
Predicting the Performance of Virtual Reality Video Streaming
in Mobile Networks

Roberto Irajá Tavares da Costa
Filho

Federal University of RS - UFRGS
Porto Alegre, Brazil

roberto.costa@inf.ufrgs.br

Maria Torres Vega
Ghent University - imec

Ghent, Belgium
maria.torresvega@ugent.be

Marcelo Caggiani Luizelli
Federal University of Pampa

Alegrete, Brazil
marceloluizelli@unipampa.edu.br

Jeroen van der Hooft
Ghent University - imec

Ghent, Belgium
jeroen.vanderhooft@ugent.be

Stefano Petrangeli
Ghent University - imec

Ghent, Belgium
stefano.petrangeli@ugent.be

Tim Wauters
Ghent University - imec

Ghent, Belgium
tim.wauters@ugent.be

Filip De Turck
Ghent University - imec

Ghent, Belgium
filip.deturck@ugent.be

Luciano Paschoal Gaspary
Federal University of RS - UFRGS

Porto Alegre, Brazil
paschoal@inf.ufrgs.br

ABSTRACT
The demand of Virtual Reality (VR) video streaming to mobile de-
vices is booming, as VR becomes accessible to the general public.
However, the variability of conditions of mobile networks affects
the perception of this type of high-bandwidth-demanding services
in unexpected ways. In this situation, there is a need for novel per-
formance assessment models fit to the new VR applications. In this
paper, we present PERCEIVE, a two-stage method for predicting
the perceived quality of adaptive VR videos when streamed through
mobile networks. By means of machine learning techniques, our
approach is able to first predict adaptive VR video playout per-
formance, using network Quality of Service (QoS) indicators as
predictors. In a second stage, it employs the predicted VR video
playout performance metrics to model and estimate end-user per-
ceived quality. The evaluation of PERCEIVE has been performed
considering a real-world environment, in which VR videos are
streamed while subjected to LTE/4G network condition. The accu-
racy of PERCEIVE has been assessed by means of the residual error
between predicted and measured values. Our approach predicts the
different performance metrics of the VR playout with an average
prediction error lower than 3.7% and estimates the perceived quality
with a prediction error lower than 4% for over 90% of all the tested
cases. Moreover, it allows us to pinpoint the QoS conditions that
affect adaptive VR streaming services the most.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3204966

CCS CONCEPTS
• Information systems → Multimedia streaming; • Human-
centered computing → Virtual reality; • Networks → Net-
work protocols; Public Internet;

KEYWORDS
Virtual Reality, HTTP Adaptive Streaming, Quality of Service, Qual-
ity of Experience, Mobile Networks
ACM Reference Format:
Roberto Irajá Tavares da Costa Filho, Maria Torres Vega, Marcelo Caggiani
Luizelli, Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Filip De
Turck, and Luciano Paschoal Gaspary. 2018. Predicting the Performance of
Virtual Reality Video Streaming in Mobile Networks. InMMSys’18: 9th ACM
Multimedia Systems Conference, June 12–15, 2018, Amsterdam, Netherlands.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3204949.3204966

1 INTRODUCTION
The number and variety of Internet-based video applications do not
cease to increase. In fact, IP video traffic is envisioned to experience
a 9-fold growth between 2016 and 2021, accounting for 78% of the
total mobile traffic by 2021 [5]. According to the same source, the
traffic generated by Virtual Reality (VR) is expected to increase 11-
fold by 2021 [5]. One key enabler for supporting such a consistent
growth is the diffusion of Head Mounted Devices (HMD). HMDs
are presenting high penetration rates as they (i) are becoming
effective and affordable (e.g., Google’s Cardboard1), (ii) are already
provided at no cost with certain smartphones (such as Samsung
Gear VR2) and (iii) are being pushed by industry (e.g., Facebook
recently announced a permanent price drop in Oculus Go headset
with the goal of reaching 1 billion VR users [3]).

In order to provide an immersive user experience, VR videos
demand significantly higher bandwidths when compared to tra-
ditional video applications. These ultra-high bandwidths are not
1Google Cardboard https://goo.gl/DSquZf
2Gear VR https://goo.gl/7JdQm7

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

always available in wireless networks and are not easy to process
by lightweight mobile devices. In fact, currently, the streaming of
VR videos through mobile networks is far from optimal. A VR video
contains a full 360◦ panoramic view, regardless of the fact that only
a fraction of it, namely the viewport3, is visible at any given instant.
In an attempt to optimize bandwidth usage, a recent research path
has proposed viewport-aware schemes for VR video streaming,
based on the HAS (HTTP Adaptive Streaming) paradigm [10, 27].
HAS approach is focused on encoding the source content at multiple
quality representations (bitrates), while each quality representa-
tion is time-segmented into small parts (i.e., segments). To further
optimize bandwidth usage, recent research investigations have pro-
posed HAS variants in which quality representations are not only
segmented in time but also spatially split into smaller pieces (i.e.,
tiles) [6].

Bringing the 2D adaptive streaming techniques to the VR arena
requires the VR videos to be encoded at different quality levels,
temporally divided in segments and spatially tiled [19]. Then, dur-
ing the streaming session, only the tiles within the viewport are
streamed in high quality, while others are maintained at the lowest
levels or not streamed at all [24]. To be effective, these techniques
rely on viewport prediction algorithms, since the player needs to
fill in a playout buffer with tiles that are expected to compose the
viewport in the near future [23].

Although the use of viewport-aware techniques leads to the
reduction of bandwidth consumption, the effects of network per-
formance on VR video streaming still plays an important role on
the user’s perception of the services. Since the full panoramic view
of a VR video usually demands a much higher bitrate, when com-
pared to regular videos [7], even a fraction of it (viewport) may
require high bitrates. Along these lines, recent investigations have
emphasized the importance of the network effects on the perceived
quality (Quality of Experience, QoE) of adaptive video streaming
applications [8, 10, 13, 14, 16]. However, state-of-the-art approaches
fall short in predicting the perceived quality for VR videos as they
do not consider the spatial segmentation.

QoE has shown to be a critical factor for video applications [1, 18].
As such, both network operators and VR content providers are re-
quired to answer an important question: considering the wide range
of performance levels of IP networks, to which extent are the currently
observable network conditions able to provide users of VR applications
with adequate QoE? Answering this question is remarkably complex
due to two constrains. First, the influence of the network on VR
video performance is unknown; and second, the state-of-the-art on
video QoE estimation modeling does not consider the VR context.

In this paper, we present PERCEIVE (PERformanCe EstImation
for VR vidEos), a method that aims to provide answer to both
aspects. PERCEIVE is a two-stage adaptive VR performance as-
sessment model that employs machine learning algorithms to first
predict VR video playout performance, using network QoS indi-
cators as predictors. Then, it uses the video playout performance
metrics to model and estimate the end-user perceived quality. Eval-
uated in real-world 4G/LTE network conditions, PERCEIVE not
only accurately predicts the VR videos performance over networks,

3Also referred to as Field of View (FoV)

but also allows us to pinpoint the QoS conditions that affect VR
streaming services the most.

The remainder of this paper is organized as follows. In Section 2,
we discuss the related work. In Section 3, we introduce the approach
used for the tile-based adaptive VR video streaming. In Section 4, we
describe PERCEIVE, the two-step performance prediction scheme
that we propose. In Section 5, we report the evaluation carried out
to prove concept and technical feasibility of the proposed approach.
It includes details on the evaluation methodology, the generation
of the dataset, analysis of the training set and results. Finally, our
conclusions and key findings are presented in Section 6.

2 RELATEDWORK
In this section, we provide a thorough description of the state-of-
the-art. In Section 2.1, we present a brief introduction to adaptive
streaming applied to the VR context and review the state-of-the-art
approaches. In Section 2.2, we highlight the most significant QoE
estimation models in literature.

2.1 Adaptive Tile-based and Viewport-aware
Video Streaming

An aspect to consider in adaptive tile-based VR streaming ser-
vices is viewport prediction, which allows to considerably optimize
bandwidth usage. Since a full VR video can easily reach 8K video
resolution [7], most video players rely on heuristic algorithms to
predict near-future user’s head movements. By considering next
position prediction, the video player is able to request only tiles that
are likely to be inside the viewport, which leads to reduced band-
width utilization. To provide this prediction, heuristic algorithms
consider variables such as the angular velocity of the user’s head,
movement patterns for previous viewers, video content (e.g., in a
football match users will most likely follow the ball’s movements),
among other factors [2]. By performing such prediction, the video
player can reduce in up to 72% in bandwidth utilization [12].

