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ABSTRACT
The recently-introduced Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) family has been shown to be capable of excel-
lent performance on academic benchmark problems, outperforming
other state-of-the-art EAs, especially when efficient partial evalua-
tions are possible. This holds true also for the latest extension, the
Multi-Objective Real-Valued GOMEA (MO-RV-GOMEA). In this pa-
per, we apply MO-RV-GOMEA to the real-world multi-objective op-
timization problem of catheter placement in High-Dose-Rate (HDR)
brachytherapy for prostate cancer, a problem that is non-trivial to
solve and has high real-world importance and relevance. Due to the
underlying geometric structure of the real-valued variables, partial
evaluations can be performed, allowing MO-RV-GOMEA to exploit
this structure. The performance of MO-RV-GOMEA is tested on
three real-world patient cases and compared to a recent state-of-
the-art mixed-integer EA that is aimed at a restricted version of
the problem. We find that with MO-RV-GOMEA better solutions
can be found much faster, making our proposed approach much
more realistic to be used in clinical practice, and enabling new in-
sights into both catheter placement for prostate brachytherapy and
on objectives used for automated treatment planning. First results
indicate that richer problem models are needed to better match
real-world clinical preferences.
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1 INTRODUCTION
Brachytherapy is a form of internal radiotherapy used for treating
prostate cancer, the second most common type of cancer among
men worldwide [14]. The radiation, although targeted at tumor
cells, poses a risk for healthy organs around the prostate. Therefore,
it is important to construct a treatment plan with the best possible
trade-off between radiation to the targets and radiation to organs
at risk (OARs).

In brachytherapy, a radioactive source is moved into or close to
the tumor. For prostate brachytherapy, this is achieved by placing a
number of catheters into the prostate through the area between the
scrotum and the anus. The radioactive source is thenmoved through
each catheter and is paused at fixed positions in the catheters, called
dwell positions, for certain amounts of time, called dwell times. The
longer the dwell time at a dwell position, the more radiation is
delivered to the surrounding volume. By varying the dwell times,
different treatment plans are possible. Finding a clinically acceptable
treatment plan (such as shown in Figure 1) is a complex task, and
involves many clinical requirements that need to be satisfied, which
are formulated in a clinical protocol.

In order to search for a good treatment plan, an optimization
problem can be formulated, see e.g., [3, 7–9]. Because there are
multiple factors of importance, however, it is not trivial to design
a formulation and propose a solver that together lead to clinically
desirable results. At the hospital involved in this study, clinically
available software collapses the multiple requirements in the clin-
ical protocol into a single-objective optimization problem. Often,
subsequently time needs to be spent manually adjusting the result-
ing treatment plan until satisfaction.

The quality of the treatment plans achievable with the optimiza-
tion of dwell times depends on the placement of the catheters. In
general, if more catheters are used, then better treatment plans are
possible. However, to minimize the possibility of complications, one
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should use as few catheters as possible [4, 5, 13]. Even for a given
number of catheters, there are still many placements possible and
for each placement many treatment plans are possible, resulting in
a large search space. At the hospital involved in this study, typically
16-18 catheters are used. The placement is done mostly based on
clinical expertise (such as [10]).

Simultaneous optimization of catheter positions and dwell times
could lead to better treatment plans. Multiple works already exist on
this, e.g., [2, 6], using single-objective optimizers. Recently, a fully
multi-objective approach, the Multi-Objective Genetic Algorithm
for Model-Based mixed-Integer opTimization (MO-GAMBIT), has
been applied to this optimization problem [11]. Three objectives
were considered, namely number of catheters, coverage of targets,
and sparing of OARs, and promising results were found. However,
the optimization model was restricted in the sense that only pre-
determined catheter positions could be used. Moreover, ultimately,
the required running times were too long for use in clinical practice.
In this work, we extend the problem formulation to allow more
freedom in the positioning of catheters. Instead of a fixed set of
pre-determined catheter positions, catheters can take any position
within a certain domain. This changes the problem from mixed
integer to fully real valued. While the search space is factually
larger, it is also important to reduce the required running time.
We therefore consider the Multi-Objective Real-Valued Gene-Pool
Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA, [1]),
which has recently been shown to achieve good results sufficiently
fast on the optimization of a treatment plan after catheter placement
[9]. In this paper, we extend the application of MO-RV-GOMEA to
tackle the brachytherapy problem including catheter positioning,
with the aim of finding better treatment plans with lower running
time than was possible with MO-GAMBIT.

