
The University of Manchester Research

Towards an Adaptive Encoding for Evolutionary Data
Clustering
DOI:
10.1145/3205455.3205506

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Shand, C., Allmendinger, R., Handl, J., & Keane, J. (2018). Towards an Adaptive Encoding for Evolutionary Data
Clustering. In GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference (pp.
521-528). (GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference).
Association for Computing Machinery. https://doi.org/10.1145/3205455.3205506
Published in:
GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:19. Apr. 2024

https://doi.org/10.1145/3205455.3205506
https://research.manchester.ac.uk/en/publications/8e18ae34-c41d-4875-80c5-fa8d43c4dc25
https://doi.org/10.1145/3205455.3205506

Towards an Adaptive Encoding for Evolutionary Data Clustering
Cameron Shand

University of Manchester, UK
cameron.shand@manchester.ac.uk

Richard Allmendinger
University of Manchester, UK

Julia Handl
University of Manchester, UK

John Keane
University of Manchester, UK

ABSTRACT
A key consideration in developing optimization approaches for data
clustering is choice of a suitable encoding. Existing encodings strike
different trade-offs between model and search complexity, limiting
the applicability to data sets with particular properties or to prob-
lems of moderate size. Recent research has introduced an additional
hyperparameter to directly govern the encoding granularity in the
multi-objective clustering algorithm MOCK. Here, we investigate
adapting this important hyperparameter during run-time. In par-
ticular, we consider a number of different trigger mechanisms to
control the timing of changes to this hyperparameter and strategies
to rapidly explore the newly "opened" search space resulting from
this change. Experimental results illustrate distinct performance
differences between the approaches tested, which can be explained
in light of the relative importance of initialization, crossover and
mutation in MOCK. The most successful strategies meet the clus-
tering performance achieved for an optimal (a priori) setting of the
hyperparameter, at a ∼40% reduction of computational expense.

CCS CONCEPTS
• Information systems → Clustering; • Theory of computa-
tion → Evolutionary algorithms;

KEYWORDS
Evolutionary Multiobjective Clustering, Parameter Control
ACM Reference Format:
Cameron Shand, Richard Allmendinger, Julia Handl, and John Keane. 2018.
Towards an Adaptive Encoding for Evolutionary Data Clustering. In Pro-
ceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Clustering aims to partition data into disjoint subsets/clusterswhere
objects within a subset are ‘similar’ to each other, and dissimilar to
objects in other clusters. Due to the subjective nature of what de-
fines a cluster, a wide array of algorithms have been proposed which
embrace different mathematical definitions. In particular, existing
methods often incorporate specific model assumptions through the
choice of clustering criterion or the choice of cluster representation
— both of these aspects have important consequences regarding the
types of clusters that can ultimately be identified.

The impossibility of defining a single universal clustering crite-
rion has led to the formulation of clustering as a multi-objective

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

problem involving optimization of a number of complementary
criteria [4, 8]. Less attention has been paid to the choice of cluster
representation which, arguably, acts as a more implicit mechanism
of defining model structure, directly influencing search resolution.
In the cognate literature, a number of different representations have
been proposed, yet discussion of the implications of this choice has
often been quite limited. Furthermore, a few authors have described
evolutionary clustering (EC) algorithms with some level of control
over the resolution of the search, but without much exploration of
the impact and optimal determination of this parameter.

For example, in certain EC algorithms, the level of resolution is
specified a priori in the form of the number of prototypes [9] (or
Voronoi cells [7]) to be used during the search, with the assumption
that multiple such prototypes (or cells) can subsequently be merged
into a single cluster. The number of basic components defined in
this manner can be thought of as an additional hyperparameter to
the algorithm, which determines the resolution of the clustering
(although the identity of each component may vary over the course
of the search). The recently introduced multi-objective clustering
algorithm ∆-MOCK [6] uses a related approach. Specifically, it
derives a set of basic components using the information embedded
in the Minimum Spanning Tree (MST) of a dataset of N items,
with a hyperparameter controlling the number of components P
to be defined. The resulting components are deterministic and are
retained throughout the course of the search. This approach makes
explicit that the search problem is transformed into one requiring
optimal assembly of a number of components P ≪ N only.

