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ABSTRACT

The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evo-

lutionary Algorithm (MO-RV-GOMEA) has been shown to exhibit

excellent performance in solving various bi-objective benchmark

and real-world problems. We assess the competence of MO-RV-

GOMEA in tackling many-objective problems, which are normally

defined as problems with at least four conflicting objectives. Most

Pareto dominance-based Multi-Objective Evolutionary Algorithms

(MOEAs) typically diminish in performance if the number of ob-

jectives is more than three because selection pressure toward the

Pareto-optimal front is lost. This is potentially less of an issue for

MO-RV-GOMEA because its variation operator creates each off-

spring solution by iteratively altering a currently existing solution

in a few decision variables each time, and changes are only ac-

cepted if they result in a Pareto improvement. For most MOEAs,

integrating scalarization methods is potentially beneficial in the

many-objective context. Here, we investigate the possibility of im-

proving the performance of MO-RV-GOMEA by further guiding

improvement checks during solution variation in MO-RV-GOMEA

with carefully constructed Tchebycheff scalarizations. Results ob-

tained from experiments performed on a selection of well-known

problems from the DTLZ and WFG test suites show that MO-RV-

GOMEA is by design already well-suited for many-objective prob-

lems. Moreover, by enhancing it with Tchebycheff scalarizations, it

outperforms MOEA/D-2TCHMFI, a state-of-the-art decomposition-

based MOEA.
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1 INTRODUCTION

The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolu-

tionary Algorithm (MO-RV-GOMEA), a recently-introduced mem-

ber of the GOMEA family, is a state-of-the-art Multi-Objective

Evolutionary Algorithm (MOEA) for the continuous domain that

exhibits both superior scalability on benchmark problems [6] and

excellent performance on real-world applications [16]. MO-RV-

GOMEA is characterized by three main features. First, explicit link-

age models that align with dependencies among decision variables

of the problem instance under consideration are either constructed

during optimization by performing linkage learning on the working

population (in black-box optimization), or are defined a priori by

using available problem-specific knowledge (in gray/white-box op-

timization). Second, a variation operator, named Gene-pool Optimal

Mixing (GOM), is used to exploit the learned linkage information

during solution variation in an effective manner such that offspring

solutions are guaranteed to have equal or better fitness values than

parent solutions. Third, a niching concept is realized in MO-RV-

GOMEA by a cluster-based operation, i.e., in every generation,

solutions in the population are partitioned into equal-sized clusters;

linkage learning and solution variation can then be performed per

cluster, thereby increasing the probability that all different regions

of the Pareto-optimal front are evenly approached.

A key feature of GOMEAs is that the GOM variation operator of

GOMEAs transforms an existing solution into an offspring solution

through a series of so-called mixing events. Each mixing event is a

partial solution alteration that involves only decision variables that

are dependent on each other to some degree (as indicated by the

learned, or a priori defined, linkage models). Each partially-altered

solution is then evaluated for improvement and the new decision

variable values are only accepted if the fitness value of the solution

does not deteriorate. This native genetic-local-search-like variation

operator makes partial evaluations straightforward to be imple-

mented in GOMEAs if the problem permits efficient computation

of the effect of changing values of a few decision variables. For

many other Evolutionary Algorithms (EAs), such partial evalua-

tions are non-trivial or impractical to be implemented because a

whole offspring solution is created each time without intermediate

improvement checks as in GOM. Partial evaluations substantially

increase the performance of MO-RV-GOMEA, especially in real-

world applications where each full solution evaluation typically

incurs a considerable amount of computation cost (e.g., see [16]).

However, while succeeding in solving complicated problems

with thousands of decision variables, MO-RV-GOMEA has mainly

been tested on bi-objective optimization problems [6, 16]. The per-

formance of MO-RV-GOMEA on problems that have more than two
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objectives is yet to be investigated. Especially the class of many-

objective problems, which is often defined as problems that have at

least four objectives, poses substantial challenges for many MOEAs.

The primary difficulty is that as the number of objectives increases,

using the Pareto dominance relation in selection based on an entire

population does not effectively maintain (selection) pressure toward

the Pareto-optimal front since most solutions in the population of

an MOEA are non-dominated [1, 12].

In recent years, the class of decomposition-based MOEAs has

emerged as a more effective methodology for tackling multi- and es-

pecially many-objective problems. A decomposition-based MOEA

typically decomposes a multi-objective problem into a set of single-

objective optimization subproblems, in which each subproblem is a

scalarization of the original problem, i.e., aggregating all objectives

on the basis of a unique weight vector. A diverse set of weight

vectors is normally used to create a well-spread set of scalarization

functions, aiming to evenly approximate the Pareto-optimal front.

Selection pressure is maintained by using scalar improvements

associated with the scalarization functions (which are similar to

single-objective optimization) rather than depending on Pareto

dominance improvements. The well-known MOEA based on De-

composition (MOEA/D) [19] presents three options for performing

aggregation: the weighted-sum approach, the weighted Tcheby-

cheff method, and the Penalty-based Boundary Intersection (PBI)

method. The latter two are more commonly used since they are

able to obtain solutions on non-convex regions, if such exist, of

Pareto-optimal fronts. The Tchebycheff method is more convenient

to use since it does not require the user to define the penalty factor

θ as in the PBI method, which can have significant influence on

the performance of the search [12]. Many MOEA/D variants have

been proposed to provide improvements on several aspects of the

original MOEA/D [22]. The recently-introduced Nondominated

Sorting Genetic Algorithm III (NSGA-III) [9] also employs weight

vectors in the form of reference points to improve the performance

of the well-known NSGA-II when solving many-objective problems.

Therefore, in this paper, besides benchmarking MO-RV-GOMEA

in the many-objective realm, we also investigate the possibility of

employing the Tchebycheff method to enhance the performance of

the original MO-RV-GOMEA.

The remainder of the paper is organized as follows. In Section 2,

we outline MO-RV-GOMEA. In Section 3, we propose our approach

to integrate the Tchebycheff aggregation function into MO-RV-

GOMEA. Optimization problems employed for benchmarking and

our experiment settings are described in Section 4. Results are

discussed in Section 5. Finally, conclusions are drawn in Section 6.