Figure 1: Graphical representation of the anatomy and im-
planted catheters of patient 2 (left), with the isodose lines
(lines on which all points receive equal radiation dose) cor-
responding to the clinically accepted treatment plan for this
patient on an MRI scan (right).

2 MO-RV-GOMEA
The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA,
[12]) has in recent years been shown on various academic bench-
mark problems, as well as real-world problems, to be an efficient and
effective optimizer, especially in the case where certain problem-
specific knowledge can be exploited, which is the case in many real-
word problems. The algorithm has been extended to problems with
multiple objectives and real-world variables in MO-RV-GOMEA

[1]. An important characteristic of GOMEA is that it exploits the
dependencies between variables in order to obtain offspring solu-
tions in an efficient way. These dependencies can be learned from
the population, or be determined problem-specifically and hard-
coded into GOMEA. In the latter case, the efficiency of GOMEA is
typically increased.

The performance of GOMEA can in particular be improved sub-
stantially if partial evaluations are possible. In GOMEA, offspring
solutions are created by iteratively improving on each solution in
the population with consecutive local changes. After each local
change, an evaluation is performed, checking for improvement. If
no improvement was obtained, the local change is reversed; oth-
erwise, it is maintained. If the change in objectives resulting from
a few changed variables can be computed faster than if all vari-
ables were changed, i.e., if a partial evaluation is faster than a full
evaluation, then the evaluation times in GOMEA are reduced.

3 BRACHYTHERAPY
The first step in brachytherapy is the implantation of a number of
catheters into the prostate, based on live ultrasound images. These
catheters are implanted through the patient’s perineum skin (be-
tween scrotum and anus) based on the geometry of the involved
organs, clinical experience (such as [10]), and optionally a preplan
made in clinical software. At the hospital involved in this study, typ-
ically 16-18 catheters are used. The catheter implant will determine
the quality of the possible treatment plans.

Once the catheters have been placed, Magnetic Resonance Imag-
ing (MRI) scans are made on which the catheters and the relevant
tissues are fully visible. Not only the prostate, but also the seminal
vesicles are deemed targets, as the vesicles could also contain tu-
mor cells. Other organs which are nearby, i.e., bladder, rectum, and
the urethra passing through the prostate, are deemed OARs and
should be irradiated as little as possible. Using clinical software,
the catheters, targets, and OARs are delineated. This defines the
dwell positions, i.e., the positions in the catheters at which the
radioactive source can pause for a given dwell time. Only dwell
positions within 5mm of prostate and vesicles, and at least 1mm
away from the urethra are used.

The next step is the optimization of dwell times. A trivial treat-
ment plan, in which dwell times take on very large values, gives
enough radiation to the targets but irradiates the OARs too much.
On the other hand, if all dwell times are zero, then the OARs are
fully spared, but no radiation is delivered to the targets either. The
difficulty lies in finding a treatment plan that results in both enough
coverage of targets and enough sparing of OARs, while at the same
time also adhering to several other criteria.

3.1 Plan evaluation
At the start of a High-Dose-Rate (HDR) prostate brachytherapy
treatment, a radiation dose is prescribed for the prostate, called
the planning aim dose. For the patients involved in this study, the
planning aim dose was 13 Gy. The seminal vesicles are prescribed
to receive at least 80% of this 13 Gy. For the OARs, there are upper
bounds on the amount of radiation they can receive. Moreover,
there are also upper bounds on the amount of radiation that the
prostate itself can receive.
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A guideline in the plan evaluation is the clinical protocol, which
is however not absolutely strict. The current clinical protocol at the
hospital involved in this study is formulated in terms of so-called
Dose-Volume Indices (DVIs). A DVI describes how large the volume
of an organ covered by a certain dose is. There are two types of
DVIs: volume and dose indices. Volume indices, i.e., the sub volume
of an organ that receives at least / at most a specific dose, are useful
for describing the amount of radiation delivered to targets. Dose
indices, i.e., the lowest dose to the most irradiated sub volume of
a certain size of an organ, are useful for describing the amount of
radiation delivered to OARs. We use the following notation: V o

x is
the volume of organ o that receives at least x% of the planning aim
dose; Do

x is the lowest dose to the most irradiated xcm3 of organ o.
A full description of the clinical protocol in terms of DVIs at the
hospital involved in this study is presented in Table 1.