A challenge to all of the approaches is the determination of the
optimal choice of the resolution, or the number of components P .
Intuitively, it seems clear that the optimal value of such a hyper-
parameter is likely to differ for datasets of varying complexity, as
influenced by the shape and the number of clusters. Additionally,
a particular application context may potentially add requirements
regarding the optimal choice of the parameter. A suitably low reso-
lution has the benefit of reducing the problem size and opens up
the possibility of pre-computing objective value contributions for
individual components. In certain applications where a single par-
tition is desired, a low resolution that allows thorough exploration
of the region around the true number of clusters (k∗) may yield
clusters of sufficient accuracy. In other cases, however, k∗ may be
entirely unknown, or the nature of the application may warrant the
generation of a broad range of diverse partitions. In such a scenario,
the choice of a fixed low resolution may prove overly restrictive.

This paper investigates using feedback of the performance dur-
ing run-time to change the resolution of the clustering model in
an EC algorithm. Specifically, we devise strategies to achieve an
incremental change from a low to a high resolution over the course

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Cameron Shand, Richard Allmendinger, Julia Handl, and John Keane

of the search. We explore the impact of the timing of resolution
changes, and describe a number of different search strategies for
reacting to this change in resolution. The ultimate aim is to devise
an algorithm that adaptively adjusts the resolution of the search,
leading to improvements in efficiency and making it applicable in
situations where optimal resolution for a given dataset is unknown.

The rest of this paper is organised as follows: Section 2 dis-
cusses related work; Section 3 introduces the ∆-MOCK algorithm,
which serves as the vehicle for our experiments; Section 4 describes
the trigger mechanisms and search strategies incorporated into
our new version of the algorithm, Adaptive ∆-MOCK; Section 5
presents an experiment to compare various configurations of Adap-
tive ∆-MOCK on a range of both synthetic and real-world datasets,
followed by analyses of the results; Section 6 presents our conclu-
sions.

2 RELATEDWORK
Performance of an optimization algorithm greatly depends on the
values of its parameters. Setting these parameters efficiently can
depend not only on the problem at hand but also the purpose of
optimization, such as the need for either a single or set of solutions,
or for a solution that is ‘good enough’ within a time constraint.
The No Free Lunch Theorem [19] states there is no single optimal
algorithm or setting that yields optimal performance on all problem
classes.

Much recent research has focused on appropriate setting of al-
gorithm parameters, see e.g. [10]. It is common to differentiate the
following two cases [5]: parameter tuning and parameter control.
In parameter tuning (or offline tuning), the parameter values are
unchanged during optimization, hence only a single value is needed
for each parameter. In parameter control (or online tuning), the
parameter values are changed during an optimization run. In par-
ticular, starting off with initial parameter values, the values may be
modified during a run via suitable control strategies, which in turn
can be deterministic, adaptive (using feedback from the search), or
self-adaptive (the values are included directly in the search).

The approach here, Adaptive ∆-MOCK, is an adaptive parameter
control method. Our approach is different in the sense that the pa-
rameter to be tuned governs properties of the optimization problem
itself (by expanding the search space), rather than properties within
the algorithm such as the population size or mutation probability.
Arguably, two of the most similar methods to ours are the ARGOT
strategy [16] and the delta coding [18]. The ARGOT strategy uses
operators that allow both reduction and expansion of the search
space, through adaptation of the number of bits used to represent
the gene. On the other hand, delta coding is a scheme that utilizes
multiple restarts of the algorithm, adjusting the search space based
on the performance of the previous run.

Similar to other adaptive parameter control methods, our ap-
proach relies on feedback from the search to trigger a change in a
parameter value. Typical metrics to quantify feedback include the
quality of the best solution in the population or the quality of the
population as a whole. In the presence of multiple objectives, quan-
tifying feedback (or algorithm performance) is not straightforward
as the goal is to evolve a set of diverse trade-off solutions [21]. In

our case, feedback is based on the hypervolume metric [21] - well
accepted in the community due to its Pareto compliant property.

While the hypervolume has become a popular metric in both
parental and environmental selection operations in a multiobjective
optimization algorithm (e.g. IBEA [20] and SMS-EMOA [2]), there
is limited work on using the metric to measure convergence to the
Pareto front to drive evolution. This approach was first considered
in [17], and later incorporated into NSGA-II in [12], where it is
used as a mechanism to increase the population size if there is no
significant change in the hypervolume (though no definition of this
change is provided). Other work uses the fitness values directly
to detect a change in performance, either by statistical hypothesis
testing [15] or by monitoring the average fitness of the best found
solutions [3]. In the latter work, a drop in this average fitness
triggers the use of hypermutation (a strategy also employed in this
paper) to try and react to the environmental change responsible for
this.