2 MO-RV-GOMEA OUTLINE

MO-RV-GOMEAmaintains a population P of N candidate solutions

(i.e., population members), which can be randomly initialized, as

well as an elitist archive to keep track of non-dominated solutions

obtained during the search because elitism is beneficial to conver-

gence [13]. Until the termination criteria are satisfied, the following

procedure is performed in every generation. First, non-dominated

ranks of all solutions are determined and truncation selection is

performed to select a set S that consists of ⌊τN ⌋ best ranked solu-

tions from P (τ = 0.35 in [6]). Second, the selected solutions in S are

then partitioned into k clusters, and anotherm clusters are taken

from the population (m is the number of objectives). Third, for each

cluster, linkage learning is performed to construct a linkage model

F consisting of a set of linkage sets on the basis of the solutions in

that cluster. A Gaussian distribution is estimated for each linkage

set in the linkage model. Next, the set of estimated Gaussian distri-

butions associated with each cluster is used to iteratively construct

offspring solutions in a step-wise manner.

2.1 Clustering

In every generation, q = k +m clusters of candidate solutions are

formed. First, k leader solutions that are far apart from each other

are selected from S by a nearest-neighbor heuristic as follows.

Step 1: The solution that has the maximum value for a randomly

chosen objective is assigned as the first leader. The Euclidean dis-

tances in objective space from all the remaining solutions to the first

leader are computed and stored as their nearest-neighbor distances.

Step 2: The solution with the largest nearest-neighbor distance

is assigned as the next leader.

Step 3: The Euclidean distance from each remaining solution to

the newly assigned leader is computed and the nearest-neighbor

distance is updated if the new distance is smaller than the currently

stored value. Go back to Step 2 until k leaders are obtained.

These k leaders are then assigned as the centroids of the k clus-

ters. From its centroid, each cluster is formed by expanding to cover

its c nearest solutions. These k clusters, named middle clusters, will

then be used for multi-objective dominance-based optimization.

For the remaining m clusters, each of them is associated with a

unique objective i and is formed by selecting from the population

P the best c solutions according to the corresponding objective i .

These m clusters, named extreme clusters, will then be used for

single-objective scalar optimization along the associated objectives.

All these q clusters are called selection clusters (where each cluster

C has c members) as they are formed by selection procedures, and

it was recommended to have c = 2
q |S | [6].

2.2 Linkage Learning

Let L = {1, 2, . . . , l } be the set that contains the indices of all l

decision variables. For each cluster, a linkage model F that de-

scribes the dependencies among l decision variables is constructed.

The Family-Of-Subset (FOS) concept is used as the general linkage

model. Each FOS is a set of linkage sets F = {F1, F2, . . . , F |F | },

in which linkage set Fi ⊆ L contains the indices of the decision

variables that are dependent on each other to some degree. The

two most common FOS structures in GOMEA literature are: 1) the

univariate model, in which all variables are considered totally in-

dependent; and 2) the linkage tree model, a hierarchical ordering

of linkage sets in which decision variables can be considered in-

dependent according to some linkage sets and can be considered

dependent according to some other linkage sets. The linkage tree

model can thus express hierarchical dependencies between problem

variables. The goal is to configure the linkage model F such that

it aligns with the variable-dependence problem structure of the

problem instance under concern. If problem-specific knowledge

is available, F can be constructed a priori. Otherwise, F can be

learned by linkage learning algorithms (see [6] for details).
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For each linkage set Fi in the (learned) linkage model F of each

selection cluster C , the parameters of a Gaussian distribution, that

involves the variables encoded in F
i , are estimated over the cluster

solutions. Thus, a univariate Gaussian distribution (i.e., mean and

variance) is estimated for a univariate linkage set, and a multivari-

ate Gaussian distribution (i.e., mean vector and covariance matrix)

is estimated for a multivariate linkage set. In order to alleviate the

potential premature diminishing of variance due to selection, the

variance parameters of these Gaussian distributions are propor-

tionally scaled with the distance of improvements found from the

Gaussian means. These Gaussian distributions are then used to

sample new values during solution variation (more details in [6]).

2.3 Gene-pool Optimal Mixing (GOM)

Each solution x in the population is associated with the nearest

selection cluster (based on the distance between x and the cluster

means in the objective space). This association effectively partitions

the population into q clusters, where each population cluster CP

corresponds to a selection cluster C . A variation operator named

GOM is employed to transform each solution x ∈ CP into an

offspring o using the linkage model F of cluster C .

Instead of generating a whole offspring in one step as in many

MOEAs, GOM constructs o in a step-wise manner as follows. All

linkage sets in F of each cluster C are iteratively considered in

a random order. For each linkage set F i , its associated Gaussian

distribution is used to sample new values, altering all solutions of

CP at the variables indicated by F i . These variables of a number

of solutions, specifically ⌊ 12τ |C
P |⌋, are then further moved in the

direction that the cluster mean is shifted in from the previous gener-

ation to the current generation [6]. The partially-altered solutions

are evaluated for improvement. If C is a middle cluster, each im-

provement check is based on Pareto dominance. That is, the change

is accepted when the altered solution dominates the previous state

or it can be accepted into the elitist archive. If C is an extreme

cluster, the change is accepted when the altered solution improves

the previous state with respect to the objective associated with that

extreme cluster. If no improvement is yielded, the change is revoked

and the solution returns to its previous state. An offspring solution

o is fully constructed after all linkage sets in F are considered.

The elitist archive A of MO-RV-GOMEA is bounded by a user-

defined target size. An adaptive mechanism maintains the archive

around the target size by discretizing the objective space into equal-

sized hypercubes and only retaining one archive member per hy-

percube [17]. A solution p is accepted into the archive if it is not

dominated by the archive (A ⪯̸ p), i.e., p is not dominated by any

archive member and the hypercube that p resides in is unoccupied

or p dominates the current resident member of that hypercube.