Targets OARs
Prostate Vesicles Bladder Rectum Urethra

V100%>95% V80%>95% D1cm3<86% D1cm3<78% D0.1cm3<110%
V150%<50% D2cm3<74% D2cm3<74%
V200%<20%

Table 1: Brachytherapy treatment planning in clinical prac-
tice at the involved hospital. Volume indices V are in per-
centage of the total organ volume, dose indices D are in per-
centage of the planning aim dose of 13 Gy.

In the clinical software, the computation of DVIs is performed by
calculating the dose in a number of points in the organ of interest.
These points are called dose-calculation points. The more points are
used, the more precise the resulting values of the DVIs are. The
strength of the radioactive source, in combination with the position
of a dose-calculation point relative to a dwell position, determines
the dose rate, which is the amount of radiation that is delivered
from the source to the dose-calculation point per second, in Gy/s.
Multiplying the dose rate with the dwell time gives the absolute
amount of radiation that is delivered, in Gy. For a given catheter, the
total radiation that each dose-calculation point receives from that
catheter is the combined dose delivered from all the dwell positions
in that catheter. Finally, the total radiation at each dose-calculation
point is obtained by summing the dose from each separate catheter.

Let D be the set of all dose-calculation points. LetC be the set of
all catheters in a treatment plan. For every c ∈ C , letTc be the set of
all dwell positions of that catheter. With a certain source strength,
Rc is a matrix where entry (i, j) indicates the dose rate associated
with dwell position j ∈ Tc and dose-calculation point i ∈ D. Let ®tc
be the vector of dwell times at all dwell positions in catheter c . The
vector ®d of the amounts of radiation received at all dose-calculation
points can be computed as

®d =
∑
c ∈C

Rc ®tc . (1)

Hence, the computation of the dose in the dose-calculation points
requires for each catheter c a dose-rate matrix Rc in combination
with a vector of dwell times ®tc .

3.2 Clinical software
Current clinical treatment planning software can quickly provide a
treatment plan. This is done by solving a simplified optimization

model of the problem with local search methods. The simplification
is used because it is difficult to directly optimize DVIs, due to their
discrete nature. For example, maximizing the V prostate

100% means maxi-
mizing the number of dose-calculation points inside the prostate
that receives at least the planning aim dose. These simplifications
however typically make it hard to ensure that all criteria are sat-
isfied and that the treatment plan proposed by the software is the
best possible one for the patient case at hand.

The optimization in the clinical software is single-objective. All
objectives following from the clinical protocol are combined into a
single optimization function by the weighted-sum approach. For
each setting of the weighting-coefficient vector, there is a single
optimal solution. The proper setting of these weights for a given
desired trade-off in tumor coverage versus organ sparing is patient-
specific and difficult to determine a priori, resulting in the need to
run multiple trial-and-error runs of the optimization.

Often, the resulting treatment plan is not immediately approved
by the physicians, in which case this proposed plan has to be man-
ually improved by medical planners. An improvement on one cri-
terion can however result in a deterioration of another criterion,
making this a time-consuming and little insightful process.

The plan is adjusted until the physicians are satisfied. In some
cases, no treatment plan can be found that satisfies all clinical
criteria. This depends on the catheter implant and the geometry
of the involved organs. In this case, the physicians need to decide
which criteria are more important to be satisfied and which criteria
can be compromised. This leads to a final approved treatment plan,
which might (slightly) violate some criteria in the clinical protocol.