3 ∆-MOCK AND ITS HYPERPARAMETER δ
The multi-objective clustering algorithm ∆-MOCK [6] minimises
two objectives: intra-cluster variance and connectivity. The former
objective emphasizes cluster compactness and is minimised when
every data point is in its own separate cluster; the latter considers
preservation of nearest neighbour relationship, and is minimised
when all data points are together in a single cluster.

To accommodate clusters associated with these complementary
objectives, clustering solutions in the original MOCK algorithm
were represented using the locus-based adjacency encoding [13],
which is illustrated in Figure 1a. In ∆-MOCK, this encoding mecha-
nism was further refined using knowledge derived from the Mini-
mum Spanning Tree (MST) of a dataset. During the precomputation
phase of the algorithm, the MST of the data is determined, and each
link (or edge) between two nodes (data points) is assigned a degree
of interestingness (DI) value, as indicated in Figure 1a. The DI of the
link i → j is defined as

DI (i → j) = min
{
nni (j),nnj (i)

}
+
σ (i, j)

σmax
, (1)

wherenni (j) is the ranking of data point j in data point i’s nearest
neighbours. The (Euclidean) distance between i and j is given by
σ (i, j), and is divided by themaximumdistance in the dataset (σmax)
to ensure this term is in the range [0, 1].

A ranking is created for all links in the MST by sorting on their
DI value. The hyperparameter δ then specifies the percentage of
the least interesting links to fix for all individuals, effectively reduc-
ing the genotype and thus the search space to the non-fixed set of
links. This approach is illustrated in more detail in Figure 1a, where
we use ‘?’ to indicate those links that are not fixed (and therefore
define the available search space). Considering Figure 1c, it is clear
that δ = 0 corresponds to MOCK’s original encoding (maximum
resolution), whereas δ = 100 collapses the search space to a single
point, with all data points assigned to the same cluster (minimum
resolution). At δ = 50 (see Figure 1b), half of the least interesting
links in the MST have been fixed, creating a partial solution with
P = 6 components. The reduced genotype then serves to represent

Towards an Adaptive Encoding for Evolutionary Data Clustering Conference’17, July 2017, Washington, DC, USA

MST with DI Values

1

2 3

4

5

6
7

8

9

10

0

1.6

4.7

3.8

5.1

4.3

2.7

6.1
2.2

7.8

1 1 7 2 3 10 6 4 10 2
1 2 3 4 5 6 7 8 9 10

Value:

Index:

(a)

Partial Solution when δ = 50

1

2 3

4

5

6
7

8

9

10

1

2 3

4

5

6
7

8

9

10

0

1.6

3.8

2.7

2.2

c1
c2

c3

c4

c5

c6

1 1 7 ? ? 10 ? 4 ? ?
1 2 3 4 5 6 7 8 9 10

Value:

Index:

(b)

Full Genotype with δ = 0

1

2 3

4

5

6
7

8

9

10

1

2 3

4

5

6
7

8

9

10

c1

c2 c3

c4

c5

c6 c7
c8

c9

c10

? ? ? ? ? ? ? ? ? ?
1 2 3 4 5 6 7 8 9 10

Value:

Index:

(c)

Figure 1: An example dataset with N = 10 data points is presented. In (a), the MST is shown, and is equivalent to δ = 100. The
DI value of each link is displayed next to the corresponding edge. In (b), the P = 6 components as defined by δ = 50 can be seen,
where half of the least interesting links have been fixed. This produces a reduced genotype of length Γ = 5. In (c), there are no
fixed links when δ = 0, resulting in a full-length genotype P = N.

combinations of these components. As the value of δ fixes a per-
centage of the genotype and thus links in the MST, it is clear that
the optimal value of δ will differ for different datasets.

The initialization routine of ∆-MOCK is specialised to create a
close initial approximation of the Pareto front. This is achieved by
creating individuals for the initial population by removing the k
most interesting links, where k is randomly sampled from {2, 3, . . .,
kmax } and kmax is twice the expected number of clusters. As re-
moval of these links is only permitted for the unfixed links, δ de-
termines what individuals can be generated by this routine.