After every generation, the hypercube sizes are adapted based on

the range of the so-far-obtained Pareto front and the target size.

3 MO-RV-GOMEA ADAPTATIONS

3.1 Tchebycheff Scalarization Method

The weighted Tchebycheff distance (TCH) between a point z and a

given point z∗ in anm-dimensional space is defined as follows:

TCH (z,z∗,w ) = max
1≤i≤m

{wi |zi − z
∗
i |} (1)

where w = (w1, . . . ,wm ) is a weight vector with wi ≥ 0 and
∑m
i=1wi = 1.

A multi-objective problem with l decision variables andm ob-

jective functions can be described as follows:

min
x ∈Ωx

f (x ) = ( f1 (x ), . . . , fm (x )) (2)

where x is a decision variable vector in the decision space (that we

assume to be real-valued in this paper), Ωx ⊆ R
l , f = ( f1, . . . , fm ) :

Ωx → Ωf is the m-dimensional objective function vector, and

f (x ) is thus the objective value vector of x in the objective space

Ωf ⊆ R
m of the multi-objective problem.

Using the weighted Tchebycheff distance with a utopian point as

the point z∗ (z∗i ≤ min{ fi (x ) |x ∈ Ωx }), a multi-objective problem

can be decomposed into a set of scalar optimization subproblems.

Each subproblem has a unique weight vectorw and is defined as:

min
x ∈Ωx

{TCH ( f (x ),z∗,w )} = min
x ∈Ωx

{ max
1≤i≤m

{wi | fi (x ) − z
∗
i |}} (3)

It is known that with Tchebycheff scalarizations it is possible to

identify solutions on potential non-convex regions of the Pareto-

optimal front [19] while this is not possible using linearly weighted

sum scalarizations [7]. Therefore, Tchebycheff scalarizations are

often employed in decomposition-based MOEAs.

3.2 Weight Vector Generation

Weight vectors are often generated such that they are spread as well

as possible. Perfectly scattering N points in a d-dimensional space

(d > 1), however, is NP-hard [5]. Here, we employ a simple, yet

effective, method to approximately generate N well-spread weight

vectors as follows. During initialization, we uniformly randomly

generateM weight vectors such thatM >> N , where each weight

vector w satisfies wi ≥ 0 and
∑m
i=1wi = 1. We then apply the

same heuristic that is used to select k leaders in the k-leader-means

clustering [4] (see Section 2) to select N vectors that are spread as

well as possible. An advantage of this approach is that any number

of weight vectors N can be generated rather than being restricted

to some required numbers as in other methods (e.g., [8, 14]).

3.3 Weight Vector Association

We employ the following procedure to associate each weight vector

w with a candidate solution x in the current population P .

Step 1: Compute the ideal objective vector zP = (zP1 , . . . , z
P
m )

of the current population P on the basis of the solutions in P :

zPi = min { fi (x ) | x ∈ P } (4)

Step 2: For each weight vectorw , compute the weighted Tcheby-

cheff distance withw between each solution in the current popula-

tion P and the ideal objective vector zP .

Step 3: Associate each weight vectorw with the nearest solution

that has not been associated yet with any weight vector, based on

the Tchebycheff distances that are computed withw in Step 2.

Figure 1a shows an example that illustrates the weight vector

association procedure. In every generation, our procedure above

explicitly assigns anew to each solution a unique improvement re-

gion (e.g., see Figure 1b). If a solution is not improved by GOM, and

still remains in the next generation, it might be assigned a different

improvement region. For many algorithms in the MOEA/D family,
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Figure 1: x-y axes: objectives ( f1, f2). a) Weighted Tcheby-

cheff distances between 4 pointsy (i ) ’s and the ideal objective

point zP with 4 weight vectorsw (i ) ’s, i = 1, . . . , 4. Bold-faced

distances indicate the association between a vector w and a

point y. b) Improvement region of each solution defined by

the associated weight vectorw (i ) and the utopian point z∗.

each solution is regarded as the best solution obtained so far for

each subproblem. Therefore, if a solution is not changed in this

generation (i.e., no offspring succeeds to replace the parent), its

improvement region is still the same in the next generation. We

note that there exist other weight vector association procedures in

several weight vector-basedMOEAs (e.g., NSGA-III [9], I-DBEA [1]).

However, the association procedures in these MOEAs are mainly

used for niching or diversity preservation purposes. Our associa-

tion procedure here determines the improvement region for each

solution and thus puts more emphasis on the exploitation purpose.

3.4 Improvement Check in GOM

Similar to the original MO-RV-GOMEA, each existing solution x is

improved by the GOM variation operator with the learned linkage

model of the cluster to which x belongs. At every mixing event, the

partially-altered solution is evaluated and checked for improvement.

In the original MO-RV-GOMEA, the improvement check is based on

the Pareto dominance improvement for the solutions in the middle

clusters, and is based on the scalar improvement for the solutions

in the extreme-region clusters. The latter is thus already a form of

Tchebycheff scalarization where the weight vector w has weight

wi = 1 for objective i and weight 0 for the other objectives.

We propose two options to adapt the improvement check at each

mixing event in GOM with Tchebycheff scalarizations as follows:

• Option 1: The change is accepted if the partially-altered so-

lution p dominates the previous state b, or p can be accepted

into the elitist archive, or the objective value vector ofp has a

smaller Tchebycheff distance (computed with the associated

weight vectorw) to the utopian point z∗ (compared to that of

the previous state), i.e., p ⪯ b ∨A ⪯̸ p∨TCH ( f (p),z∗,w ) <

TCH ( f (b),z∗,w ).

• Option 2: The change is accepted if p dominates b or the

new objective value vector has a smaller Tchebycheff dis-

tance to the utopian point, i.e., p ⪯ b ∨TCH ( f (p),z∗,w ) <

TCH ( f (b),z∗,w ).

Note that the utopian point z∗ employed for the improvement

check is different from the population’s ideal objective vector zP

employed for the weight vector association in Section 3.3. We here

assume that the utopian point z∗ is known for the sake of conve-

nience. In the case that the utopian point cannot be determined a

priori, z∗ can be approximated during optimization by updating z∗i
to the best so-far-obtained value of objective i , if necessary, before

computing the Tchebycheff distances in each improvement check.

