
Low-Latency Delivery of News-Based Video Content
Jeroen van der Hooft, Dries Pauwels, Cedric De Boom, Stefano Petrangeli,

Tim Wauters, and Filip De Turck
Department of Information Technology, Ghent University - imec

jeroen.vanderhooft@ugent.be

ABSTRACT
Nowadays, news-based websites and portals provide significant
amounts of multimedia content to accompany news stories and
articles. Within this context, HTTP Adaptive Streaming is generally
used to deliver video over the best-effort Internet, allowing smooth
video playback and a good Quality of Experience (QoE). To stimu-
late user engagement with the provided content, such as browsing
and switching between videos, reducing the video’s startup time
has become more and more important: while the current median
load time is in the order of seconds, research has shown that user
waiting times must remain below two seconds to achieve an ac-
ceptable QoE. We developed a framework for low-latent delivery of
news-related video content, integrating four optimizations either
at server-side, client-side, or at the application layer. Using these
optimizations, the video’s startup time can be reduced significantly,
allowing user interaction and fast switching between available con-
tent. In this paper, we describe a proof of concept of this framework,
using a large dataset of a major Belgian news provider. A dashboard
is provided, which allows the user to interact with available video
content and assess the gains of the proposed optimizations. Particu-
larly, we demonstrate how the proposed optimizations consistently
reduce the video’s startup time in different mobile network scenar-
ios. These reductions allow the news provider to improve the user’s
QoE, reducing the startup time to values well below two seconds
in different mobile network scenarios.

CCS CONCEPTS
• Information systems→Multimedia streaming;Content rank-
ing; Personalization; • Networks → Application layer protocols;
Mobile networks; Public Internet;

KEYWORDS
HTTP Adaptive Streaming, news content, low-latency, segment
duration, HTTP/2, content ranking, prefetching, mobile networks

ACM Reference Format:
Jeroen van der Hooft, Dries Pauwels, Cedric De Boom, Stefano Petrangeli,
Tim Wauters, and Filip De Turck. 2018. Low-Latency Delivery of News-
Based Video Content. In MMSys’18: 9th ACM Multimedia Systems Confer-
ence, June 12–15, 2018, Amsterdam, Netherlands. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3204949.3208110

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5192-8/18/06.
https://doi.org/10.1145/3204949.3208110

1 INTRODUCTION
In recent years, news providers have started to produce significant
amounts of multimedia content to accompany news stories and
articles. As an example, deredactie.be1, an important Belgian news
provider, now offers a large number of video-based news articles,
containing individual topics or full news broadcasts. To encourage
consumers to use the provided services, facile user interaction is of
the utmost importance. In this context, reducing the video’s startup
time has become more and more important: while videos generally
take in the order of seconds to load, research has shown that user
waiting times must remain below two seconds to achieve acceptable
Quality of Experience (QoE) [1].

Nowadays, HTTP Adaptive Streaming (HAS) is generally used
to deliver video content over the best-effort Internet. In HAS, video
is encoded at different quality levels and temporally divided into
multiple segments with a typical length of 2 to 30 seconds [5]. An
HAS client requests these video segments at the most appropriate
quality level, based on e.g., the available bandwidth and the amount
of buffered content. The client stores the incoming segments in a
buffer, before decoding the sequence in linear order and playing
out the video on the user’s device. This approach generally enables
smooth video playout, and therefore results in a higher QoE than
traditional video streaming techniques.

In previous work, we presented a framework for low-latency de-
livery of news-related HAS content [7]. This framework integrates
four complimentary optimizations in the content delivery chain:
(i) server-side encoding to provide shorter video segments during
the video’s startup phase, (ii) the use of HTTP/2’s server push at the
application layer, (iii) server-side user profiling to identify relevant
content for each user and (iv) client-side storage to hold proactively
delivered content. Results showed that these optimizations allow to
significantly reduce the startup delay of video streaming sessions,
at the cost of limited network overhead and additional complexity
at server- and client-side. In this paper, we present a proof of con-
cept to demonstrate the gains brought by the proposed framework.
In the demo, the user is presented with a dashboard which allows
to set different parameter and network configurations, and allows
the user to start and monitor different video streaming sessions.
Applying the considered optimizations on a dataset of user requests
to deredactie.be, the demo shows that the video’s startup time can
be reduced significantly in different network scenarios.

The remainder of this paper is structured as follows. In Section 2,
the previously proposed framework is discussed, elaborating on
the advantages of each of the optimizations. The experimental
setup and proof of concept is presented in Section 3, discussing
the most important features of the provided demo dashboard. Final
conclusions are presented in Section 4.

1http://deredactie.be/cm/vrtnieuws

537



MMSys’18, June 12–15, 2018, Amsterdam, Netherlands J. van der Hooft et al.