The neighbourhood-biased mutation operator used by ∆-MOCK
calculates the mutation probability individually for every gene,
where for a link i → j encoded in a gene the probability is:

pm (i → j) =
1
Γ
+

(
nni (j)

Γ

)2
, with Γ =

(
1 − δ

100

)
N . (2)

Here N gives the number of points in the dataset, and Γ indicates
the length of the (unfixed) genotype associated with a given value
of δ . When selected for mutation, the link i → j is replaced with
the link i → h where h is randomly chosen from the data point i’s L
nearest neighbours, where L is typically quite small. Consistent with
the original MOCK algorithm, ∆-MOCK uses uniform crossover as
its crossover operator.

4 ADAPTIVE ∆-MOCK
Algorithm 1 outlines the proposed adaptive version of ∆-MOCK;
in particular, the additions introduced to ∆-MOCK can be found
in Lines 10-12. A brief overview of the most relevant parts of the
original ∆-MOCK have been given in the previous section; for
further details the reader is referred to [6].

Here, we limit ourselves to strategies capable of a incremental in-
crease in resolution, as defined by a step-wise decrease in the value
of the hyperparameter δ . Specifically, we consider the situation of
a given set of T levels of resolution, with the minimum resolution

level defined by δHigh and the maximum resolution described by
δLow. We consider search strategies that start at δHigh and incre-
mentally decrease the δ value from δHigh to δLow. The timing of the
value change is determined by the trigger mechanism used, with
the search strategy employed determining how ∆-MOCK reacts to
this change. Detailed descriptions of different trigger mechanisms
and search strategies are provided in the following.

Algorithm 1 Adaptive Delta-MOCK
Require: Dataset, δ , Gmax
1: format_data() // Standardize, etc.
2: precomputation() // Distance matrix, MST, DI, etc.
3: P = create_initial_pop(|P |)
4: HV0 = comp_hypervolume(P)
5: for gen = 1 to Gmax do
6: P̂ = parental_selection(P)
7: P ′ = genetic_operators(P̂)
8: P = environmental_selection(P ∪ P ′)
9: HVдen = comp_hypervolume(P)
10: if trigger_mechanism() is True then
11: Reduce δ and recompute auxiliary variables
12: Activate search strategy
13: P = Pareto_nondominated(P)

4.1 Trigger Mechanisms
As the optimal δ value is unknown, criteria are needed to decide
when it is advantageous (if at all) to reduce δ . To determine at
which generations this occurs, one adaptive and two baseline trigger
mechanisms are considered:

(1) Random — Randomly samples the generation at which to
trigger a decrease in δ

(2) Interval — Tries to ensure that ∆-MOCK has an approxi-
mately equal number of generations at each δ value explored

Conference’17, July 2017, Washington, DC, USA Cameron Shand, Richard Allmendinger, Julia Handl, and John Keane

(3) HV — Hypervolume-based mechanism, which uses the hy-
pervolume of the current population to determine whether
the search is stagnating and therefore if a decrease in δ is
required

If the population has converged to the Pareto front defined by
the current δ , expanding the search space by reducing δ enables
∆-MOCK to use its remaining evaluations more effectively. The
hypervolume can be used to evaluate this convergence, as it is a
measure of the volume of the objective space dominated by a popu-
lation (or set of objective vectors) [21]. By tracking the hypervolume
for each generation (using the worst possible objective values as
the reference point), it can be seen when the population begins to
converge. As a reference is required to identify convergence, we
obtain this by calculating ∆HV in the first Gmax /10 generations,
whereGmax is the number of generations. A moving average gradi-
ent of the hypervolume is maintained during evolution. When this
average falls significantly below the reference gradient (< 0.1 of
the reference gradient), this indicates that the rate of improvement
has become negligible and thus a decrease of δ can be triggered.

To determine effectiveness of the hypervolume trigger mech-
anism, we compare it to two baseline approaches: random and
interval. Both approaches are prescriptive in that the total number
of desired triggers T − 1 (as no trigger is needed for the initial
resolution) is specified, and they proceed by generating numbers
specifying the generation(s) at which to decrease δ . The random
approach simply chooses a random generation, whereas the in-
terval approach attempts to ensure that the algorithm has an ap-
proximately equal amount of time at each genotype length. More
specifically, the random trigger mechanism randomly samplesT −1
generations from {1, . . . ,Gmax } to trigger the incremental reduc-
tion in δ . The interval mechanism selects these T − 1 generations
by sampling one number from T − 1 equal intervals in the range
{Gmax /10, . . . ,Gmax − (Gmax /10)} to ensure each δ value has an
approximately equal number of generations. In contrast to this, the
hypervolume mechanism is adaptive to current performance and
determines when a decrease in δ is needed. For comparability, we
prevent it from increasing the resolution more than T − 1 times.