In practice, the viewport prediction algorithm is responsible for
keeping a small video playout buffer (e.g., 2 seconds) with the tiles
that are more likely to belong to the viewport in the near-future. To
illustrate how the viewport prediction interacts with the playout
buffer, consider the example of a user watching a tile-based VR
video using a head-mounted display. Consider a given temporal
segment Sk and a respective viewport Vk , as depicted in Figure 1
(a). At this moment, the video player is requesting high-resolution
chunks only for tiles inside the viewport Vk . Then, based on the
near-future viewport prediction for the next segment (Sk+1), the
video player starts requesting high-resolution tiles for the viewport
Vk+1 (delimited by the right dashed square in Figure 1 (b)). As
predicted, the viewer slightly moves to the right (see Figure 1 (c)).
At this point, driven by the viewport predictor, the VR player starts
requesting high-resolution chunks for the predicted viewport on
the segment Sk+2 (Figure 1 (d)), and so forth.

Several recent investigations [11, 23, 24] have focused on a com-
monmain objective: devising bandwidth-efficient adaptive VR video
players while keeping QoE at acceptable levels. Taking viewport
prediction information as input, most approaches rely on per-tile
rate adaptation algorithms to reduce the amount of information to

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

be downloaded by keeping only the viewport’s tiles in high reso-
lution. Qian et al. [24] present a viewport prediction scheme that
considers users’ head movements (traces) and relies on Weighted
Linear Regression to predict users’ head position for the next sec-
ond. The same study indicates that the estimation accuracy can drop
from 90% to approximately 60% when increasing the prediction win-
dow to 2 seconds. Fan et al. [11] consider HMD sensor information
and content-related features (i.e., image saliency maps and motion
maps) to train two neural networks for prediction of viewport posi-
tion. In turn, Hosseini et al. [23] propose an efficient 3D geometry
mesh to represent tiled VR video in the 3D space, which is capable
of reducing bandwidth consumption in up to 30% when compared
to non-tiled videos. The work also relies on MPEG-DASH Spatial
Representation Descriptor (SRD) to describe the spatial relationship
of tiles in the 360-degree space, prioritizing tiles inside the viewport
to be downloaded in high quality. Petrangeli et al. [23] propose an
approach with the ability to reduce bandwidth consumption in up
to 35% by relying on both an HTTP/2-based push mechanism and
a viewport prediction scheme based on viewport speed.

As discussed, viewport prediction is a sensitive task, whichmight
affect the user’s perception in unexpected ways. Errors on the
prediction of the viewport (i.e. the FoV that the user will look at
in the next segment) may lead to partial or full degradation of the
perception, even if the network conditions are enough to guarantee
the user’s QoE. This means that, during the streaming, two different
processes (namely the viewport prediction and the effects of the
network on the adaptive streaming performance metrics) will have
a major influence on the user’s QoE. In this work, we are interested
on predicting the effects of networks on VR adaptive streaming in
an isolated manner, without the influence of errors derived from
wrong viewport prediction. Thus, for the analysis presented herein,
we have assumed perfect prediction, i.e., the adaptive streaming
player knows exactly where the user is looking at every point in
time.

2.2 Adaptive Video Streaming QoE Estimation
One of the biggest challenges of adaptive video streaming (2D,
3D or VR) applications is the accurate and real-time estimation of
quality perceived by the users. And, based on it, the provision of
a feedback loop to dynamically influence the quality adaptation.
In state-of-the-art adaptive streaming approaches, the modeling of
QoE has to rely on objective information obtained at the client, the
server or the network-side.

Mao et al. [16] present a model to estimate QoE considering
both network and application performance indicators measured
at client’s video player (e.g., average bitrate, video stall events and
bitrate changes) as inputs. Similarly, Jiang et al. [13] propose a
Content Delivery Network (CDN) node selection approach that em-
ploys a Critical Feature Analytics (CFA) design to provide accurate
QoE estimation. In this work, the authors also rely on information
provided by client video players as input. Conversely, Xianshu et
al. [14] propose a network path selection scheme that considers
the bitrate measured at the server-side to produce simplified QoE
estimation for adaptive video streaming applications.

Dimopoulos et al. [10] introduce a methodology for estimating
QoE based on the analysis of encrypted HTTPS video streaming

traffic observed in the network. Da Costa Filho et al. [8] propose
an approach for QoE estimation based on network QoS indicators
obtained through active measurements. Both investigations [8, 10]
demonstrate it is possible to estimate video streaming QoE based
on network-side information. Although these approaches may not
be as accurate as the ones based on client- or server-side measure-
ments, they have shown to result in a satisfactory level of accuracy
with a crucial advantage: in addition to end-to-end QoE estimation,
they allow for fast identification and isolation of network segments
responsible for QoE impairments. In spite of the recent fundamen-
tal contributions for the video streaming evolution, the work on
QoE modeling for adaptive video streaming has basically focused
on 2D videos. Unlike 2D video content, VR presents significantly
more complex elements to consider (e.g., spatially segmentation,
viewport prediction, and per-tile rate adaptation). Thus, the current
QoE models are not suitable to estimate QoE for VR videos.

3 ADAPTIVE STREAMING OF VR VIDEOS
USING TILES AND QUALITY ZONES

This section introduces the adaptive VR streaming approach for
which PERCEIVE is envisioned. In order to reduce the bandwidth
required for the streaming, it adopts a tiling structure, in which
the videos are not only divided in temporal segments but are also
spatially split in sections (tiles) [23]. In addition, tiles are grouped in
quality zones prior to the streaming. Each of the zones is assigned a
quality level according to the network conditions measured during
the previous segment. In the next two subsections, both the struc-
ture and the adaptive streaming technique adopted in this work are
presented.

3.1 Adaptive VR streaming structure: Spatial
Tiles and Quality Zones

A VR video V can be represented by a set of k spatially divided
zones Z = {Z1, ...,Zk } such that

⋂
∀k Zk = ∅. The same video

V is temporally split into a discrete number of m segments S =
{S1, ..., Sm } such that

⋃
∀m Sm = V . Each zone Zk is composed

of a set of tiles t ∈ Zk . A tile t is time-divided into m chunks
C = {Ct1 , ...,Ctm }, and may assume different bitrates (qualities)
R(Ctm) over time. Finally, we refer to a segment as the set of all
chunks for a given time frame such as Sm =

⋃
∀t Ctm . In tile-based

approaches, the encoding process defines how the video will be
spatially divided (i.e., tiling scheme), which bitrates will be available
in the HAS context (i.e., quality representations), and the segment
length (i.e., number of seconds).

An example of this type of structure is shown in Figure 2.
There are three quality zones Z = {Z1,Z2,Z3}, each one com-
posed by a set of adjacent tiles. Z1 is a set of tiles adjacent to the
viewport center (t28, t29, t36, t37), Z2 is the border of the viewport
(t43, t44, t45, t46, t38, t30, t22, t21, t20, t19, t27, t35) and Z3 is composed
by all tiles outside the viewport.

3.2 Adaptive streaming heuristic
Algorithm 1 describes the adaptive streaming heuristic procedure
adopted for this paper (adapted from [23]). The bitrate in a specific
zone Zk is named as R(Ct)|Zk . The algorithm receives as input (i)

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

Figure 1: Example of the working principles of the viewport prediction.

Figure 2: Example of an adaptive tile-based VR video struc-
ture split in 3 quality zones.

a reference to a VR video V , (ii) a set S describing the video seg-
mentation and (iii) the available zones in video V . The heuristic
described in Algorithm 1 works as follows. Once knowing the avail-
able bandwidth in the network, the VR player downloads tiles with
the highest possible bitrates. First, the heuristic tries to increase the
bitrates on the zones inside the viewport. Then, it repeats the pro-
cedure to stream tiles from the outer zones (observed in line 3). Ob-
serve that the heuristic does not increase the bitrate R(Ct)|Zk+1 on a
subsequent zoneZk+1 in case the bitrate of zoneZk is strictly upper-
bounded by R(Ct)|Zk+1 . In other words, it ensures that the bitrate of
zone Zk+1 is always lower or equal to that of zone Zk . Furthermore,
it ensures that tiles within the same zone Zk are streamed with the
same bitrate R(Ct), that is, R(C0)|Zk = R(C1)|Zk = · · · = R(Ct)|

Zk .
If the available bandwidth were insufficient to download all the
tiles in a zone on time (before display), the streaming would stall

until the buffers were filled. Hence, the player ensures that all tiles
are synchronized during the playout and that no black tiles appear.
For more information on the working principles of the streaming
heuristic, please refer to [23].