Figure 1: The proposed HAS delivery framework for media-
rich content from news providers [7].

2 PROPOSED OPTIMIZATIONS FOR
LOW-LATENCY DELIVERY

The proposed framework integrates four complimentary optimiza-
tions in the content delivery chain, as illustrated in Figure 1. First,
we consider video encoding at server-side, using a shorter video
segment duration to improve playout delay. Second, we focus on
the applied application layer protocol, discussing the possibilities
of HTTP/2’s server push feature. Third, we consider user profiling
as a way to predict user interest and interaction. Fourth, client-side
storage is considered to hold content which is proactively delivered
to the user (i.e., without the user explicitly requesting it), once it is
deemed of interest by the profiling algorithm.

2.1 Server-Side Encoding
As found in previous work, reducing the duration of video segments
comes with a number of advantages [8]. Most importantly, shorter
segments require a lower download time, allowing the player to
start video playout faster. However, since every segment has to
start with an Instantaneous Decoder Refresh (IDR) frame, a higher
bit rate is required to achieve the same visual quality compared
to segments of higher length. Moreover, since a unique request is
required to retrieve each single video segment, solutions with low
segment duration are susceptible to high round-trip times (RTT).
This problem mainly arises in mobile networks, where the RTT is
in the order of 100ms, depending on the type of connection.

While traditional streaming solutions use a fixed segment du-
ration in the order of 2 to 30 seconds, we propose to use different
segment durations for the startup and steady-state phase of the
video streaming session. This allows us to both reduce the video
startup time, and overcome the aforementioned issues once the
video is steadily playing. Two approaches are possible: (i) initially
start at the lowest segment duration d1, switching to the highest
segment duration dn once k = dn

d1
segments have been downloaded,

and (ii) initially start at the lowest segment duration d1, switch-
ing to d2, d3, . . . until a segment duration of dn is reached. The
advantage of the latter is that the buffer is ramped up smoothly,
preventing possible freezes when switching from the lowest to the
highest segment duration when the buffer level is relatively low.

2.2 Application Layer Optimizations
At the start of an HAS video streaming session, a number of re-
sources need to be retrieved by the client. Using the DASH standard,
the client first sends a request for the video’s media presentation
description (MPD) file, which contains information on the available
content (e.g., the video’s duration and available quality representa-
tions). Based on the contents of this file, the client then proceeds

to download the initialization segment and the required video seg-
ments one by one. In 2015, the HTTP/2 standard was published
as an IETF RFC. Its main purpose is to reduce the latency in web
delivery, using request/response multiplexing, stream prioritiza-
tion and server push. In previous work, we suggested to use the
latter to push video content from server to client [8]. Pushing video
resources allows to eliminate idle RTT cycles, reducing buffering
time and improving bandwidth utilization. As such, it allows to
further reduce the startup time of video streaming sessions. In the
presented proof of concept, the web page, the video player and the
video thumbnails have already been retrieved; therefore, the server
will only push the initialization segment and the first k segments
as soon as a request for a video’s MPD is issued.

2.3 Server-Side User Profiling
A third optimization consists of server-side user profiling. Its pur-
pose is to build a profile for all platform users, determining their
preferences towards certain news content. Traditionally, user pro-
filing is about representing the users of a system in such a way
that similar users share similar representations. In a recommender
system setting based on collaborative filtering, users and their con-
sumed items are projected in a low-dimensional vector space [2].
While user vectors are often static, it can be beneficial to explicitly
model users in a dynamic fashion, for example by updating the user
vector with every consumed item.

In the proposed framework, we want to determine the relevance
of a given (video) article to a given user. As traditionally done
in recommender systems, we therefore represent each user and
article by a low-dimensional vector. To this end, we assume that
every video has associated textual metadata, and apply a natural
language processing model to represent each of the articles. Based
on previous work, the word2vec model is selected [3, 7]. Since
this model operates on word-level, each article is represented by
the sum of the word vectors it contains. A user is represented by
a vector as well, which is initially an all-zeros vector. Each time
a new article is requested by a user, the corresponding vector is
updated by summation of the user and article vector in an online
fashion. This approach allows us to create a unique vector for each
user, building a user profile over time. The relevance of an article ®a
to a user ®u can then be determined using the cosine similarity:

cos (®u, ®a) = ®u · ®a
∥®u∥2∥ ®a∥2

. (1)

The higher this similarity, the higher the user’s preference to-
wards an article. In the presented proof of concept, this metric will
be used to rank different news articles by potential user interest.

2.4 Client-Side Storage
A fourth and final component of the proposed framework consists
of client-side storage, which is used to enable proactive delivery
of relevant video content. If the right content is sent (i.e., content
which will be consumed in the future), using such approach allows
to significantly reduce the video session’s startup time. Depend-
ing on the use case scenario, multiple options for content delivery
and storage are possible. In a stand-alone application, dedicated
storage on the local device can be used. Based on server recom-
mendations, the application can retrieve content in the background.