In Algorithm 1, Line 10, the condition depends on the trigger
mechanism used. For the two baselines mechanisms, this is simply
a test of whether the current generation is in the list of values
generated by the mechanism, whereas for the hypervolume-based
trigger mechanism it depends on the calculation described above.

4.2 Search Strategies
The new search space defined by the reduced δ value should be
explored rapidly to discover partitions now available with the new
components, particularly as a change in δ may occur late in the
search. Ideally, focus should be on this new region to avoid repeated
or unnecessary evaluations; for this, five strategies are considered:

(1) THall — Triggered hypermutation, applied to all genes in
the (reduced) genotype for a single generation

(2) THnew — Triggered hypermutation, applied to just the genes
of newly unfixed links for a single generation

(3) RO — Reinitialized offspring, where ∆-MOCK’s specialized
initialization is used to generate the offspring

Partial Solution when δ = 70

1

2 3

4

5

6
7

8

9

10

1

2 3

4

5

6
7

8

9

10

c1
c2

c3

c4

1 1 7 2 ? 10 ? 4 10 ?
1 2 3 4 5 6 7 8 9 10

Value:

Index:

Partial Solution when δ = 60

1

2 3

4

5

6
7

8

9

10

1

2 3

4

5

6
7

8

9

10

c1
c2

c3

c4

c5

1 1 7 ? ? 10 ? 4 10 ?
1 2 3 4 5 6 7 8 9 10

Value:

Index:

Trigger δ

decrease

Figure 2: Illustration of the example dataset being run with
δ = 70. Triggering a decrease in δ reduces it to 60, unfixing
the next most interesting link. This splits one of the compo-
nents, creating new possible partitions of the data.

(4) FM — Fair mutation, where a number of individuals are cre-
ated to explore each of the newly unfixed links

(5) CO — Carry on, a baseline strategy where no other changes
are made beyond the decrease in δ

In both the THall and THnew strategies, a hypermutation rate is
used for a single generation only. Similarly, the RO strategy affects
the generation of a single set of offspring only. The fair muta-
tion (FM) approach extends the strategy introduced in [1], which
was used for a binary genotype to explore the space of solutions
including newly introduced genes. The offspring are created by
generating an equal number of individuals for each new gene in
the genotype. As all individuals will have the same value in the
newly unfixed links (the edge found in the MST), individuals will
be generated separately for each particular gene by setting the
value to be self-connecting, such that the link is absent. As a re-
sult, new components are presented that can be merged, exploring
previously unseen partitions. The gene set to be self-connecting
for each generated individual is ‘protected’ for a defined number
of generations, during which this value cannot be changed. The
mutation probability for all other links in the genotype is raised in
order to rapidly explore the effect that this new gene has.

Figure 2 shows the partial solution obtained when δ = 70, fixing
all but the 3 most interesting links using the DI values from Figure
1a. While this simplifies the optimization problem, there may be
fixed links that connect separate clusters which, by reducing δ ,
become unfixed and are now available in the search. However, this
longer genotype increases the computational cost of the fitness
evaluation.

In the illustration, δ is reduced to 60 which unfixes the next most
interesting link. With the THall scheme, the hypermutation rate
would be multiplied to each of the probabilities calculated (using
Equation 2) for all 4 genes of the reduced genotype, whereas THnew
just multiplies the mutation probability (pm) of the new gene at
index 4. In this example with just a single new gene, the FM scheme
would generate all offspring to have a self-connecting link at index
4, using a raised mutation rate for the rest of the genotype.

Towards an Adaptive Encoding for Evolutionary Data Clustering Conference’17, July 2017, Washington, DC, USA

4.3 Impact on Precomputation
An advantage of the δ hyperparameter, beyond simplifying the
optimization, is to reduce the computation required by the evalu-
ation function via precomputation. Precomputed values for both
objectives can be calculated for the cluster components obtained
when δ > 0, such as the 6 components present in Figure 1b. This
simplifies the evaluation function to a simpler calculation, defined
by combining components encoded by the reduced genotype; de-
tails for this method can be found in [6]. A change in δ requires
this precomputation to be performed again, as new components
are available in the search (as shown in Algorithm 1, Line 11).