Algorithm 1 VR player heuristic adapted from [23].
Input: V : VR video
Input: S : discrete number of segments in VR video V
Input: Z = {Z1, ...,Zk }: k spatially divided zones in VR video V
1: for each video segment Si ∈ S from VR video V do
2: for each zone Zk ∈ Z do
3: gather tiles t ∈ Zk with maximum available bitrate

R(Ct)|
Zk , such that (∀k ≥ 2) : R(Ct)|Zk ≤ R(Ct)|

Zk−1 and
(∀t ∈ Zk) : R(C0)|Zk = R(C1)|Zk = · · · = R(Ct)|

Zk

4 PERCEIVE: ADAPTIVE VR VIDEO
PERFORMANCE PREDICTION

Figure 3 presents the block diagram of the proposed two-stage VR
performance prediction method. The first stage is composed of four
predictors, one per VR video application performance metric (i.e.,
startup delay, quality, quality switches count and video stalls) [32].
As input, the predictors consider both the network Quality of Ser-
vice (QoS) (i.e., delay, packet loss and TCP throughput) and the
tiling scheme. In the second stage, the user QoE is estimated by
submitting the predicted application layer performance metrics to
the proposed QoE model. PERCEIVE can dissect VR video playout
performance by understanding two key processes, namely (i) the
influence of the network performance on VR video player outputs;
and (ii) how the user perceives the resulting video playout perfor-
mance. However, both the VR video player and the QoE model are
open questions in the sense that there is neither a reference player
implementation nor a QoE model for VR videos. Considering the
above, the proposed two-stage prediction allows both the playout

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

performance metrics predictors and the QoE model to be individu-
ally updated, without the need to rebuild the entire scheme. The
following two subsections provide details and insights on each of
the stages of which PERCEIVE is composed.

Figure 3: PERCEIVE two-stage quality prediction

4.1 Adaptive VR Video Playout Prediction
In the first stage of the method, the four most important playout
performance metrics associated with the adaptive VR streaming,
namely startup delay, quality level (bitrate), quality switches and
stall time [32], are predicted based on network QoS inputs and the
VR video structure. Each of them is independently predicted using
regression trees as predictors (taking advantage of and adapting
the 2D procedure proposed in previous research work [8]). Regres-
sion trees are employed due to three main reasons. First, they have
shown to be an accurate machine learning method in related inves-
tigations [8, 26]. Second, they permit understanding complex and
non-linear relationships between predictors and response variables
in an intuitive and visual manner. This is a very important feature
that allows to pinpoint the most influential inputs, which will be put
to the test in the analysis of Section 5.3. Finally, once the prediction
structures are generated, they can predict the response variable in
linear time complexity, and can be easily integrated in third-party
applications, which are fundamental aspects for network operators
and content providers.

The selection of the input QoS parameters has been made based
on state-of-the-art research studies on the QoS conditions that affect
video streaming services the most [8, 20, 28]. These studies also
concluded that TCP throughput is one of the most influential QoS
metric when prediction QoE. Also, both network losses and delays
have been demonstrated to be responsible for further degradation,
depending on the type of streaming application used. In addition
to these three network performance metrics, a fourth parameter,
namely the tiling structure of the VR streaming, was included. The
structure defines the number of tiles that need to be streamed to the
client, thus it will heavily influence the VR playout performance.
Once the four VR playout performance indicators are predicted,
they serve as input to the second phase, the QoE model as it is
presented in the next Section.

4.2 Adaptive VR QoE Estimation Model
The purpose of this second stage is to estimate the quality perceived
by the end users (their QoE), considering the VR video playout
performancemetrics obtained from the previous stage of PERCEIVE
(i.e., startup delay, quality level (bitrate), quality switches and stall
time).

The model proposed herein considers the state-of-the-art on QoE
modeling for adaptive streaming applications in general and HAS in
particular [16, 22, 32]. To the best of our knowledge, this is the first
model to consider the concept of zones and tiles in a QoE estimation
model for VR videos. These characteristics are crucial, given the fact
that they allow coping with VR video attributes while providing
flexibility to handle different video encoding strategies (e.g., tiling
scheme, viewport geometry and available quality representations).

Given the concepts of quality zones and tiles of the approach used
for Adaptive VR streaming (Section 3), the QoE function is defined
per zone as a function of the VR playout characteristics predicted
by the previous stage within that quality zone (Section 4.1). This
strategy is aligned with the notion that the influence of VR playout
characteristics on user perception is different depending on the
zone where they are observed (e.g., quality switches for tiles outside
the viewport are less important than quality switches inside the
viewport). Thus, the per-zone quality function (ϕ(Zk)) is defined as
the weighted sum of the four playout characteristics (Equation 1).

ϕ(Zk) =

Quality︷ ︸︸ ︷∑
∀t ∈Zk

∑
∀c ∈C(t)

q(R(Ctm)) −

Stalls︷ ︸︸ ︷
µ ·

∑
∀t ∈Zk

∑
∀c ∈Ctm

(
dc (Rc)

Cc
− Bc

)
+

− λ ·
∑

∀t ∈Zk

∑
∀c ∈Ctm

���� q(R(Ctm+1)) − q(R(Ctm)

����︸ ︷︷ ︸
Quality switches

− ω ·Ts︸︷︷︸
Startup

(1)

In Equation 1, R(Ctm) R represents the bitrate (i.e., quality) of
a given chunk. Recall that a tile t is time-divided intom chunks
C = {Ct1 , ...,Ctm }, (adapted from [16, 32]). Function q is a map-
ping function that translates the bitrate of chunk Ctm belonging to
tile t to the quality perceived by the user (i.e., in terms of bitrate
sensitivity). The second term of the Equation is used to track stall
time. Stalls can be characterized either by tile (i.e., it is possible to
have stall in some tiles and video playout in other, for the same
segment) or by segment (i.e., the video will stall until all the tiles
for a given segment have enough buffer). To keep the model as
general as possible, we consider for each chunk c , that a stall event
occurs when the download time dc (Rc)

Cc is higher than the play-
out buffer length (Bc) when the chunk download started. Hence,
the total stall time is given by

∑C
c=1

(
dc (Rc)
Cc − Bc

)
+
. In addition,

|q(Rct+1)−q(Rct)| considers the quality switches between consecu-
tive chunks andTs tracks the startup delay. Finally, constants µ, λ,ω
are the non-negative weights used to tune the model for different
user importance regarding QoE events. For example, a higher value
of µ, with respect to the other weights, means that the user is more

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

susceptive to video stalls. Consequently, these events should affect
the QoE indicator more severely.

Each of the zones within the VR video influences the perception
of the user in a different manner. For example, tiles within the
first or second zones (i.e., the closest to the FoV of the user) will
greatly steer the quality perceived by the user, while bad qualities
on tiles of the edge zones will potentially go unnoticed. For this
reason, the overall video QoE (ϕ(V)) is modelled as a weighted
linear sum of the QoE measurement per zone (Equation 2). Each
weight (α1,α2, ...,αk) allows defining the relative importance of
each zone when composing the video QoE. For example, the zones
belonging to the viewport should have higher weights compared
to the other zones.

The values for each αn parameter should be derived from sub-
jective tests. For example, considering a two-zone QoE scheme,
values for α1 (viewport) should be close to one, and values for α2
(outside viewport) should be close to zero. When the QoE model is
configured with more than two zones, it is necessary to determine
αn (testing values within a certain range) for each zone. In this
case, subjective tests should systematically include incremental
quality degradation, specifically in the intermediate zones, in order
to measure the user’s sensitiveness regarding quality issues in each
zone.