3.3 Research software
Brachytherapy treatment planning is intrinsically a multi-objective
optimization problem, trading off target coverage and sparing of
OARs. By formulating treatment planning as such, and using an
a posteriori multi-objective approach, the decision of the desired
trade-off for a specific patient can be determined by the physician
by insightfully selecting a plan from the obtained set of plans, i.e.,
the Pareto front. A clinically relevant multi-objective formulation
combined with a multi-objective optimizer that is capable of dealing
with nonlinearities and the lack of gradient information such as in
the counting-based DVIs, can therefore be very helpful for clinical
practice. Recent results show that with MO-RV-GOMEA excellent
results can indeed be obtained for the case where catheters are
already in place using a bi-objective optimization model [9].

In principle, each criterion in the protocol can be taken to be an
objective. However, solving the resulting many-objective optimiza-
tion model does not necessarily readily lead to insightful results.
Moreover, although superior results have been reported for MO-
RV-GOMEA on multi-objective optimization problems with few
objectives [1], it is currently unknown if this performance scales
well with the number of objectives. For this reason, a bi-objective
formulation was constructed by identifying that the clinical proto-
col in terms of DVIs in Table 1 consists of two types of criteria. The
first type is related to the coverage of the targets, namely V prostate

100%
andV vesicles

80% . The larger the coverage of the prostate and the vesicles,
the better the treatment plan. Hence, for these criteria large DVI
values are preferable. This can be achieved by increasing the dwell
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times. For this first type of criteria, the optimum would be 100%
coverage for both prostate and vesicles.

The second type of DVI criteria is related to the sparing of OARs,
namely the DVIs of rectum, urethra, and bladder. The lower the
dose to the OARs, the better the treatment plan, so small DVIs are
preferable, which can be achieved by decreasing the dwell times.
The optimum would be 0% for all these criteria.

The two objectives in the bi-objective problem formulation corre-
spond to the two conflicting types of coverage criteria and sparing
criteria. Specifically, nine DVI criteria in the clinical protocol are
combined in the Least Coverage Index (LCI), which corresponds to
the worst DVI in the coverage criteria, and the Least Safe Index
(LSI), which corresponds to the worst DVI in the sparing criteria.

In this paper, the problem formulation is changed in two ways,
in order to avoid that all treatment plans with a small number of
catheters are infeasible.

Firstly, the criteria on theV prostate
150% andV prostate

200% are included in the
LSI, instead of set as hard constraints. For a number of catheters
for which treatment plans exist that satisfy all clinical criteria,
the criteria on the V prostate

150% and V prostate
200% are usually easily satisfied,

making the difference between the two problem formulations small.
The resulting objectives are shown below.

LCI = min{V prostate
100% − 95,V vesicles

80% − 95}/100
LSI = min{50 −V

prostate
150% , 20 −V

prostate
200% , 86 − Dbladder

1cm3 , 74 − Dbladder
2cm3 ,

78 − Drectum
1cm3 , 74 − Drectum

2cm3 , 110 − Durethra
0.1cm3}/100

Secondly, the feasible search space consists of all treatment plans
with at least 75% coverage of both prostate and vesicles, with the
LSI unconstrained (instead of a hard constraint of LSI ≥ −0.2).

4 CATHETER POSITION OPTIMIZATION
For catheter position optimization, three objectives are considered,
namely Number of Catheters (NC), coverage of targets, and sparing
of OARs. Optimizing all three objectives at the same time is difficult
because the Pareto-optimal catheter configurations for a given NC
are not necessarily related to the catheter configurations for NC+1.
The optimization is therefore sliced, running a single instance of
MO-RV-GOMEA for each NC. The larger NC, the larger the search
space, and the better the theoretically optimal Pareto front. We
consider a range for NC of 1 to 30. In this section, we outline the
key changes and required additions compared to [9] to include the
catheter positions into the optimization.

Feasible catheter configurations. For every patient case, a vector
®v is determined which describes the angle at which catheters can
be placed in the patient. This vector is used in two ways.

Firstly, a two-dimensional grid of 90 parallel catheter config-
urations is placed on prostate and vesicles combined, where the
direction of each catheter is equal to ®v . This is the largest possible
grid that can be placed in the clinical software. An example of such
a grid is shown in Figure 2. The clinical software then provides in-
formation on these catheter configurations and their corresponding
dwell positions, which is used to calculate the dose-rate matrix of
each catheter in the grid. Moreover, for each catheter, it is calculated
which dwell positions require penetration of the bladder.