4 BENCHMARK AND EXPERIMENT SETTING

4.1 Benchmark Problems

We perform experiments on two well-known sets of benchmark

problems: DTLZ1-DTLZ4 [10] and WFG1-WFG4 [11]. For all prob-

lems, the number of decision variables is scaled as l = 40, 80, 160,

and 320. For DTLZ problems, we employ problem instances of

m = 3, 5, 10, and 15 objectives. For WFG problems, we employ

problem instances ofm = 2, 3, 5, and 10 objectives, where the num-

ber of position parameters and the number of distance parameters

are determined as in [2]. The reference Pareto-optimal fronts for

both DTLZ and WFG problem instances are created by using the

PlatEMO platform [21] such that a reference front with approxi-

matelym × 1000 well-distributed points is generated for a problem

instance withm objectives.

4.2 Experiment Setting

We benchmark the original MO-RV-GOMEA and its two new adap-

tations with Tchebycheff scalarizations. For the purpose of compar-

isons, we also experiment with the recently-introduced MOEA/D-

2TCHMFI [18], an MOEA/D variant that employs the Tchebycheff

scalarization with l2-norm constraint, which is defined as

TCH ( f (x ),z∗,w )} = max
1≤i≤m

{

| fi (x ) − z
∗
i |

wi

}

(5)

wherew is a weight vector withwi ≥ 0 and ∥w ∥ = 1.

The population size is a crucial control parameter for EAs, and

it is also notoriously difficult to determine an appropriate popu-

lation size for an EA solving a specific problem instance. While

EA benchmark literature often uses the same population size for

all algorithms, we argue that such a simple setting might not be

proper because different EAs have different minimally-required

population sizes, and the differences can be substantial (e.g., see

[20]). Therefore, in this work, we employ the so-called Interleaved

Multi-start Scheme (IMS) [6] (which originates from the population-

sizing-free scheme of the Parameter-less Genetic Algorithm [15])

to adapt the population size during optimization for all MOEAs.

The IMS operates multiple instances of an MOEA with different

population sizes in an interleaved fashion. The initial population

P0 is started with a small population size N0. N0 can be any reason-

ably small population size. Here, we simply set N0 = 10 × (m + 1).

A larger population Pi with size Ni = 2 × Ni−1 is started later,

and each generation of Pi is then operated for every д generations

of the previous population Pi−1. A smaller population is deemed

inefficient, and is thus terminated, if it contributes less than 10%

of the combined front of non-dominated solutions obtained from

all the working populations. All the populations are kept growing

and running until the computation budget is spent. In this paper,
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Table 1: Medians and interdecile ranges (in brackets) of the IGD metric of the approximation fronts obtained by MOEAs on

solving DTLZ problems. MOEA/D, GOMEA, Option 1, and Option 2 should be read as MOEA/D-2TCHMFI, the original MO-RV-

GOMEA, MO-RV-GOMEA with adaptation Option 1, and MO-RV-GOMEA with adaptation Option 2, respectively.

l = 40 l = 80 l = 160 l = 320
m MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2

D
T
L
Z
1

3 0.043 (0.729) 0.289 (1.177) 0.008 (0.003) 0.008 (0.002) 0.104 (10.489) 1.155 (2.338) 0.008 (0.004) 0.007 (0.002) 0.560 (5.451) 1.877 (4.069) 0.008 (0.009) 0.008 (0.003) 13.606 (61.756) 4.544 (4.475) 0.008 (0.571) 0.008 (0.002)

5 0.785 (8.820) 0.034 (0.002) 0.035 (0.002) 0.035 (0.002) 3.593 (23.129) 0.034 (0.003) 0.034 (0.003) 0.035 (0.002) 18.648 (50.245) 0.033 (0.002) 0.034 (0.004) 0.035 (0.002) 58.282 (136.725) 0.033 (0.003) 0.035 (0.005) 0.035 (0.002)

10 2.903 (18.252) 0.124 (0.134) 0.110 (0.023) 0.093 (0.006) 13.599 (76.040) 0.150 (0.108) 0.114 (0.020) 0.093 (0.007) 68.991 (234.734) 0.156 (0.093) 0.117 (0.032) 0.093 (0.007) 169.898 (472.199) 0.170 (0.061) 0.125 (0.033) 0.094 (0.005)

15 4.672 (65.606) 0.135 (0.058) 0.162 (0.264) 0.118 (0.003) 16.934 (56.442) 0.133 (0.071) 0.144 (0.045) 0.117 (0.028) 65.740 (365.449) 0.130 (0.071) 0.152 (0.029) 0.117 (0.005) 146.863 (561.031) 0.168 (0.077) 0.162 (0.030) 0.117 (0.040)

D
T
L
Z
2

3 0.021 (0.003) 0.020 (0.003) 0.020 (0.003) 0.019 (0.002) 0.026 (0.005) 0.020 (0.003) 0.020 (0.003) 0.019 (0.002) 0.034 (0.008) 0.020 (0.003) 0.020 (0.003) 0.019 (0.003) 0.050 (0.016) 0.020 (0.003) 0.020 (0.002) 0.018 (0.003)

5 0.199 (0.020) 0.124 (0.014) 0.122 (0.013) 0.109 (0.010) 0.225 (0.020) 0.117 (0.017) 0.125 (0.018) 0.111 (0.008) 0.240 (0.030) 0.118 (0.015) 0.120 (0.015) 0.109 (0.009) 0.255 (0.034) 0.119 (0.017) 0.121 (0.020) 0.113 (0.013)

10 0.619 (0.084) 0.349 (0.025) 0.376 (0.039) 0.323 (0.024) 0.662 (0.097) 0.350 (0.022) 0.369 (0.037) 0.328 (0.022) 0.700 (0.111) 0.349 (0.031) 0.363 (0.043) 0.328 (0.018) 0.704 (0.124) 0.346 (0.026) 0.364 (0.041) 0.332 (0.022)