ϕ(V) =α1 · ϕ(Z1) + α2 · ϕ(Z2) + ... + αk · ϕ(Zk) (2)

5 EVALUATION
In this section, the evaluation of the PERCEIVE method is dis-
cussed. We start by presenting the procedure followed to evaluate
the method in Section 5.1. Next, in Section 5.2, we introduce the
generation of the dataset used for training and testing. In Section 5.3
we discuss and analyze the resulting VR playout predictors. This
analysis provides insights on the dependency and predictability of
each of the VR playout performance metrics given the QoS and
tiling structure inputs. Finally, in Section 5.4 we present the predic-
tion evaluation results for each of the five outputs of PERCEIVE
(i.e., the four VR playout performance metrics and the perceived
quality).

5.1 Evaluation Methodology
In order to evaluate the performance of PERCEIVE, the procedure
outlined by Figure 4 is followed. First, the datasets for training
and testing have to be generated. Therefore, a VR video player is
required to measure the VR video application playout performance
metrics (i.e., startup delay, average bitrate (quality), bitrate switches
and video stalls) while subjected to real-world inputs, such as a
realistic wireless networks measurements, VR tile-based videos and
users’ head track traces.

Next, the resultant datasets are given as input to the machine
learning algorithm (responsible for learning the influence of the
network QoS parameters and tiling scheme onto the VR playout
characteristics). After the training phase, the resulting predictors
can estimate the application layer performance only by means of
the network parameters, and the considered tiling scheme. Finally,
based on the VR playout performance metrics, the QoE can be

Figure 4: General evaluation methodology for PERCEIVE

estimated. The performance of PERCEIVE is assessed by means of
the calculation of the normalized residual errors between predicted
and measured values (ri , Equation 3). In the equation, x is the
ground truth, x̂ is the prediction and N is the normalization factor
(in this case the video duration).

ri = |x̂i − xi |/N (3)

5.2 VR Dataset Generation
Each sample in the dataset contains the VR video tiling information,
the three network QoS features and the respective video perfor-
mance measured by the VR video player. To construct such dataset,
the procedure presented in Section 5.1 is followed. Experiments
are set, considering that a VR video player requests and processes
tile-based VR videos from a web server (Apache 2 2.4.18-2). The
network conditions are enforced by the Linux Traffic Control (TC)
mechanism according to real-world network performance inputs.
The experiments are built on top of a Linux Ubuntu 14.04 oper-
ating system, running on bare metal servers, where each server
consists of a quad-core E3-1220v3 (3.1GHz) processor, with 16GB
of RAM and two 10-gigabit network interfaces. Considering this
infrastructure setup, we performed 1,524 video execution rounds,
which resulted in more than 5,240 minutes of VR video playout.

Table 1 summarizes the input parameters values considered in
the experiments. As network throughput input, the 4G/LTE mea-
surements dataset of van der Hooft et al. [29] was selected. This
dataset presents TCP throughput ranging from 0 Kb/s to 95 Mb/s
as shown in Figure 5. For network packet loss, values between 0%
and 13% were selected, in line with [8]. The network delay range
was set from 1 to 130 ms. These values allowed us to assess the

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
Histogram for TCP throughput

TCP TP − downlink

D
en

si
ty

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0.
0e

+0
0

5.
0e
−0

9
1.

0e
−0

8
1.

5e
−0

8
2.

0e
−0

8
2.

5e
−0

8

Figure 5: TCP throughput histogram of the 4G/LTE dataset
of [29]

application performance from a very degraded delay performance
(130 ms) down to the expected 5G delay (1 ms) [9].

Table 1: Input parameter configurations.

Metric Short Unit Range

TCP throughput TCPTP Mb/s 0-95Mb/s ([29], Figure 5)
Packet Loss PLR % 0 − 13% (based on [8])

Delay Delay millisecond 1-130ms (based on [8, 9])
Tiling scheme Tile categorical 8 × 4 or 12 × 4 (based on [15, 24]

Two VR videos from Wu et al.’ s dataset [31] (namely “Google
Spotlight-HELP" and “Freestyle Skiing") were used for the stream-
ing under the above described network conditions. For each video,
we considered the available datasets regarding the users’ headmove-
ments while watching it. As the original videos are not tile-based,
they had to be re-encoded. After extracting the raw YUV files, mak-
ing use of the Kvazaar encoder [30], the videos were re-encoded in a
HEVC tile-based version, considering two tiling schemes: 8 × 4 and
12× 4 [15, 24]. In addition, each tiling scheme was encoded to three
quality representations, namely 720p (1.8Mb/s), 1080p (2.7Mb/s)
and 4K (6Mb/s). Next, we used the MP4Box4 application to pack the
re-encoded videos into MP4 containers. Finally, we defined the seg-
ment duration of 1 second and used MP4Box to extract per-tile files
and to generate the MPEG Dash Media Presentation Description
(MPD) files considering multiple quality representations (Table 2).
For the streaming heuristic (Section 3.2), there are three defined
zones, where Zone 1 is the viewport center tile, Zone 2 groups the
8 tiles surrounding Zone 1, and all other tiles belong to Zone 3.
Figure 6 shows the zone division for the 12 × 4 tiling scheme.

Table 2: Adaptive streaming configurations.

Videos Qualities (bitrates) Quality zones Segment Tiling

Google Spotlight 720p - 1.8Mb/s Zone 1: 1 tile (central FoV) 1 s 12 × 8
Freestyle Skiing 1080p - 2.7Mb/s Zone 2: 8 tiles (adj. Zone 1) 8 × 4
(Wu et al. [31]) 4K - 6Mb/s Zone 3: Rest

4MP4Box https://gpac.wp.imt.fr/mp4box/

Figure 6: Viewport detail for the 12x4 tiling scheme

5.3 Resulting Predictors: VR Playout vs
Network Conditions

Based on the dataset, the regression trees were trained using a 10-
fold cross-validation approach [15]. As each zone has independent
quality behavior, both the quality and quality switches need to be
learned per-zone. On the other hand, the startup and stall times are
independent from the quality zone under scrutiny. Hence, they can
be learned per video segment. Given the fact that there are three
quality zones, eight regression trees were trained: three for Quality,
three for Quality Switches, one for Stall time and one for Start time.
All trees are optimally pruned [17], which means pruning until the
cross-validation error is minimal and overfitting is avoided.

Before assessing the performance of the two-stage method, a
thorough analysis of the regression trees was performed. This anal-
ysis aims at characterizing the relationship between the input pa-
rameters (network conditions and VR video structure) and the VR
playout, allowing one to pinpoint to the most influential inputs.

Figures 7 to 9 present the outcome predictors derived from the
regression trees. All presented trees share two structural charac-
teristics. First, although inversions may occur, usually the leftmost
leaf node holds the lowest value for the predicted variable, and the
value increases while moving towards the rightmost leaf node. Sec-
ond, the closer to the root node, the more important the prediction
feature (i.e., delay, TCP throughput, loss and tile scheme).

Having a first look at the content of the trees, two observations
can be made. First, network packet losses are not included in any
of the trees. This means that the level of packet losses does not
have influence on the VR playout performance metrics. Its effect
will only be important as they affect the TCP throughput (higher
network packet losses = lower TCP throughput). Furthermore, net-
work delays turn out to be the most influential parameter on the
VR playout.

Regarding quality (by means of the average bitrate) (Figures 7(a)
to 7(c)), let us consider the following aspects. The first decision taken
in Zone 1, at the root node and, therefore, the most influential, is to
understand if the network delay is greater than 23 ms (Figure 7(a)).
The left branch (Delay ≥ 23ms) is related to predicted quality not
higher than 3.9 Mb/s, regardless of any other input value. In other
words, even considering that the evaluated LTE network presents
TCP throughput of up to 95 Mb/s, it is not enough to achieve the
maximum bitrate (6.0 Mb/s - 4K), if the delay is higher than 23 ms.
The reasoning behind this behavior is that each video segment (1 s)
demands the download of 32 (8x4 tiling) or 48 (12x4) tiles. Despite
the reuse of the TCP connection avoids the TCP slow-start restart
[4]), the request/response overhead limits the throughput.