5 EXPERIMENTAL STUDY
This section describes the experimental setup designed to compare
the efficacy of the search strategies within Adaptive ∆-MOCK using
the different trigger mechanisms. The parameters used for each
method tested are provided, followed by an analysis of the results
with an explanation of observed behaviour.

5.1 Experimental Design
∆-MOCK and its strategies were implemented in Python, in ac-
cordance with the previously published code1, where the datasets
used here can also be found. All search strategies and ∆-MOCK
configurations have been run with 30 independent runs for each
trigger mechanism. The design of the experiment and parameters
used are outlined below and in Table 1.

Table 1: Experimental Setup

Configuration Adaptive δ? Trigger Starting δ Final δ

∆-MOCK (sr1) No – sr1 sr1
∆-MOCK (sr5) No – sr5 sr5

∆-MOCK with
{CO, FM, THall ,
THnew , RO}

Yes
Random
Interval
HV

sr1
sr1
sr1

sr5
sr5
?∗

∗: Final genotype length depends on performance

Standard parameters for ∆-MOCK are used in all seven configura-
tions: The number of generations,Gmax = 100; the population size
|P | = 100; the neighbourhood parameter L = 10; and, the crossover
probability pr = 1.0. In both the THall and THnew strategies, a
hypermutation rate of 500×pm is used, while the FM strategy uses
a raised mutation rate of 50 × pm for the non-protected genes, and
the gene protected in each of the individuals becomes unprotected
after 3 generations.

To enable setting an appropriate δ for datasets of different scales,
work in [6] introduced notation where the genotype length is a
function of the square root of the number of data points (

√
N), al-

lowing δ to be calculated. For a desired genotype length of α
√
N , the

notation is srα . For this experiment, δHigh = sr5 and δLow = sr1
are used; these were found to be generally good and poor val-
ues respectively of δ for the datasets used in [6]. To effectively
compare strategies to the unmodified ∆-MOCK and assess their
1https://github.com/garzafabre/Delta-MOCK

ability to produce suitable partitions of the data, constraints ensure
the maximum (reduced) genotype length available is equal for all
methods. The experiment is created as follows: ∆-MOCK, with no
modifications, is run separately at both δHigh and δLow. All other
strategies are restricted to use T = 5 resolution levels from the
set {sr1, sr2, sr3, sr4, sr5}, beginning at δLow = sr1 and expanding
the genotype incrementally according to the trigger mechanism
employed.

A total of 43 datasets have been used in our experiments, 35 syn-
thetic and eight real-world datasets. The synthetic datasets contain
clusters of arbitrary shape [6] in a range of configurations. Each
dataset has a dimensionality D ∈ {20, 50, 100, 150, 200} and, for
each of these, a number of clusters c ∈ {10, 20, 40, 60, 80, 100, 120}
for a total of 35 datasets with an average of 5,392 data points. A
dataset with 100 dimensions and 40 clusters will be referred to
using the format 100D−40c . The remaining eight are large, real-
world datasets curated by [6], which consists of the latitude and
longitude of crime locations (D = 2), with a lower number of clus-
ters (c ∈ {10, 11, 12}) and an average of 30,685 data points. These
datasets will be referred to as UKC1, ..., UKC8.

The Adjusted Rand Index (ARI) is used to measure the quality of
the partitions produced, as labels are available for these datasets.
TheARI is in the range [∼0, 1], where 1 is a perfect clustering and 0 is
random labelling [14]. The execution times recorded for the search
strategies include recomputation of the precomputed variables, and
the hypervolume calculation for that trigger mechanism, ensuring
a fair assessment of the impact of these modifications.

5.2 Results
Multi-objective clustering methods return a set of solutions corre-
sponding to a range of different trade-offs and numbers of clusters.
The ARI values used in our comparison are sets of 30 values corre-
sponding to the best solution found in each run – this is to assess
the potential of each method to generate good solutions. As some
Pareto optimal solutions will have too many or too few clusters
(leading to poor ARI values), mean or median values across indi-
vidual approximation sets would be of less interest here.