15 0.862 (0.081) 0.490 (0.020) 0.555 (0.071) 0.440 (0.010) 0.899 (0.062) 0.478 (0.025) 0.556 (0.079) 0.433 (0.010) 0.911 (0.053) 0.468 (0.034) 0.531 (0.065) 0.434 (0.010) 0.916 (0.078) 0.467 (0.032) 0.531 (0.065) 0.435 (0.010)

D
T
L
Z
3

3 0.056 (0.124) 1.999 (3.976) 0.021 (0.103) 0.021 (0.004) 0.156 (0.512) 7.996 (11.156) 0.022 (2.979) 0.021 (0.003) 0.238 (94.733) 11.990 (17.766) 0.512 (9.211) 0.021 (0.004) 1.101 (19.266) 25.994 (32.484) 0.530 (8.881) 0.021 (0.003)

5 0.450 (6.439) 0.133 (0.024) 0.132 (0.036) 0.121 (0.021) 0.639 (25.583) 0.126 (0.023) 0.130 (0.029) 0.123 (0.020) 22.298 (128.323) 0.128 (0.022) 0.136 (0.026) 0.121 (0.019) 35.995 (254.629) 0.129 (0.022) 0.128 (0.030) 0.119 (0.023)

10 0.779 (9.148) 0.378 (0.025) 24.084 (28.582) 0.353 (0.043) 4.879 (53.049) 0.367 (0.024) 25.572 (32.464) 0.356 (0.037) 4.822 (135.844) 0.372 (0.058) 16.959 (21.072) 0.351 (0.040) 29.161 (257.382) 0.371 (0.035) 11.213 (25.452) 0.346 (0.028)

15 1.021 (27.100) 0.820 (0.952) 2.574 (3.491) 0.473 (0.016) 1.267 (38.979) 0.615 (0.389) 5.145 (10.903) 0.468 (0.021) 10.864 (119.516) 0.579 (0.101) 4.974 (10.807) 0.471 (0.028) 21.122 (219.707) 0.561 (0.066) 2.516 (6.335) 0.466 (0.034)

D
T
L
Z
4

3 0.020 (0.003) 0.022 (0.003) 0.022 (0.003) 0.021 (0.002) 0.022 (0.004) 0.022 (0.003) 0.021 (0.002) 0.020 (0.003) 0.023 (0.008) 0.022 (0.004) 0.022 (0.004) 0.020 (0.002) 0.024 (0.011) 0.022 (0.003) 0.022 (0.004) 0.020 (0.002)

5 0.183 (0.044) 0.139 (0.014) 0.139 (0.014) 0.130 (0.017) 0.208 (0.023) 0.138 (0.013) 0.138 (0.018) 0.127 (0.012) 0.223 (0.032) 0.138 (0.024) 0.137 (0.014) 0.126 (0.011) 0.248 (0.051) 0.141 (0.014) 0.140 (0.021) 0.127 (0.009)

10 0.564 (0.047) 0.392 (0.024) 0.386 (0.044) 0.374 (0.036) 0.835 (0.186) 0.395 (0.024) 0.404 (0.037) 0.369 (0.025) 1.220 (0.286) 0.396 (0.027) 0.389 (0.035) 0.372 (0.037) 1.641 (0.359) 0.393 (0.031) 0.394 (0.037) 0.373 (0.039)

15 0.721 (0.098) 0.495 (0.027) 0.506 (0.028) 0.485 (0.024) 0.918 (0.170) 0.494 (0.033) 0.505 (0.041) 0.474 (0.019) 1.353 (0.191) 0.493 (0.027) 0.510 (0.042) 0.473 (0.028) 1.722 (0.185) 0.501 (0.023) 0.502 (0.056) 0.476 (0.024)

we employ the generation base д = 8 as recommended in [6] for

real-valued operators and problem variables.

The published implementation of MOEA/D-2TCHMFI [18] em-

ploys a specific population size with a specific set of weight vectors

for each problem instance. In order to freely scale its population

size in the IMS, we replace the provided fixed weight vector sets

with the weight vectors generated by the procedure described in

Section 3.2. The neighborhood size parameter is set as 10% of the

population size. While the IMS might not be the optimal setting for

an MOEA, any MOEA that is integrated with the IMS can be consid-

ered as an anytime algorithm, i.e., the longer the MOEA is allowed

to run, the better the results will be, and the users can terminate

the algorithm whenever they are satisfied with the results.

For all problem instances, each MOEA is run 30 times indepen-

dently on a multi-core server (4×AMD Opteron Processor 6386 SE,

2.8 GHz). Note that MO-RV-GOMEAs perform certain tasks (e.g.,

population clustering, linkage learning), which incur additional

computation cost, that MOEA/D-2TCHMFI does not have. For fair

comparisons, we thus employ the running time as the computa-

tion budget rather than the number of function evaluations. This

effectively allows MOEA/D-2TCHMFI to perform more function

evaluations than MO-RV-GOMEA. For each problem instance of

m objectives and l decision variables, every MOEA is run form × l

seconds each time. All MOEAs are equipped with an elitist archive,

and the target archive size is set empirically as 1000.

To assess the convergence of each algorithm to the reference

Pareto-optimal fronts, we use the Average Front Distance (AFD)

[3] that measures the average minimal Euclidean distance over all

points in a reference front to an approximation front obtained by

an MOEA run. The AFD is also commonly known as the Inverted

Generational Distance (IGD) in the literature (e.g., [9, 18]). The

median IGD value over the 30 runs of each MOEA is then used as

the performance metric. To verify the statistical significance of the

obtained results, we use the Mann-Whitney-Wilcoxon statistical

hypothesis test for equality of medians with p < 0.05. In Tables 1, 2,

and 3, the best median value for each problem instance is presented

with the gray background, and is further highlighted in bold if

the value is statistically significantly better than those obtained by

other MOEAs (significance tests are performed with Bonferroni

correction).