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

DELAY >= 23

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TCPTP < 2.3

TILE = 12x4

TILE = 12x4

DELAY >= 14

TILE = 12x4

DELAY < 18

DELAY >= 9.5

0.19 0.29 0.42 0.51 0.65 1.1 2 3.9 2.6 3.6 4.6 5.5 5.8

yes no

(a) Quality (average bitrate) - Zone 1 (Mb/s)

DELAY >= 14

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TCPTP < 2.3

TILE = 12x4

TCPTP < 19 DELAY < 18

TCPTP < 19

TCPTP < 6.5

TILE = 12x4 DELAY >= 9

TILE = 12x4

0.19 0.29 0.42 0.51 0.79 1.6 2.1 2.3 3.6 4.2 4.2 5.2 5.2 5.6 5.8

yes no

(b) Quality (average bitrate) - Zone 2 (Mb/s)

DELAY >= 14

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TILE = 12x4

TCPTP < 19

TCPTP < 9.7

TCPTP < 6.5

TILE = 12x4

DELAY >= 10

TILE = 12x4

DELAY >= 12 TCPTP < 14

DELAY >= 7.5

0.19 0.29 0.42 0.7 1.2 1.7 2.7 1.9 3.4 4.1 2.9 3.8 4 5.2 5.5 5.8

yes no

(c) Quality (average bitrate) - Zone 3 (Mb/s)

Figure 7: Regression tree representation for the predictors
of the VR playout performance metric: quality. Leaf node
colors go from dark green (for the lowest value for the pre-
dicted variable) to dark blue (the highest predicted value).

DELAY >= 50

DELAY < 14

DELAY < 9.5

TILE = 8x4

TCPTP >= 14

DELAY >= 26

DELAY < 36

TILE = 12x4

TCPTP >= 9.6

0 2.9 4.6 4.9 11 1.5 2.3 16 17 30

yes no

(a) Quality switch - Zone 1

DELAY >= 26

DELAY >= 50

DELAY < 36

TILE = 12x4

DELAY < 9.5

DELAY >= 3.5

DELAY < 7.5

TCPTP >= 8.7

DELAY < 17

TILE = 8x4

DELAY < 12

TILE = 8x4

TILE = 8x4

DELAY < 12 DELAY >= 12

0 0 0 4.4 2.3 3.9 4.1 5.2 12 17 19 26 16 29 18 38

yes no

(b) Quality switch - Zone 2

DELAY >= 26

TCPTP >= 25

TCPTP < 4.7

DELAY < 4.5

TCPTP >= 19

DELAY < 16

TILE = 12x4

DELAY >= 18

TILE = 12x4 TCPTP < 6.5

TILE = 12x4 TILE = 8x4

TCPTP >= 14 DELAY < 8

DELAY >= 12

0 3.1 0 2.8 8.3 19 53 9.6 31 16 37 15 45 28 45 58

yes no

(c) Quality switch - Zone 3

Figure 8: Regression tree representation for the predictors of
the VR playout performance metrics: quality switches. Leaf
node colors go from dark green (for the lowest value for
the predicted variable) to dark blue (the highest predicted
value).

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

For Zones 2 and 3 (Figures 7(b) and 7(c)), the quality predictors
follow a very similar trend. However, in order to achieve the same
level of average quality, they demand higher network performance
than Zone 1. The right-most leaf of Zones 2 and 3 are a clear example
of this behavior. To achieve the same quality (average bitrate of
5.8 Mb/s), Zone 2 requires a delay lower than 9 ms, and Zone 3
lower than 7.5 ms. Also, the values of TCP throughput to achieve
intermediate average bitrates are higher for Zones 2 and 3 when
compared with Zone 1. The main reason for such behavior comes
from the rate adaptation heuristic, which prioritizes high bitrates
for the tiles that are closest to the viewport’s center (Section 3.2).
Thus, intermediate network performance may be enough to keep
Zone 1 at the highest available bitrate, while high levels of network
performance allow increasing the bitrate for all zones.

Quality switches (Figures 8(a) to 8(c)) provide valuable infor-
mation in the context of HAS videos. For example, if no switches
occur, the full video playout occurs in the lowest available resolu-
tion, meaning that the video player is unable to switch to higher
bitrates, probably, due to insufficient network performance. In turn,
when subject to excellent network performance conditions, most
of HAS rate adaptation heuristics (including the one used in this
paper) will stabilize at the highest available bitrate within a few
switches. When considering real-world networks, if we have a look
at the quality switches trained trees (Figures 8(a), 8(b) and 8(c)),
it can be seen that the turning point from zero switches to max-
imizing the quality is a network delay of 50ms for Zone 1, and
26ms for Zones 2 and 3. However, by analyzing the rightmost leaf
nodes of the decision trees for Zones 1, 2 and 3, one can observe
that the maximum number of quality switches increases from Zone
1 towards Zone 3: (30, 38 and 58, respectively). This happens be-
cause, according to the considered heuristic for rate adaptation, the
tiles inside Zone 3 will be the first ones to be switched to a lower
resolution in case a network performance degradation is detected,
followed by Zone 2 and, if the network performance degradation is
severe, the Zone 1.

With respect to the cumulative stall time (Figure 9(a)), the result-
ing regression tree presents a wide range of predicted values (from
0.95 up to 384 seconds). One key aspect is related to the decision
taken at the root node. As one can observe, if the delay is higher or
equal to 18 ms, the minimum expected stall time is equal or higher
than 163 seconds, independent of the tiling scheme or the available
bandwidth (TCP throughput). Such high values would inflict a dra-
matic degradation on the perceived quality. In turn, for network
delays lower than 9.5 s and TCP throughput equal or higher than 25
Mb/s, the expected stall time is minimal (0.95 seconds). It is worth
mentioning that, even if the delay is lower than 9.5 s, if the TCP
throughput is lower than 25 Mb/s, the expected stall time is 16
seconds. Also, in line with the aforementioned findings, the 12x4
tiling scheme leads to a significative higher amount of stall time
for intermediate levels of network performance.

Finally, the regression tree for predicting startup delay is shown
in Figure 9(b). In the considered VR video player, the startup delay is
characterized as the elapsed time between the arrival of the request
for the first tile and the completion of the buffer filling for all tiles
for the first two segments. As the segment is relatively small, and
considering the small file size of the tile chunks (on average 23 KB
for 4K video resolution), the startup delay exclusively depends on

DELAY < 18

DELAY < 9.5

TCPTP >= 25 TILE = 8x4

DELAY < 14 TCPTP >= 4.7

DELAY < 12

DELAY < 50

DELAY < 26

TILE = 8x4 TCPTP >= 2.3

TILE = 8x4

DELAY < 36

DELAY < 100

TILE = 8x4

DELAY < 76 DELAY < 76

DELAY < 128

TILE = 8x4

0.95 16 33 75 84 118 173 163 241 235 265 302 325 330 348 357 369 365 378 384

yes no

(a) Cumulative start time (seconds)

DELAY < 76

DELAY < 26

DELAY < 14 DELAY < 50

TILE = 8x4

DELAY < 128

TILE = 8x4

DELAY < 92 DELAY < 92

DELAY < 108

TILE = 8x4

DELAY < 156 DELAY < 148

DELAY < 156

0.54 1.7 3.2 4.6 6.9 5.7 7.4 8.4 10 12 11 14 16 18 21

yes no

(b) Startup delay (seconds)

Figure 9: Regression tree representation for the predictors of
the VR playout performance metrics: stall time and startup
delay. Leaf node colors go from dark green (for the lowest
value for the predicted variable) to dark blue (the highest
predicted value).

the network delay. A delay lower than 26 ms is enough to provide
an acceptable startup delay (smaller than 1.7 s). However, the best
performance is achieved when the delay is lower than 14 ms (0.54
s).

5.4 PERCEIVE Results
Aiming at determining the accuracy of the proposed predictors, the
trained regression trees were used on unseen samples of the gener-
ated dataset, according to a 10-fold cross-validation scheme [15].
We considered as ground truth the performance measured by the
reference VR video player when subjected to real-world network
performance traces. In light of this, each test sample i contains the
predictor variables (i.e., TCP throughput, delay and tiling scheme),
and the respective measured values for the performance metrics
(i.e., average bitrate, stall time, quality switch and startup delay).