538



Low-Latency Delivery of News-Based Video Content MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Figure 2: Experimental setup.

In web-based applications, control over client-side storage is less
evident. Recent versions of browsers such as Google Chrome allow
to prefetch web pages which are referred to in the current page.
Pages are prerendered in a hidden tab, and moved to the foreground
upon request. It is worth noting that HTTP/2 could be used to push
additional resources as well, since most browsers allow to store
these resources in the browser’s cache.

In the proposed framework, recently published content can be
prefetched by the client, anticipating future requests. To limit client-
side storage and bandwidth overhead, only n videos are considered
at each point in time. To determine the most relevant content, three
approaches are proposed: (i) rank articles based on the number of
requests in the last hour; (ii) rank articles based on recency, i.e.,
most recent content first, and (iii) rank articles based on the cosine
similarity between a user and each of the articles. In the provided
proof of concept, each of the these three approaches are showcased.

3 PROOF OF CONCEPT
Deredactie.be is one of the major news websites in Belgium, hosted
by the Flemish Radio and Television Broadcasting Organization
(VRT). In recent years, its focus has shifted from simple text-based
articles towards multimedia-rich news reports. Because of this, the
website is an excellent use case for the proposed delivery framework.
In collaboration with VRT, Van Canneyt et al. were able to collect
a data set containing approximately 300 million website requests,
issued between April 2015 and January 2016 [6]. For every request,
among others the requested URL, the referrer URL, the server’s
local time, and the client’s hashed IP and cookie ID were logged.

From the given dataset, all users and article requests were ex-
tracted. The HTML and XML sources of the requested articles were
retrieved, and relevant information such as the title, summary, con-
tent and embedded video was extracted. In the demo, a snapshot
of deredactie.be is used: the audience is shown a list of the twenty
most recently published video articles as of Sunday 30 August 2015,
7.30 PM, complete with poster, title and time of publication. Article
requests prior to this point in time are used to build a user profile
for different users in the dataset. To this end, the title, summary and
text content from each article is extracted, Dutch stopwords are
eliminated and the resulting lower-case text is used as input to train
a word2vec-based model. Users and articles are both represented by
a 100-dimensional vector, allowing us to determine e.g. the cosine
similarity between a given user and article. From the set of users, a
representative user was selected which mainly has shown interest
in Het Journaal (a news program) and articles concerning weather
and climate. Ordering the list of videos according to popularity, re-
cency and cosine similarity, will show that the proposed framework
is able to capture the user’s preference towards these subjects.

By default, deredactie.be provides its video content at a frame
rate of 25 FPS, resolutions ranging between 384 × 216 to 640 × 360

and a segment duration of 10 s. This content was re-encoded using
AVC/H.264 with the same frame rate and resolution, but with a
segment duration of 1, 2, 5 and 10 s. To allow each segment to be
decoded independently, every segment starts with an IDR frame,
and the Group of Pictures (GOP) length is set to 25 and 250 respec-
tively. To realize the same visual quality and target bitrate as the
original content, the Constant Rate Factor (CRF) rate control in the
x264 encoder is enabled, with a CRF value of 20. This results in an
average video bit rate of 824 and 740 kb/s for the lowest resolution
at a segment duration of 1 and 10 s respectively, indicating that
there is indeed an encoding overhead for lower segment durations.

The experimental setup used in the demo is shown in Figure
2. Docker containers are running in the background, hosting an
HTTP/1.1- and HTTP/2-enabled Jetty server. This server provides
the required video content, and is able to parse URL queries re-
questing the pushing of video resources. Linux’ Traffic control (tc)
is applied on the Docker interface, so that the available bandwidth
of the client can be shaped according to both 3G and 4G traces
collected in real mobile networks [4, 8], and the latency can be set
to 120 and 60ms respectively. In the foreground, a dashboard is pro-
vided to consume the video content and assess the startup times in
different configurations. This dashboard runs in the Google Chrome
browser, which is connected to two Node.js proxies. A first proxy
is used to issue POST requests, setting the required configurations
and for instance (re)starting bandwidth shaping between client and
server. A second proxy intercepts and forwards all GET requests
to the server, unless a "cached" parameter in the URL’s query is
set to true: in this case, the proxy retrieves the resources from the
local file system and serves it to the client. This way, the startup
time can be compared in different scenarios, where content is either
retrieved over HTTP/1.1 or HTTP/2, or is assumed prefetched by
the client. It is worth noting that these proxies are only required in
the demo, but would not be needed in a real-life scenario, where
content can be stored in the browser’s cache or on the local device.