5 EXPERIMENTAL RESULTS

5.1 DTLZ Problems

Table 1 shows the medians and the interdecile ranges of the IGD

metric of the approximation fronts obtained by MOEAs for the

DTLZ1-4 problem instances. In almost all cases, MO-RV-GOMEA

outperforms MOEA/D-2TCHMFI, obtaining better approximation

fronts. The results in Table 1 confirm that the original design of

MO-RV-GOMEA, which yields excellent, and often superior, per-

formance in solving multi-objective problems [6], is also suitable

for tackling many-objective problems. This suitability is likely due

to the synergy between the multi-objective dominance-based opti-

mization of middle clusters, the single-objective scalar optimization

(along each objective) of extreme clusters, and the direct offspring

versus parent comparison for accepting improvements in the oper-

ation of MO-RV-GOMEA.

The two adaptation options with Tchebycheff scalarization that

we propose in this paper assign to each populationmember a unique

improvement region, which could be informative in guiding the

search, potentially enhancing the efficiency of MO-RV-GOMEA. Ta-

ble 1 shows that, for DTLZ problem instances, the performance of

the original MO-RV-GOMEA has similar performance (in some

cases), or deteriorates (in some cases), or is slightly improved

(in other cases) when combined with Option 1 (i.e., using both

Tchebycheff-scalarization and Pareto-dominance improvements in

the GOM operator). On the other hand, in almost all cases, with

Option 2 (i.e., only Tchebycheff-scalarization improvements are

checked in the GOM operator), other MOEAs are outperformed,

and the differences are found to be statistically significant. Figure 2

shows the median IGD metric convergence of the MOEAs under

concern on solving DTLZ1-4 problem instances with m = 3, 15

objectives and l = 320 decision variables. Except for the cases

of DTLZ4, and the case of DTLZ2 withm = 2, MO-RV-GOMEA

adapted with Option 2 achieves the fastest convergence within the

allowed computation time. The large obtained IGD values (i.e., IGD

> 0.01) indicate that the (reference) Pareto-optimal fronts have

not yet been sufficiently reached and more running time would be

needed. However, we note that, in this work, we consider problem

instances that have many more decision variables, and are thus

more difficult, than those considered in recent literature.
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Figure 2: The median IGD convergence on DTLZ1-4 problem instances with 320 variables. Horizonal axis: Time (seconds) in

linear scale. Vertical axis: IGD in log scale. Some graphs might appear under another graph due to similar convergence.

Table 2: Medians and interdecile ranges (in brackets) of the IGD metric of the approximation fronts obtained by MOEAs on

solving WFG problems. MOEA/D, GOMEA, Option 1, and Option 2 should be read as MOEA/D-2TCHMFI, the original MO-RV-

GOMEA, MO-RV-GOMEA with adaptation Option 1, and MO-RV-GOMEA with adaptation Option 2, respectively.

l = 40 l = 80 l = 160 l = 320
m MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2

W
F
G
1

2 1.046 (0.056) 0.728 (0.140) 0.733 (0.091) 0.707 (0.216) 1.067 (0.056) 0.784 (0.369) 0.742 (0.116) 0.708 (0.170) 1.108 (0.057) 0.942 (0.829) 0.748 (0.133) 0.757 (0.264) 1.116 (0.075) 0.646 (0.681) 0.708 (0.142) 0.771 (0.203)

3 1.434 (0.185) 0.740 (0.201) 0.864 (0.246) 0.873 (0.231) 1.451 (0.104) 0.732 (0.358) 0.800 (0.196) 0.886 (0.293) 1.475 (0.052) 0.733 (0.024) 0.778 (0.022) 0.856 (0.350) 1.506 (0.046) 0.734 (0.004) 0.797 (0.132) 0.802 (0.411)

5 1.950 (0.047) 2.055 (1.111) 2.352 (0.946) 2.174 (0.779) 1.947 (0.028) 0.996 (0.018) 1.055 (0.255) 1.240 (0.548) 1.945 (0.051) 0.972 (0.303) 1.046 (0.129) 1.257 (0.371) 1.950 (0.021) 0.971 (0.130) 1.085 (0.187) 1.093 (0.204)

10 2.850 (0.108) 2.083 (1.131) 2.243 (0.905) 2.497 (0.470) 2.864 (0.037) 2.147 (1.092) 2.241 (0.873) 2.490 (0.743) 2.890 (0.024) 1.586 (0.034) 1.702 (0.238) 1.770 (0.500) 2.891 (0.020) 1.544 (0.050) 1.703 (0.110) 1.832 (0.389)

W
F
G
2

2 0.009 (0.010) 0.237 (0.044) 0.052 (0.207) 0.049 (0.205) 0.040 (0.182) 0.632 (0.400) 0.244 (0.403) 0.110 (0.198) 0.229 (0.019) 0.671 (0.035) 0.635 (0.426) 0.243 (0.159) 0.253 (0.019) 0.695 (0.030) 0.625 (0.412) 0.295 (0.448)

3 0.057 (0.014) 0.063 (0.026) 0.058 (0.022) 0.057 (0.016) 0.096 (0.071) 0.090 (0.036) 0.086 (0.045) 0.081 (0.051) 0.134 (0.173) 0.154 (0.168) 0.137 (0.117) 0.339 (0.321) 0.312 (0.037) 0.223 (0.166) 0.176 (0.222) 0.416 (0.546)

5 0.226 (0.037) 0.171 (0.040) 0.172 (0.043) 0.177 (0.032) 0.236 (0.049) 0.186 (0.054) 0.187 (0.054) 0.177 (0.027) 0.276 (0.101) 0.270 (0.052) 0.252 (0.055) 0.225 (0.063) 0.640 (0.389) 0.342 (0.078) 0.319 (0.080) 0.275 (0.088)

10 0.793 (0.484) 1.299 (0.635) 1.173 (0.656) 1.774 (0.447) 0.972 (0.886) 1.377 (0.810) 1.191 (0.812) 1.783 (0.469) 2.418 (0.686) 1.837 (0.292) 1.894 (0.330) 2.099 (0.336) 2.641 (0.688) 2.031 (0.362) 1.976 (0.292) 2.235 (0.157)