Furthermore, based on the predicted VR playout characteris-
tics, the QoE indexes were estimated by means of Equation 2. The
parametric constants shown by the model were set to the values

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

ri (Mbps)

(a) Quality (average bitrate) - Zone 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

ri (Mbps)

(b) Quality (average bitrate) - Zone 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

ri (Mbps)

(c) Quality (average bitrate) - Zone 3

Figure 10: Residual error CDFs for quality (average bitrate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08

C
D

F

Normalized ri (switches count)

(a) Quality switch - Zone 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08

C
D

F

Normalized ri (switches count)

(b) Quality switch - Zone 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

Normalized ri (switches count)

(c) Quality switch - Zone 3

Figure 11: Residual error CDFs for the quality switch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.03 0.06 0.09 0.12 0.15

C
D

F

Normalized ri (seconds)

(a) Cumulative Stall time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.008 0.016 0.024 0.032

C
D

F

Normalized ri (seconds)

(b) Startup delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Normalized ri (QoE)

(c) QoE

Figure 12: Residual error CDFs for stall time, startup delay and QoE estimation

presented in Table 3. Based on the results shown by Mao et al. [16],
the q function was set to linear, where q is equal to the bitrate. In
addition (also according to [16]), the stall and startup weights (µ
and ω) were set to 4.3. The value of the quality switches constant
(λ) was tuned to 1 [32]. Finally, the zones weights (α1, α2 and α3)
were empirically set to 0.7, 0.3 and 0, for Zone 1, Zone 2 and Zone
3. The reason behind setting α3 to zero comes from the perfect
prediction scenario considered in the evaluation. In such cases, the
FoV will correspond 100% of tiles of Zones 1 and 2. Thus, there is
no influence of the quality of Zone 3 on the user’ s perception. In
the case that perfect prediction would not be possible, the weights
would need to be tuned accordingly.

The performance of the method is assessed by means of the resid-
ual error calculated between real data sample (entry in the training
set) and the predicted one (as already introduced in Section 5.1
and Equation 3). With the purpose of generalizing the method for

Table 3: Constants and function values assigned to the func-
tion to estimate QoE (refer to Equation 2)

Param. Value
q Linear
µ 4.3
ω 4.3
λ 1
α1 0.7
α2 0.3
α3 0

videos of arbitrary duration, the residual error for the metrics aver-
age bitrate, quality switch and startup delay are normalized by the
factor N of the residual error equation, which corresponds to the

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

considered video length (200 seconds). Figures 10, 11 and 12 show
the Cumulative Distribution (CDF) of the residual error for the four
VR playout performance metrics and the QoE estimation.

Looking at the quality prediction capacities of PERCEIVE (Fig-
ures 10(a) to 10(c)), it is possible to observe that the residual errors
are very small (224 Kb/s and 220 Kb/s for Zones 1 and 2, respectively,
for over 90% of the cases). If normalized by the maximum available
quality (6.0 Mb/s), it represents only 3.73% and 3.67% of residual
error. This means that in roughly 97% of the cases, the quality levels
are correctly predicted. Even though the residual error for Zone 3
is slightly higher (4.5%), it is still within the acceptability range.

The accuracy of the quality switch prediction (Figures 11(a) to
11(c)) shows even better results. For over 90% of the samples, Zones
1, 2 and 3 present a residual error of ri1 ≤ 0.00745, ri2 ≤ 0.01604
and ri3 ≤ 0.01877, respectively. In line with the findings for the
average bitrate prediction, Zone 3 presented a higher residual er-
ror (1.9%), as this is the zone with the highest number of quality
switches during the video playout. In Figure 11(b) it is possible to
observe that on over 80% of samples the residual error is zero. This
is because the quality switch behavior for both extreme cases of
the network performance is predictable: first, when the network
performance is sufficiently high, the rate adaptation will stabilize
at the highest representation, and no further quality switches are
expected. Second, when the network performance is degraded, the
rate adaptation will keep the video playout at the lowest avail-
able quality representation, and, similarly, no further switches are
expected.

The stalling time (Figure 12(a)) shows an error close to 13% for
over 90% of the testing samples. One main reason behind such in-
creased residual error is the wide range of the predicted variable (as
we saw in the regression tree of Figure 9(a)). Nevertheless, several
samples in the training dataset presented zero seconds of stall time.
We found that such predictable cases are associated with high levels
of network performance. For each of these samples, a residual error
of 0.95 was accounted (as 0.95 is the lowest predicted value). As
the presented regression tree is the optimal prune, further growth
would lead to overfitting, and thus a higher cross-validation error.
Due to the relatively high stall time for intermediate and degraded
network performance, the prediction performance is impaired as
the network performance degrades. However, at high levels of stall
time, the QoE is already completely degraded. Thus, the increased
error does not impair the accuracy of the QoE estimation.

The final VR playout parameter, the startup delay (Figure 12(b)),
is characterized as the elapsed time between the request of the video
and the playout of the first segment. In the considered context, the
startup delay prediction presented a well predictable pattern with
ri ≤ 0.00473 for over 90% of the cases. Also, the regression tree
presented a stable prediction performance across all the evaluated
samples.

Finally, Figure 12(c) depicts the residual error for the QoE es-
timation. By applying the QoE model defined in Section 4.2 to
each sample i , it is possible to estimate QoE for both the predicted
playout values and the original ones. Then, the residual error can
be calculated. Through this procedure, the QoE estimation error
induced by the proposed prediction scheme can be assessed. As
shown in Figure 12(c), the QoE estimation presents ri ≤ 0.03922
for over 90% of the cases.

6 CONCLUSION
Virtual Reality applications based on adaptive tile-based video
streaming are booming, as VR content becomes available to the
general public. To be able to cope with their ultra-high bandwidth
and low latency requirements, network and services providers are
required to assess the end-client perceived performance of such
services.

In this paper we presented PERCEIVE, a novel VR performance
evaluation method to assess the user’s perception of the VR con-
tent when streamed through the network. By means of machine
learning techniques applied to the network performance indica-
tors, it predicts the adaptive VR performance both in terms of VR
main playout parameters (quality, quality switches, stalling time
and starting time) and the perceived QoE. To our knowledge, this
is the first VR performance model.

PERCEIVE has been evaluated considering a real-world envi-
ronment, in which VR videos are streamed while subjected to an
LTE/4G network performance. Then, we assessed its accuracy by
means of the residual error between the predicted andmeasured val-
ues. PERCEIVE is able to predict the playout performance metrics
with an average prediction error lower than 3.7% and, the perceived
quality with a prediction error lower than 4% for over 90% of all
the tested cases. PERCEIVE not only provides very high prediction
accuracy, but also allows analyzing the influence of networks on
the VR streaming parameters. This feature has helped us pinpoint
the network delay as the QoS feature that affects the transport of
VR services the most.

We believe our work is one step forward in the assessment of
VR applications performance, which is an open subject in the state-
of-the-art on multimedia network management. Although the pro-
posed QoE model has not been validated through subjective tests,
we believe it is an acceptable approach considering the scope of this
work. As we are evaluating the predictability of the QoE indicator
based on the performance of the application layer, possible adjust-
ments in the weights of Equation 1 will not affect the prediction
error of the QoE indicator. Aiming at providing realistic weights for
Equation 1, as future work, we intend to perform subjective tests
of the proposed QoE model. We also intend to explore and improve
the estimation capabilities of our approach, focusing on viewport
prediction and on adaptive streaming heuristics.

ACKNOWLEDGEMENT
This research was performed partially within the project G025615N
"Optimized source coding for multiple terminals in self-organizing
networks" from the fund for Scientific Research-Flanders (FWO-V).
This work was also partially funded by CAPES, CNPq, FAPERGS
and IFSul PROPESP.

REFERENCES
[1] Arslan Ahmad, Alessandro Floris, and Luigi Atzori. 2016. QoE-centric service

delivery: A collaborative approach among OTTs and ISPs. Computer Networks
110 (2016), 168 – 179. https://doi.org/10.1016/j.comnet.2016.09.022

[2] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. 2016. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In 2016 IEEE
International Conference on Big Data (Big Data). 1161–1170. https://doi.org/10.
1109/BigData.2016.7840720

[3] BBC. 2017. Facebook: We want a billion people in VR. (2017). https://goo.gl/
2LNuAo Accessed 16-October-2017.

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

[4] Ethan Blanton, Dr. Vern Paxson, andMark Allman. 2009. TCP Congestion Control.
RFC 5681. (Sept. 2009). https://doi.org/10.17487/RFC5681

[5] Cisco. 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021. Technical Report. Cisco Systems.