The performance (ARI) of each strategy and trigger mechanism,
and the time taken to run (standardized between 0 and 1 for each
dataset) is compared to ∆-MOCK using a fixed genotype length
of Γ = sr5. Statistical testing was performed using the Wilcoxon
signed-rank test with a α = 0.05 significance level. In Figure 3
any strategy found to be statistically significantly worse is filled in
orange, equivalent in grey, and significantly better than ∆-MOCK
(sr5) are filled in green.

Figures 3a-3c aggregate results for the synthetic datasets. Of
the strategies tested, the best and most similar performance to
the baseline ∆-MOCK is obtained using the RO strategy, and is
achieved at a 46.58%, 41.56%, and 55.42% average reduction in com-
putation time for the random, interval, and hypervolume trigger
mechanisms respectively. As the hypervolume mechanism does not
require expanding to a Γ = sr5 genotype length, largely equiva-
lent performance can be obtained at Γ < sr5 at a more significant
reduction in computation.

Using ∆-MOCK with a fixed Γ = sr1 is clearly too restrictive for
most problems as performance is poor, though this is associated

https://github.com/garzafabre/Delta-MOCK

Conference’17, July 2017, Washington, DC, USA Cameron Shand, Richard Allmendinger, Julia Handl, and John Keane

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ju

st
ed

 R
an

d
In

de
x

(A
R

I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d

Ti
m

e
pe

r
R

un

Time
Worse
Equivalent
Better
Reference

(a) Synthetic (random trigger)

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ju

st
ed

 R
an

d
In

de
x

(A
R

I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d

Ti
m

e
pe

r
R

un

(b) Synthetic (interval trigger)

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ju

st
ed

 R
an

d
In

de
x

(A
R

I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d

Ti
m

e
pe

r
R

un

(c) Synthetic (hypervolume trigger)

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

0.75

0.80

0.85

0.90

0.95

1.00

Ad
ju

st
ed

 R
an

d
In

de
x

(A
R

I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d

Ti
m

e
pe

r
R

un

(d) Real-world (random trigger)

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

0.75

0.80

0.85

0.90

0.95

1.00
Ad

ju
st

ed
 R

an
d

In
de

x
(A

R
I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d

Ti
m

e
pe

r
R

un

(e) Real-world (interval trigger)

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

0.75

0.80

0.85

0.90

0.95

1.00

Ad
ju

st
ed

 R
an

d
In

de
x

(A
R

I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d

Ti
m

e
pe

r
R

un

(f) Real-world (hypervolume trigger)

Figure 3: ARI (left y-axis) of each strategy for the synthetic datasets, with a line showing the average standardized run time
(right y-axis) for each strategy. All configurations are compared to ∆-MOCK (sr5) using the Wilcoxon signed-rank test. Statis-
tically significantly worse strategies are filled in orange, equivalent in grey, and better than ∆-MOCK (sr5) are filled in green.
∆-MOCK (sr1) is found to be consistently worse, and all other strategies are found to be equivalent or better regardless of the
trigger mechanism used, with the RO strategy found to be better across all 3 trigger mechanisms.

with the fastest computation time. Relative to the poor performance
of CO, the efficacy of all other search strategies can be seen. With-
out any modifications beyond a change in δ , ∆-MOCK is unable to
rapidly search this new space and significantly change the values
of the newly introduced genes (the uniform crossover operator is
ineffective as the values in these genes are the same for all individ-
uals).

To understand the results in more detail, an empirical attainment
function (EAF) difference plot compares performance of two meth-
ods in the objective space. The shading in these plots indicates the
difference in the probability of a method obtaining a point in that
region of the search space in favour of the method to which it is
compared [11]. Additionally, the objective values of the individual
with the best ARI found by either method are shown in both figures.

In Figure 4b, the behaviour of the CO and THall strategies is
compared (results shown are from runs using the interval trigger
mechanism), ensuring any differences observed solely capture the
effect of an increased mutation rate. This comparison indicates
a clear tendency of the mutation operator to generate offspring
that favour the intra-cluster variance. This behaviour can be un-
derstood in terms of MOCK’s mutation scheme. As the mutation
operator chooses to replace a link randomly from a data point’s
nearest neighbours, this is more likely to create an intra-cluster
than an inter-cluster link, increasing the number of clusters and
thus favouring the intra-cluster variance objective. This intrinsic

bias is likely to explain the (relatively) poor performance of the
two TH strategies (and to a lesser extent, FM), compared to the RO
strategy, which puts no additional emphasis on mutation.