Figure 2: Graphical representation of the grid of catheter po-
sitions of patient 2.

Figure 3: Three slices of an MRI scan with delineated con-
tours of patient 2 at different heights, together with the two-
dimensional projections of all organs (bottom right figure),
projected along the direction of a catheter.

Secondly, the vector ®v is used to create the projections of all
organs. For this, a fixed plane called the projection plane is selected,
which is parallel to the planes in which the organ contours were
delineated. Next, the contours of all organs are projected along the
direction of ®v onto this projection plane. Finally, for each organ,
the convex hull of the projected contours is taken, resulting in one
contour as the projection of this organ. An example is shown in
Figure 3.

During optimization, catheters can in principle take all positions
of the catheters in the grid, but also all positions in between grid
catheters. However, there are two constraints on the positions and
depths of insertion.

Firstly, catheters are not allowed to intersect with either rectum
or urethra. In the optimization a slightly stronger constraint is
used, which is that catheters are not allowed to intersect with the
projections of the rectum and urethra. Since all catheters are parallel
to each other, the position of a catheter can be described as a point
on the projection plane. This way, the intersection of a catheter with
rectum or urethra can be calculated as intersection of a point with
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a two-dimensional contour, which is a relatively cheap operation.
To keep catheters within the vicinity of the targets, catheters have
to intersect with the projection of either prostate or vesicles.

Secondly, catheters are only allowed to use dwell positions up
to the bladder. This corresponds to the clinical practice of inserting
catheters only as far as the bladder. Given a catheter position, the
four catheters surrounding this catheter in the grid are determined.
Only dwell positions in the current catheter which do not require
intersection with the bladder in all the surrounding four catheters
are allowed to contribute to the dose distribution. The dwell times
of other dwell positions are treated as being zero.

Initialization. The catheters are initialized in feasible positions
by first sampling random points inside the union of the projections
of prostate and vesicles, outside of the projections of rectum and
urethra. Next, the positions are divided into NC clusters using the
k-means clustering algorithm. For each individual in the population,
the position of the ith catheter i ∈ {1, . . . ,NC} is initialized as a
position from cluster i . This way, the different catheters in two
individuals are ordered similarly.

Dwell positions which require intersection with the bladder in
the surrounding four grid catheters are initialized with zero dwell
time. Dwell positions outside the bladder are initialized with a
random real number in the range [0,WNC], whereWNC is an upper
bound depending on NC. The values of WNC were determined
empirically such that the initial population contains a few feasible
treatment plans with different amounts of coverage, i.e., different
values of LCI ∈ [−0.2, 0.05].

Evaluation. The formulas for evaluating the DVIs of a treatment
plan can be found in [9]. The protocol evaluation requires a dose-
rate matrix for each catheter, which is calculated through interpola-
tion. Given a catheter position, again the four catheters surrounding
this catheter in the grid are determined. For a given dwell position
in the current catheter and a given dose-calculation point, the entry
in the dose-rate matrix is calculated using bilinear interpolation
between the corresponding entries in the dose-rate matrices of the
four surrounding catheters. This is faster than directly calculating
the dose-rate matrix, and results in only a small loss of precision.
Interpolated dose-rate matrices are recalculated for each evaluation.

Partial evaluations are possible and compatible with MO-RV-
GOMEA. For catheter position optimization, there are two cases.
If a changed variable is a dwell time, then the catheter containing
the corresponding dwell position is determined. For the dose-rate
matrix of this catheter, only the entries corresponding to the dwell
positions have to be computed. If a changed variable is a catheter-
position variable, then two full dose-rate matrices of this catheter
have to be computed, containing all entries. The first dose-rate
matrix corresponds to the previous catheter position, the second
dose-rate matrix corresponds to the current catheter position. By
multiplying both matrices with the dwell times, the change in dose
for each dose-calculation point can be computed.