[6] C. Concolato, J. Le Feuvre, F. Denoual, E. Nassor, N. Ouedraogo, and J. Taquet.
2017. Adaptive Streaming of HEVC Tiled Videos using MPEG-DASH. IEEE
Transactions on Circuits and Systems for Video Technology PP, 99 (2017), 1–1.
https://doi.org/10.1109/TCSVT.2017.2688491

[7] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. 2017. Viewport-adaptive
navigable 360-degree video delivery. In 2017 IEEE International Conference on
Communications (ICC). 1–7. https://doi.org/10.1109/ICC.2017.7996611

[8] R. I. T. da Costa Filho, W. Lautenschlager, N. Kagami, V. Roesler, and L. P. Gaspary.
2016. Network Fortune Cookie: Using Network Measurements to Predict Video
Streaming Performance and QoE. In 2016 IEEE Global Communications Conference
(GLOBECOM). 1–6. https://doi.org/10.1109/GLOCOM.2016.7842022

[9] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and J. Sköld. 2014. 5G
wireless access: requirements and realization. IEEE Communications Magazine
52, 12 (December 2014), 42–47. https://doi.org/10.1109/MCOM.2014.6979985

[10] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina Papa-
giannaki. 2016. Measuring Video QoE from Encrypted Traffic. In Proceedings of
the 2016 Internet Measurement Conference (IMC ’16). ACM, New York, NY, USA,
513–526. https://doi.org/10.1145/2987443.2987459

[11] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. Fixation Prediction for 360 Video Streaming in Head-
Mounted Virtual Reality. In Proceedings of the 27th Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV’17). ACM, New
York, NY, USA, 67–72. https://doi.org/10.1145/3083165.3083180

[12] M. Hosseini and V. Swaminathan. 2016. Adaptive 360 VR Video Streaming: Divide
and Conquer. In 2016 IEEE International Symposium on Multimedia (ISM). 107–110.
https://doi.org/10.1109/ISM.2016.0028

[13] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui
Zhang. 2016. CFA: A Practical Prediction System for Video QoE Optimization. In
13th USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 137–150. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/jiang

[14] Xianshu Jin, Hwiyun Ju, Sungchol Cho, Boyeong Mun, Cheongbin Kim, and
Sunyoung Han. 2016. QoS routing design for adaptive streaming in Software
Defined Network. In 2016 International Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS). 1–6. https://doi.org/10.1109/ISPACS.2016.
7824694

[15] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, Vol. 14. Stanford, CA, 1137–1145.

[16] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). ACM, New York,
NY, USA, 197–210. https://doi.org/10.1145/3098822.3098843

[17] Sreerama K. Murthy. 1998. Automatic Construction of Decision Trees from Data:
A Multi-Disciplinary Survey. Data Min. Knowl. Discov. 2, 4 (Dec. 1998), 345–389.
https://doi.org/10.1023/A:1009744630224

[18] H. Nam, K. H. Kim, and H. Schulzrinne. 2016. QoE matters more than QoS: Why
people stop watching cat videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 1–9. https://doi.org/10.
1109/INFOCOM.2016.7524426

[19] Omar A. Niamut, Emmanuel Thomas, Lucia D’Acunto, Cyril Concolato, Franck
Denoual, and Seong Yong Lim. 2016. MPEG DASH SRD: Spatial Relationship
Description. In Proceedings of the 7th International Conference on Multimedia
Systems (MMSys ’16). ACM, New York, NY, USA, Article 5, 8 pages. https://doi.
org/10.1145/2910017.2910606

[20] Pradrip Paudyal, Federica Battisti, and Marco Carli. [n. d.]. Impact of video
content and transmission impairments on quality of experience. Multimedia
Tools and Applications 2016 ([n. d.]). https://doi.org/10.1007/s11042-015-3214-0

[21] PERCEIVE. 2018. Performance Estimation for VR Videos. (2018). https://github.
com/rtcostaf/PERCEIVE Accessed 2-April-2018.

[22] Stefano Petrangeli, Jeroen Famaey, Maxim Claeys, Steven Latré, and Filip
De Turck. 2015. QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video
Streaming. ACM Trans. Multimedia Comput. Commun. Appl. 12, 2, Article 28 (Oct.
2015), 24 pages. https://doi.org/10.1145/2818361

[23] Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip
De Turck. 2017. AnHTTP/2-BasedAdaptive Streaming Framework for 360 Virtual
Reality Videos. In Proceedings of the 2017 ACM on Multimedia Conference (MM
’17). ACM, New York, NY, USA, 306–314. https://doi.org/10.1145/3123266.3123453

[24] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Optimizing 360
Video Delivery over Cellular Networks. In Proceedings of the 5th Workshop on All
Things Cellular: Operations, Applications and Challenges (ATC ’16). ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/2980055.2980056

[25] R Core Team. 2017. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[26] Muhammad Zubair Shafiq, Jeffrey Erman, Lusheng Ji, Alex X. Liu, Jeffrey Pang,
and Jia Wang. 2014. Understanding the Impact of Network Dynamics on Mobile
Video User Engagement. SIGMETRICS Perform. Eval. Rev. 42, 1 (June 2014),
367–379. https://doi.org/10.1145/2637364.2591975

[27] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE Multimedia 18, 4 (2011), 62–67.

[28] M. Torres Vega, C. Perra, and A. Liotta. 2018. Resilience of Video Streaming
Services to Network Impairments. IEEE Transactions on Broadcasting (2018).
https://doi.org/10.1109/TBC.2017.2781125

[29] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177–2180.

[30] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D. Hämäläinen. 2015.
Kvazaar HEVC encoder for efficient intra coding. In 2015 IEEE International
Symposium on Circuits and Systems (ISCAS). 1662–1665. https://doi.org/10.1109/
ISCAS.2015.7168970

[31] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. 2017. A Dataset for
Exploring User Behaviors in VR Spherical Video Streaming. In Proceedings of the
8th ACM on Multimedia Systems Conference (MMSys’17). ACM, New York, NY,
USA, 193–198. https://doi.org/10.1145/3083187.3083210

[32] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. SIG-
COMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 325–338. https://doi.org/10.
1145/2829988.2787486

APPENDIX
This appendix provides a detailed description of the procedure to
be followed in order to allow reproducibility of the experiments
performed in this work. All the employed datasets and source code
are available at the PERCEIVE repository [21].

In Section 1.1 we present an overview of the experimental design
and its general setup. Next, the re-encoding procedure required to
generate tile-based VR-videos is explained in Section 1.2 Then, in
Section 1.3, the VR video player considered in this work is examined.
Subsequently, both the network and the VR video playout datasets
are thoroughly discussed in Section 1.4. Finally, in Section 1.5, we
give an overview of the R scripts responsible for performing the
machine learning task.

1.1 Experimental Procedure Overview and
Specifications

The experimental procedure is split into three steps, as explained in
Section 5.1 (Figure 4). First, the VR video player requests tile-based
videos, from a web server, while subjected to controlled network
conditions. The VR video player is responsible for measuring and
recording the VR video playout performance, while the network
conditions are enforced by Linux Traffic Control (TC) mechanism.
Second, the VR video playout performance indicators are given as
input to the machine learning process. At this stage, machine learn-
ing is responsible for characterizing how each network condition
impacts the video playout performance. Finally, in the third step, an
estimation of QoE is provided by giving the VR video performance
as input to the QoE model.

To perform the first step, we employ three dedicated virtual
machines deployed on the imec iLab.t Virtual Wall emulation plat-
form5. The first machine was used to run the VR video player, while
the second was used to host tile-based VR videos using a regular
Apache web server. Through traditional IP routing and Linux Traf-
fic Control (TC), the third machine was configured as a gateway
between the other two, acting as a network condition enforcement
point. Each virtual machine was configured with a quad-core Intel
5imec iLab.t: http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Xeon E3-1220 v3 CPU running at 3.10GHz, 15GB RAM, 16GB of
storage and running Linux Ubuntu 14.04 (3.13.0-33). The full list
of packages and its respective versions is available at PERCEIVE’s
repository [21] (Setup/packages.txt).

