore other topics,
such as data layout transformation, and concept defini-
tions that would be meaningful for parallel algorithm
implementations that target non-CPU architectures.

IWOCL '18, May 14-16, 2018, Oxford, United Kingdom

The authors, and the SYCL group in Khronos, will
continue to work with the SYCL Parallel STL implemen-
tation, exploring the different issues that heterogeneous
computing present to the C++ standard. We are looking
forward to feedback to our ideas but also more general
collaborations on any aspect that may facilitate the
programmability of heterogeneous systems in C++.

Finally, this work has identified that typical imple-
mentations of std: :tuple may not be suitable for het-
erogeneous programming. We believe there is a problem
with allowing std::tuple to be non-standard-layout,
which has been sufficiently exposed by our endeavour to
marry parallel programming and the Ranges TS, and
we would like to investigate ways to refine std: :tuple —
and possibly other types — so that they become suitable
for heterogeneous programming.
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