The provided demo dashboard is shown in Figure 3. The follow-
ing elements can be distinguished:

(1) Configuration panel, with following settings:
• The type of network (3G or 4G);
• The content order (popularity, recency or user profiling);
• The segment duration scheme (constant 10 s, switching
from 1 to 10 s, or gradually going from 1 to 2, 5 and 10 s);

• The application layer (HTTP/1.1 or HTTP/2);
• Prefetching (true or false);
• The prefetching approach (prefetch most relevant content
based on popularity, recency or user profiling);

• The amount of articles to prefetch (4-8-12-16).
(2) Video content panel. Here, the twenty most recently pub-

lished articles are presented for browsing. Articles which
have been watched by the monitored user are indicated with
an eye symbol, prefetched articles with a green background;

(3) Radar chart, showing the cosine similarity between the user
vector and the category vector (i.e., the sum of article vectors,
for all articles published within a given news category);

(4) Embedded DASH.js video player. The reference player
for the DASH standard, which has been slightly modified
to enable different segment durations during the streaming

539



MMSys’18, June 12–15, 2018, Amsterdam, Netherlands J. van der Hooft et al.

1

2

3 4

5

Figure 3: The demo dashboard.

session. Loading is visualized by a loading spinner, and audio
has been made available to make stalling more clear. The
selected segment duration is shown beneath the video, and
can e.g. been seen changing from 1 to 10 s at startup;

(5) Results panel. At the top, the available bandwidth and se-
lected quality level are shown for the current video session.
This graph changes dynamically over time, giving an indica-
tion of the real-time experiment. At the bottom, the startup
time of all video sessions is reported, along with the most
important configurations. A progress bar is used to visualize
the loading time during the startup phase.

Users are allowed to freely interact with the demo, assessing
the system’s performance by altering the different configuration
parameters. It is worth noting that the results in Figure 3 reflect
the gains which can be achieved by the proposed framework. For
instance, using 3G as network type, the startup time for the default
configuration of deredactie.be (i.e. 10 s segment duration, HTTP/1.1
without prefetching), the startup time of one of the presented videos
is 6.5 s. Reducing the segment duration to 1 s, this interval can be
reduced to 1.8 s, and additionally applying HTTP/2 server push, to
1.6 s. When prefetching is enabled and available content is selected,
the startup time goes down to values below 0.6 s. Given the available
quality representations, startup times are significantly lower when
a 4G network is used. For instance, the startup time is 2.2 s for
the default configuration, and 0.6 s for a segment duration of 1 s
with HTTP/2 server push. In absolute numbers, reductions in a 4G
scenario are lower than for 3G, but in relative numbers, are quite
similar. The higher throughput does however allow to consider
uses cases with more resource requirements, such as 360° video
delivery for virtual reality. This will be the subject of future work.

4 CONCLUSIONS
In this paper, we presented a proof of concept of a framework for
low-latency delivery of news-related video content. This frame-
work incorporates four complimentary optimizations, which reside

either at server-side, client-side, or at the application layer. The
resulting demonstration, which is based on the dataset of a major
Belgian news provider, allows us to show that significant reductions
to the video startup time can be achieved by each of the proposed
optimizations. These reductions allow the news provider to sig-
nificantly improve the user’s Quality of Experience, encouraging
low-latency user interaction with the provided video content. In
future work, we will apply the considered optimizations in other
use case scenarios, such as 360° video delivery for virtual reality.

ACKNOWLEDGMENTS
Jeroen van der Hooft is funded by grant of the Agency for Inno-
vation by Science and Technology in Flanders (VLAIO). Cedric De
Boom is funded by grant of the Research Foundation - Flanders
(FWO). This research was performed partially within the imec PRO-
FLOW project (150223) and the FWO "Optimized source coding for
multiple terminals in self-organising networks" project (G025615N).

REFERENCES
[1] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler. 2012. Waiting Times in Quality

of Experience for Web-Based Services. In International Workshop on Quality of
Multimedia Experience.

[2] Y. Koren, R. Bell, and C. Volonsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (2009), 30–37.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. 2013 (2013).

[4] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen. 2012. Video
Streaming Using a Location-Based Bandwidth-Lookup Service for Bitrate Planning.
ACM Transactions on Multimedia Computing, Communications and Applications 8,
3 (2012), 24:1–24:19.

[5] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia. 2015. A Sur-
vey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communications
Surveys Tutorials 17, 1 (2015), 469–492.

[6] S. Van Canneyt, B. Dhoedt, S. Schockaert, and T. Demeester. 2016. Knowledge
Extraction and Popularity Modeling Using Social Media. (2016).

[7] J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, and F. De Turck. 2018. An
HTTP/2 Push-Based Framework for Low-Latency Adaptive Streaming Through
User Profiling. In Proceedings of the IEEE/IFIP Network Operations and Management
Symposium. Accepted for publication.

[8] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177–2180.

540