Steps two and three do not require any specific hardware or
software specification. Step two was performed using R (1.0.143)
[25], and for the third step we employed a simple electronic spread-
sheet to compute the QoE model (Section 4.2) over the VR video
playout performance indicators. After this overview, the remainder
of this section will cover practical details of the main elements of
the experiment.

1.2 Tile-based HAS VR-video Re-encoding
In order to generate tile-based HAS VR-videos, it was necessary
to re-encode the original VR videos from Wu et al.’ s dataset [31]
(namely “Google Spotlight-HELP" and “Freestyle Skiing"). Herein,
the re-encoding procedure is explained step-by-step.
After downloading the original VR-videos “Google Spotlight-
HELP"6 and “Freestyle Skiing"7, the raw videos must be first ex-
tracted using the following command of FFMPEG8:

$ f fmpeg − i i nV ideo . mkv −c : v rawvideo
outVideo . yuv

Next, the HEVC tile-based version of the videos is generated using
Kvazaar9. Kvazaar splits the videos based on the generated YUV
file, the desired tiling scheme, resolution and frames per second
(FPS), as shown in the following example. This command is to be
executed per video quality.

$ kvazaa r − i ou tVideo . yuv −− input − r e s
3840 x2160 −o outV ideo12x4 . hevc −− t i l e s
12 x4 −− s l i c e s t i l e s −−mv− c o n s t r a i n t
f r ame t i l ema r g i n −q 30 −−pe r i o d 30
−− input − f p s 30

Subsequently, each of the tiles of the VR-video is packed into an
mp4 container employing the MP4Box software 10.

$ MP4Box −add outV ideo12x4 . hevc : s p l i t _ t i l e s
− f p s 30 −new v i d e o _ t i l e d _ 4K_1 2 x 4 . mp4

Finally, based on the desired length of the HAS segment, the per-tile
per segment files of the VR-video are extracted. For example, the
following command defines one second for the segment length,
12x4 tiling scheme and three video resolutions (720p, 1080p and 4K).
This procedure also generates MPD files by using multiple quality
representations.

$ MP4Box −dash 1000 −rap − f r ag −rap
− p r o f i l e l i v e −out h a s _ t i l e d _ 1 2 x 4 . mpd
. . / SOURCE/ v i d e o _ t i l e d _ 7 2 0 _ 1 2 x 4 . mp4
. . / SOURCE/ v i d e o _ t i l e d _ 1 0 8 0 _ 1 2 x 4 . mp4
. . / SOURCE/ v i d e o _ t i l e d _ 4K_1 2 x 4 . mp4

6https://youtu.be/G-XZhKqQAHU
7https://youtu.be/0wC3x_bnnps
8FFMPEG: https://www.ffmpeg.org/
9Kvazaar: https://github.com/ultravideo/kvazaar
10MP4box: https://gpac.wp.imt.fr/mp4box/

1.3 VR Video Player
Both the source code and binary for the VR video player are avail-
able at the PERCEIVE repository [21] (VR-player/Source and VR-
player/bin respectively). The player provides support to variable
tiling scheme and can be adapted to several QoE zone schemes
(Section 3.1). Additionally, the player supports viewport traces (a
previously recorded log regarding the user’s head track) as input.
The player is written in C language and employs Curl library to
perform HTTP requests. The player also allows parameters to be
passed through command line arguments. It is particularly useful
when running large experiments, so that the player parameteriza-
tion can be done dynamically by an external script. The full set of
parameters is shown in Table 5. For example, the following player
call is used for requesting the first 60 segments of the video named
“video2”, available at the IP “10.0.0.251”, using the viewport trace
stored in the file “user1/video2.txt”, using 100 seconds timeout and
a 12x4 tiling scheme. In this case, the resultant VR-video playout
performance will be written in the file named “video2playout”.
$ VR−p l a y e r 1 0 . 0 . 0 . 2 5 1 v ideo2 60
v i d e o 2p l a you t u s e r 1 / v i deo2 . t x t 100 4 12

Table 4: VR-video player command line arguments.

Sequence Description

1 IP address of the video server
2 Video filename
3 Number of segments to download
4 Output filename (to write playout performance results)
5 Viewport trace filename (head track logs)
6 Session timeout (max number of seconds)
7 Number of vertical tiles (tiling scheme)
8 Number of horizontal tiles (tiling scheme)

1.4 Video Playout and Network Datasets
The file “Sample.csv" (directory “Network dataset" [21]) provides
the 48 network conditions considered in our experiments. The
conditions were extracted from [29] and adapted according the
procedure described in Section 5.2. The range for each input param-
eter is summarized in Table 1. The configuration ID is the leftmost
field in the file “Sample.csv", followed by the fields throughput TCP
(Mb/s), delay (msec) and packet loss rate (%). After parsed, these
values are given as input to the Linux TC, which act as a network
condition enforcement point.

In turn, the file “playoutPerformance.txt" (directory “Playout
performance dataset" [21]) provides the resultant output of the
first step of the experimental procedure (described in Section 1.1).
Furthermore, this is the same file given as input to the machine
learning process (step two). Along with the network dataset, Table
5 summarizes the input parameters for generating the playout
performance dataset.

Table 6 shows the set of fields of the resultant VR-video playout
performance. Fields 1 - 5 are related to the video input parameters,
listed in Table 5. Fields 6 - 8 are related to the network conditions.
Fields 9 - 22 corresponds to the VR-video playout performance
measured by the VR-video player. Finally, fields 23 - 25 are calcu-
lated as the number of per-zone tiles times the average bitrate for
each video resolution. In the PERCEIVE repository, we provide a

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

Table 5: PERCEIVE video input parameters.

Parameter Value/Range Details

VR video Google Spotlight-HELP and Freestyle Skiing V1 and V2 (from [31])
Head track traces Google Spotlight-HELP and Freestyle Skiing V1 and V2 (from [31])
Video format MP4 - HEVC tile-based and HAS Using MP4Box
Video encoder Kvazaar Kvazaar encoder [30]
HAS 720p (1.8Mb/s), 1080p (2.7Mb/s) and 4K (6Mb/s) Kvazaar encoder [30]
Segment size 1 second From [11]
Tiling scheme 8x4 and 12x4 From [24]
Considered viewport One central tile and eight border tiles Section 3.1

bash script “addQuality.sh" (directory Scripts) which can be used
to perform this computation.

Table 6: Fields sequence of the file “playoutPerformance.txt"
(Field 1 is the leftmost value in the file).

Field Description Type/unit

1 Video ID string
2 User ID string
3 Tile format horizontal X vertical
4 Network trace ID string
5 Experiment round integer
6 TCP throughput Mb/s
7 Delay msec
8 Packet loss %
9 Number of tiles 720p for Zone 1 integer
10 Number of tiles 1080p for Zone 1 integer
11 Number of tiles 4K for Zone 1 integer
12 Number of tiles 720p for Zone 2 integer
13 Number of tiles 1080p for Zone 2 integer
14 Number of tiles 4K for Zone 2 integer
15 Number of tiles 720p for Zone 3 integer
16 Number of tiles 1080p for Zone 3 integer
17 Number of tiles 4K for Zone 3 integer
18 Number of quality switches for Zone 1 integer
19 Number of quality switches for Zone 2 integer
20 Number of quality switches for Zone 3 integer
21 Stall time seconds
22 Startup delay seconds
23 Average bitrate for Zone 1 Mb/s
24 Average bitrate for Zone 2 Mb/s
25 Average bitrate for Zone 3 Mb/s

1.5 Machine Learning
The directory “R Scripts" [21] provides all the source code used to
generate the regression decision trees shown in Section 5.3. Each
of the eight decision trees has its own source code (R script). In
addition to the R tool [25], we employed the following packages:
stargazer 11, gdata 12, rpart 13, tree 14 and rpart.plot 15. Finally, it is
worth mentioning that the trees shown in this work were obtained
through their optimal prune. Which means that during the prune
stage, we selected the complexity parameter (CP) associated with
the minimum cross-validation error (xerror).

11https://cran.r-project.org/web/packages/stargazer/index.html
12https://cran.r-project.org/web/packages/gdata/index.html
13https://cran.r-project.org/web/packages/rpart/index.html
14https://cran.r-project.org/web/packages/tree/index.html
15https://cran.r-project.org/web/packages/rpart.plot/index.html