Variable dependencies. Dependencies between variables are usu-
ally computed either a priori from problem-specific information,
or online from the population. Here, we compute the dependen-
cies between variables every generation, using both the population
and problem-specific knowledge. Because we have two types of

variables (catheter positions and dwell times), in each generation,
the dependency information between variables is based on two
different distance matrices. Each matrix uses the average catheter
positions in this generation.

The first matrix contains the distance between variables that
describe the positions of the NC catheters. The distance between
two catheter-position variables x1 and x2 is the following. If x1
and x2 together describe the position of a single catheter, then the
distance is zero. If x1 and x2 belong to two different catheters, then
the distance is equal to the physical distance between these two
catheter points in the projection plane.

The second matrix contains the distance between dwell-time
variables. The distance between two dwell-time variables is equal
to the physical distance between the corresponding dwell positions.

The matrices are separately used to describe the dependencies
between variables of the corresponding type.

5 EXPERIMENTS
Clinical data from three treated patients is used for optimization.
In order to allow a comparison with GAMBIT, the patient data
used in [11] was requested and used as the patient cases. We follow
the approach used for GAMBIT regarding the number of dose-
calculation points. The final Pareto fronts are evaluatedwith 100,000
randomly chosen dose-calculation points. To speed up optimization,
20,000 of those are used for fitness evaluation.

For each patient, a separate run of GOMEA is performed for each
of the numbers of catheters NC ∈ {1, 2, . . . , 9, 10, 12, 14, . . . , 28, 30},
each performing bi-objective optimization. The base population
size is 300, the base number of clusters is 5. The larger the number
of catheters, the more difficult the problem, resulting in longer re-
quired running times. The duration of optimization of each GOMEA
instance is therefore limited to 1800 + 900 ∗ NC seconds (e.g., 45
minutes for 1 catheter and 8 hours for 30 catheters). Each Pareto
front, that we show, represents the best solutions of 30 runs (i.e., the
Pareto front of Pareto fronts; for the empirical standard deviation
of MO-RV-GOMEA, see [9]). Experiments of up to and including
10 catheters were run on an Intel(R) Xeon(R) processor E5-2630v4
(2.2 GHz), experiments of more than 10 catheters were run on an
Intel(R) Xeon(R) processor E5-2699v4 (2.2-3.0 GHz).

The results are compared to the results obtained with GAMBIT
in [11]. These results were reported to have been obtained with a
duration of optimization limited to 48 hours per catheter number.
Also in this paper, each Pareto front represents the best solutions
of 30 runs. The experiments were reportedly run on two different
types of processors, an AMD Opteron(tm) Processor 6386 SE and
an Intel(R) Xeon(R) CPU E5-2699v4, the slowest of which is approx-
imately twice as slow as the processors used in our experiments.

Moreover, we consider also the treatment plans that were clini-
cally used for these patients, which all used 16 catheters. For op-
timization of dwell times with a fixed catheter placement using
MO-RV-GOMEA, run times of 1 hour for 16 catheters were pre-
viously shown to be sufficient [9]. To assess the potential of the
clinically placed catheters, for each patient MO-RV-GOMEA is run
for 1 hour to optimize the dwell times for the clinically used catheter
implant, resulting in a single Pareto front. In this case, the base pop-
ulation size is 30, the base number of clusters is 3. Each Pareto front,
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Figure 4: The Pareto fronts of different numbers of catheters (top row: 1-10 catheters, bottom row: 12-30 catheters). For each
patient the Pareto front of 1 catheter is below the left bottom corner of the figure, all Pareto fronts with 12 catheters or more
go through the so-called Golden Corner. The green square shows the clinically used treatment plan with 16 catheters (which
has a Least Coverage Index below −0.1 for patient 3), the green dots show the Pareto front of the optimization of dwell times
on these catheters. (Color versions of graphs available online.)

that we show, again represents the best solutions of 30 runs. The
experiments were run on the Intel(R) Xeon(R) processor E5-2630v4
(2.2 GHz).