W
F
G
3

2 0.019 (0.014) 0.071 (0.054) 0.047 (0.058) 0.066 (0.060) 0.068 (0.034) 0.116 (0.059) 0.078 (0.074) 0.093 (0.056) 0.127 (0.033) 0.120 (0.024) 0.093 (0.068) 0.131 (0.064) 0.188 (0.022) 0.149 (0.029) 0.101 (0.035) 0.164 (0.060)

3 0.100 (0.047) 0.054 (0.028) 0.043 (0.030) 0.037 (0.017) 0.145 (0.061) 0.093 (0.047) 0.060 (0.034) 0.043 (0.020) 0.193 (0.048) 0.111 (0.045) 0.054 (0.044) 0.043 (0.026) 0.216 (0.055) 0.128 (0.048) 0.056 (0.035) 0.051 (0.025)

5 0.261 (0.161) 0.188 (0.052) 0.149 (0.042) 0.184 (0.062) 0.414 (0.210) 0.190 (0.066) 0.129 (0.071) 0.164 (0.068) 0.485 (0.153) 0.234 (0.077) 0.113 (0.065) 0.126 (0.094) 0.470 (0.174) 0.242 (0.064) 0.105 (0.046) 0.145 (0.095)

10 0.810 (0.165) 0.342 (0.154) 0.331 (0.237) 0.360 (0.164) 0.819 (0.141) 0.460 (0.219) 0.395 (0.218) 0.401 (0.189) 0.807 (0.100) 0.443 (0.219) 0.439 (0.246) 0.348 (0.143) 0.786 (0.133) 0.561 (0.238) 0.566 (0.207) 0.393 (0.161)

W
F
G
4

2 0.003 (0.005) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.003 (0.003) 0.003 (0.001) 0.003 (0.002) 0.002 (0.001) 0.011 (0.015) 0.002 (0.003) 0.001 (0.000) 0.002 (0.001) 0.030 (0.024) 0.001 (0.003) 0.001 (0.000) 0.001 (0.000)

3 0.076 (0.010) 0.090 (0.008) 0.090 (0.012) 0.078 (0.011) 0.115 (0.051) 0.089 (0.014) 0.092 (0.006) 0.078 (0.008) 0.158 (0.143) 0.095 (0.016) 0.085 (0.021) 0.076 (0.009) 0.293 (0.208) 0.112 (0.026) 0.095 (0.027) 0.077 (0.010)

5 0.622 (0.018) 0.753 (0.073) 0.763 (0.078) 0.701 (0.065) 0.730 (0.064) 0.802 (0.082) 0.823 (0.073) 0.614 (0.065) 1.019 (0.427) 0.852 (0.095) 0.862 (0.072) 0.630 (0.062) 1.641 (0.235) 0.967 (0.079) 0.928 (0.078) 0.662 (0.072)

10 3.205 (0.158) 3.852 (0.300) 3.798 (0.273) 3.441 (0.283) 3.130 (0.119) 3.891 (0.382) 3.789 (0.558) 3.475 (0.286) 3.828 (0.179) 4.025 (0.617) 4.038 (0.649) 3.194 (0.214) 4.150 (0.163) 4.249 (0.599) 4.231 (0.411) 3.340 (0.194)

5.2 WFG Problems

Table 2 shows the medians and the interdecile ranges of the IGD

metric of the approximation fronts obtained by MOEAs on solv-

ing WFG1-4 problem instances. For WFG1, the original MO-RV-

GOMEA obtains the best IGD values in almost all cases. ForWFG2-4,

MOEA/D-2TCHMFI obtains better IGD values when solving in-

stances that have l = 40 decision variables while the two adapted

MO-RV-GOMEA variants obtain better results when solving larger

problem instances that have l = 80, 160, 320 decision variables.

Figure 3 shows the median IGD convergence of the MOEAs un-

der concern in solving WFG problem instances with m = 2, 10

objectives and l = 320 decision variables. MO-RV-GOMEA with

adaptation Option 2 has the best IGD convergence for the WFG3-4

instances with the most objectives (i.e.,m = 10) while the original

MO-RV-GOMEA exhibits the best performance for WFG1. Similar

to the case of DTLZ problems, better results can be obtained if

more running time is allowed. From the results in Tables 1 and 2,

we can conclude that, in most cases, adaptation Option 2 is better

than Option 1 for improving the performance of MO-RV-GOMEA.

We hypothesize that a key factor in the outcomes is that removing

checks for acceptance into the archive, which is expensive if the

archive is full (1000 solutions), allows MO-RV-GOMEA with adap-

tation Option 2 to perform many more evaluations (empirically we

found up to a factor of 5). Note that the Tchebycheff scalarizations

play a non-trivial role here, as simply removing the archive check in

GOM in the original MO-RV-GOMEA deteriorates its performance.

Figure 4 shows three approximation fronts with median IGD val-

ues obtained by MOEA/D-2TCHMFI, the original MO-RV-GOMEA,

and MO-RV-GOMEAwith adaptation Option 2, respectively, for the

WFG4 problem instance withm = 3 objectives and l = 320 decision

variables. While the two MO-RV-GOMEAs both reach the reference

front, there is still a considerable gap between the approximation

front obtained by MOEA/D-2TCHMFI and the reference front. The
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Figure 3: The median IGD convergence on WFG1-4 problem instances with 320 variables. Horizonal axis: Time (seconds) in

linear scale. Vertical axis: IGD in log scale. Some graphs might appear under another graph due to similar convergence.
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Figure 4: Approximation fronts (in red) with the median IGD values on the WFG4 problem instance withm = 3 and l = 320

(the reference Pareto-optimal fronts are in blue).

front obtained by MO-RV-GOMEA with adaptation Option 2 con-

tains the extreme solutions and is more well-spread than the one

of the original MO-RV-GOMEA.

The results presented above have been obtained by MO-RV-

GOMEAs with the univariate model, i.e., all decision variables are

considered as independent from each other. In MOEA/D-2TCHMFI,

the polynomial mutation and simulated binary crossover (SBX)

are employed to generate offspring solutions. While these two

operators are also univariate, they still have certain differences

compared to the variation operator of MO-RV-GOMEAs. More

detailed analysis would require experimenting with SBX in MO-

RV-GOMEAs as well to recognize separately the contribution of

scalarizations from the contribution of variation operators to the

performance ofMO-RV-GOMEAs compared toMOEA/D-2TCHMFI,

which is outside the scope of this paper.

WFG2-3 are non-separable problems [11], i.e., their decision

variables exhibit certain dependencies that need to be properly

handled during solution variations so that the problem instances
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Table 3: Results on solving WFG2-3 problems with MO-RV-GOMEAs using the linkage tree model.

l = 40 l = 80 l = 160 l = 320
m MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2 MOEA/D GOMEA Option 1 Option 2

W
F
G
2

2 0.009 (0.010) 0.001 (0.001) 0.002 (0.001) 0.001 (0.000) 0.040 (0.182) 0.194 (0.193) 0.001 (0.002) 0.002 (0.193) 0.229 (0.019) 0.606 (0.413) 0.194 (0.413) 0.194 (0.413) 0.253 (0.019) 0.606 (0.000) 0.606 (0.413) 0.400 (0.413)

3 0.057 (0.014) 0.046 (0.015) 0.048 (0.013) 0.053 (0.018) 0.096 (0.071) 0.053 (0.023) 0.053 (0.014) 0.052 (0.013) 0.134 (0.173) 0.061 (0.027) 0.061 (0.023) 0.053 (0.184) 0.312 (0.037) 0.083 (0.180) 0.067 (0.190) 0.062 (0.238)

5 0.226 (0.037) 0.165 (0.044) 0.180 (0.042) 0.198 (0.052) 0.236 (0.049) 0.184 (0.035) 0.182 (0.052) 0.182 (0.051) 0.276 (0.101) 0.217 (0.068) 0.204 (0.040) 0.179 (0.032) 0.640 (0.389) 0.288 (0.085) 0.270 (0.049) 0.224 (0.078)

10 0.793 (0.484) 1.207 (0.763) 1.331 (0.528) 1.321 (0.928) 0.972 (0.886) 1.160 (0.911) 1.309 (1.097) 1.329 (0.796) 2.418 (0.686) 1.685 (0.682) 1.447 (0.926) 2.037 (0.264) 2.641 (0.688) 2.139 (0.434) 1.966 (0.490) 2.057 (0.308)

W
F
G
3

2 0.019 (0.014) 0.003 (0.002) 0.004 (0.001) 0.002 (0.001) 0.068 (0.034) 0.001 (0.000) 0.002 (0.006) 0.002 (0.001) 0.127 (0.033) 0.001 (0.000) 0.001 (0.000) 0.001 (0.001) 0.188 (0.022) 0.001 (0.000) 0.001 (0.000) 0.001 (0.001)

3 0.100 (0.047) 0.031 (0.009) 0.034 (0.014) 0.026 (0.007) 0.145 (0.061) 0.030 (0.012) 0.036 (0.008) 0.024 (0.007) 0.193 (0.048) 0.034 (0.014) 0.037 (0.012) 0.022 (0.010) 0.216 (0.055) 0.045 (0.038) 0.034 (0.013) 0.021 (0.009)

5 0.261 (0.161) 0.199 (0.066) 0.177 (0.104) 0.124 (0.053) 0.414 (0.210) 0.171 (0.068) 0.164 (0.128) 0.102 (0.030) 0.485 (0.153) 0.146 (0.043) 0.158 (0.092) 0.094 (0.043) 0.470 (0.174) 0.173 (0.095) 0.153 (0.058) 0.080 (0.036)

10 0.810 (0.165) 0.401 (0.195) 0.329 (0.283) 0.187 (0.085) 0.819 (0.141) 0.342 (0.265) 0.384 (0.507) 0.216 (0.136) 0.807 (0.100) 0.359 (0.272) 0.235 (0.184) 0.228 (0.064) 0.786 (0.133) 0.326 (0.269) 0.317 (0.401) 0.190 (0.080)

can be efficiently solved. Table 3 shows the medians and the in-

derdecile ranges of the IGD metric of the approximation fronts

obtained by the three MO-RV-GOMEA variants that employ the

linkage tree model, which is learned over the selection of solu-

tions in each generation to capture the linkage structures, and the

MOEA/D-2TCHMFI. We do not implement the linkage tree model

for MOEA/D-2TCHMFI because non-trivial modifications would

be required for MOEA/D-2TCHMFI (which, by default, creates a

whole offspring solution each time) to make use of the linkage

tree. In most cases, MO-RV-GOMEAs with the linkage tree model

obtain better IGD values compared to the ones with the univari-

ate model (i.e., compare Table 2 and Table 3). For WFG2 problem

instances with l = 80, 160, 320 variables, the two adapted MO-RV-

GOMEAs achieve better approximation fronts than the original

MO-RV-GOMEA and MOEA/D-2TCHMFI. For WFG3 problem in-

stances, MO-RV-GOMEAwith Option 2 almost always outperforms

other MOEAs. A more detailed analysis on the effect of linkage

learning (for such large problem instances) requires more computa-

tion time and thus is left for future work.

6 CONCLUSIONS

We investigated the performance of the MO-RV-GOMEA on a wide

range of multi-objective and many-objective benchmark problems.

The experimental results indicate thatMO-RV-GOMEA is quitewell-

suited also for solving many-objective problems without requiring

any modification, unlike many other MOEAs that are designed

on the basis of multi-objective optimization. For some benchmark

problems, the performance of MO-RV-GOMEA can be further im-

proved when the improvement checks during solution variation

are guided by carefully constructed Tchebycheff scalarizations. Per-

formance comparisons with a state-of-the-art decomposition-based

MOEA (i.e., MOEA/D-2TCHMFI) show that both the original and

adapted MO-RV-GOMEAs are the preferred algorithms of choice

for tackling (real-world) problems that require many conflicting

objectives to be optimized at the same time.
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