6 RESULTS
The Pareto fronts for NC ∈ {1, 2, . . . , 9, 10, 12, 14 . . . , 28, 30} are
shown in Figure 4. Treatment plans which satisfy all clinical criteria
are visualized as being in the so-calledGolden Corner where LCI > 0
and LSI > 0. For each of the three patients, the Golden Corner can
be reached. This requires 5, 4, and 5 catheters for patients 1, 2, and
3, respectively. For comparison, the Pareto fronts presented in [11]
required 7, 7, and 14 catheters, respectively.

The treatment plans that were clinically used for these patients
are all outside the Golden Corner. The clinically used plan for
patient 3 is even outside the range of the plots of the Pareto fronts.
For this patient, the coverage of the vesicles is only 72.9%, resulting
in a low LCI value. For patient 1 and 2, the clinical treatment plans
are both dominated by a Pareto front of a number of catheters
less than the 16 used in the clinical plan. The minimum number of
catheters for which the clinical plan is dominated, is 6 for patient 1
and 4 for patient 2.

The Pareto fronts obtained by optimizing the dwell times of the
clinically used catheters using MO-RV-GOMEA all dominate the
clinically used plan, in-line with recent results reported in [9]. For
patient 1, the clinically used treatment plan is close to the results of
MO-RV-GOMEA. For patient 2, optimizing the dwell times resulted

in treatment plans much closer to the Pareto front of 16 catheters for
which the positions were optimized. For patient 3, optimizing the
dwell times also gave a large improvement, but the treatment plans
obtainable with this clinical catheter implant are still far from the
Pareto front of 16 catheters for which the positions were optimized.

In general, it can be seen that the more catheters are used, the
better the obtainable treatment plans, as is to be expected. Also,
the improvement obtainable by adding a catheter reduces as NC
increases. However, the quality of the Pareto front of a given NC and
the improvement obtainable by adding a catheter are also patient
specific. For example, the Pareto front of 10 catheters for patient 2
is better than for patient 3. This could be due to the fact that patient
3 has a large urethra and a small prostate, making the volume of the
urethra relatively large, complicating covering the prostate while
still sparing the urethra enough.

Based on the run time limits and the fact that the results with
MO-RV-GOMEA are also better within that time span, the improved
Pareto fronts were obtained with a speed-up of at least a factor 3.
The lower the number of catheters, the faster the results could be
obtained, showing a possible additional speed-up for less than 30
catheters.

A few selected catheter positions present in the Pareto fronts
are shown in Figure 5. For a given patient and NC, all plans in
the Pareto front actually have very similar catheter configurations,
and hence they differ mostly in dwell times. Moreover, for a small
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NC, different patients appear to have similar patterns in catheter
configurations, such as a rectangle for four catheters.

The catheter configurations also show differences between pa-
tients. For example, for patient 3, it can be seen that covering the
vesicles enough requires catheters to pass closely to the rectum,
which is less the case for patient 2. Patient 3 however requires more
catheters to pass through the vesicles, which has a larger volume
than for patient 2.

Finally, Figure 6 shows selected treatment plans in the Golden
Corner. The DVIs were re-evaluated in the clinical software used
at the hospital involved in this study, and all satisfy the criteria in
the clinical protocol.

(a) Patient 1

(b) Patient 2

(c) Patient 3

Figure 5: For each patient, for 4, 10, and 16 catheters, the
catheter positions of a selected plan inside the Golden Cor-
ner from the Pareto front are shown.

7 DISCUSSION
A few selected treatment plans were shown to a physician at the
hospital involved in this study. These treatment plans were regarded
to be promising, and the catheter positions as feasible. However,
there was also room for highly desirable improvement. One of the
main factors is related to the problem formulation, which is based
on the current clinical protocol. The clinical protocol is formulated
based on the delineated organs. However, there is normal tissue
in between and around these organs that is also being irradiated
during prostate brachytherapy. Since there is no criterion based on
this tissue in the clinical protocol, a treatment plan in the Pareto
front can have a large amount of radiation to this tissue without
deteriorating the LSI, while possibly contributing to the LCI, es-
pecially if dwell positions are inside, or close to, this tissue. This

can occur especially for small numbers of catheters. With an ef-
fective optimization algorithm such as MO-RV-GOMEA, this gets
fully exploited in finding the best possible plans. Even though the
clinical protocol allows this, the physician indicated that such plans
are not desirable. An important next step would therefore be to
determine a constraint on the amount of radiation to normal tissue
in between and around the delineated organs, and include it in the
optimization, ultimately changing the clinical protocol.

There are multiple possible reasons why this has not played
a (major) role in optimizing dwell times of catheters already in
place. The first is that in clinical practice, the number of catheters is
sufficiently large for each catheter to have low dwell times. Secondly,
when optimizing catheter positions, catheters can be placed at
the edge of the prostate, thereby covering the prostate but also
having part of their high-dose region outside of the prostate. This
way, the lack of criterion on normal tissue can be exploited more
than in dwell time optimization. Thirdly, the clinical optimization
software contains the possibility to put a criterion on the amount
of radiation to normal tissue, even though the clinical protocol
does not contain such a criterion. Finally, manual optimization
could have improved on the dose to normal tissue, to satisfy clinical
intuition and experience rather than the clinical protocol.

A second factor which was not taken into account in the op-
timization is the robustness of a treatment plan. Especially for
catheter placement, robustness is of high importance. After the
selection of a treatment plan, catheters still have to be placed inside
the patient, and could end up in a (slightly) different position from
what was optimized. Especially catheter implants where catheters
are close to OARs are less desirable, a fact that is not part of the
clinical protocol and thus not of our current optimization model.
Moreover, if the plan consists of only 4 catheters, then any mis-
positioning compared to the planned positions can have a large
influence on the LCI and LSI. In contrast, if more catheters are used,
then the mis-positioning of one catheter could be compensated
more by adjusting the dwell times of the other catheters. To ac-
count for this, the robustness of a treatment plan to small catheter
mis-positionings could be included in the optimization objectives.

8 CONCLUSIONS
This paper considers the optimization of catheter positions for HDR
prostate brachytherapy. A multi-objective problem formulation was
chosen, optimizing directly on the criteria in the clinical protocol
and considering the trade-offs between three key objectives: cov-
ering the targets, sparing the healthy organs close to the targets,
and using as few catheters as possible. The non-linearity of objec-
tives and the multi-objective formulation make the problem highly
real-world relevant, but non-trivial to solve, for which we turn to
state-of-the-art EAs. By applying MO-RV-GOMEA, an EA which
has already shown excellent performance on benchmark problems
and on the optimization of dwell times for HDR prostate brachyther-
apy, problem-specific information on the dependencies between
variables and the evaluation of a treatment plan could be exploited
effectively. Our results indicate that with this new approach, better
treatment plans can be found in much shorter running time, com-
pared to a recent state-of-the-art mixed-integer EA that was even
aimed at a restricted version of the problem. This allows for new
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insights into catheter placement for brachytherapy to be obtained,
as well as on objectives for automated treatment planning, where
our results have indicated that richer problem models are needed
to better match real-world clinical preferences.
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(a) Patient 1, NC = 10

Prostate Vesicles
V100% = 99.1% V80% = 99.1%

Prostate Bladder Rectum Urethra
V150% = 26.8% D1cm3 = 79.9% D1cm3 = 69.6% D0.1cm3 = 105.9%
V200% = 10.2% D2cm3 = 69.9% D2cm3 = 61.4%

(b) Patient 2, NC = 4

Prostate Vesicles
V100% = 95.5% V80% = 95.4%

Prostate Bladder Rectum Urethra
V150% = 27.0% D1cm3 = 80.6% D1cm3 = 76.3% D0.1cm3 = 109.8%
V200% = 13.8% D2cm3 = 73.5% D2cm3 = 70.4%

(c) Patient 3, NC = 16

Prostate Vesicles
V100% = 98.1% V80% = 99.5%

Prostate Bladder Rectum Urethra
V150% = 27.5% D1cm3 = 82.6% D1cm3 = 62.2% D0.1cm3 = 106.9%
V200% = 10.2% D2cm3 = 71.8% D2cm3 = 53.4%

Figure 6: Selected solution for patient 1, 2, and 3 using 10, 4,
and 16 catheters respectively, satisfying all clinical criteria.
The DVIs were re-evaluated in the clinical software.
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