Figure 4a reveals that ∆-MOCK (sr5) is better at optimizing the
intra-cluster variance objective compared to the RO strategy, which
obtains slightly better results for the connectivity objective. This
indicates that the introduction of genetic material by the initializa-
tion routine helps to counter a bias of the mutation operator, as
explained above.

Figures 3d-3f show an aggregation of the results for the real
datasets. Although ∆-MOCK (sr1) was again the worst configura-
tion tested, good clustering solutions were still found as the larger
size and low complexity of the data meant that the resolution ob-
tained using Γ = sr1 is almost adequate. All tested strategies display
equivalent or better performance over ∆-MOCK (sr5). Again, it is
clear from Figure 5 that increasing the mutation rate removes focus
from the interesting region of the objective space, as the average
number of clusters defined by the individuals in the final population
far exceeds the true number. While the increased mutation rate
has allowed the search space to be explored more rapidly, occasion-
ally identifying better partitions, this has come at the cost of the
population as a whole becoming worse on average.

The RO strategy was again the fastest tested, with a 43.63%,
42.34%, and 61.49% average reduction in computation time for the

Towards an Adaptive Encoding for Evolutionary Data Clustering Conference’17, July 2017, Washington, DC, USA

0 50 100 150 200 250 300 350
Connectivity

0
.2

0
.4

0
.6

0
.8

1
1

.2
1

.4
In

tr
a

c
lu

s
te

r
V

a
ri

a
n

c
e

Base−sr5

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)
Best ARI

0 50 100 150 200 250 300 350
Connectivity

0
.2

0
.4

0
.6

0
.8

1
1

.2
1

.4
In

tr
a

c
lu

s
te

r
V

a
ri

a
n

c
e

RO

(a)

0 200 400 600 800 1000 1200
Connectivity

0
.2

0
.4

0
.6

0
.8

1
1

.2
1

.4
In

tr
a

c
lu

s
te

r
V

a
ri

a
n

c
e

CO

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)
Best ARI

0 200 400 600 800 1000 1200
Connectivity

0
.2

0
.4

0
.6

0
.8

1
1

.2
1

.4
In

tr
a

c
lu

s
te

r
V

a
ri

a
n

c
e

THAll

(b)

Figure 4: Visualisations of the difference between the empirical attainment functions of two methods. The asterisk (∗) shows
the objectives values of the individual with the best ARI found from eithermethod. Darker shading indicates that thatmethod
has a higher probability of finding solutions in that region of the search space compared to the othermethod. In (a), we compare
∆-MOCK (sr1) with the RO strategy, showing a bias of the former to the intra-cluster variance objective, and of the latter to
connectivity. In (b), the only difference between the two methods shown is the increased mutation rate, which clearly favours
the intra-cluster variance.

¢¡MOCK
(sr1)

¢¡MOCK
(sr5)

CO FM THall THnew RO

Search Strategy

10

100

1000

N
um

be
r

of
 C

lu
st

er
s

True no. clusters

Figure 5: The number of clusters generated by each method
tested for theUKC5 dataset, with the true number of clusters
shown by the dashed horizontal line, highlighting the large
differences in the populations produced.

random, interval, and hypervolume trigger mechanisms respec-
tively, making the hypervolume-based trigger mechanism even
more computationally efficient with no drop in performance. For
these datasets the performance over ∆-MOCK is actually increased,
with significantly better performance found across all three trigger
mechanisms. This indicates that the methods are able to benefit
from the focused search in the most relevant search space.

Looking at the hypervolume of the population during evolution
provides insight into how the trigger mechanisms behave individ-
ually. Figure 6 shows generational plots for a single run on two
datasets. In Figure 6a, an example with the 50D − 60c dataset is
shown where Γ = sr1 is too restrictive, yet after the first decrease
in δ the search space is opened sufficiently to produce a population

that appears nearly equivalent (in terms of the achievable hyper-
volume) to the initial population of unmodified ∆-MOCK (sr5).
Subsequent triggers have a less pronounced effect, indicating that
the links introduced beyond the first trigger are not useful. This
is identified by the hypervolume trigger mechanism which does
not expand to Γ = sr5 (only three trigger points are recorded). The
method clearly achieves a higher hypervolume than the random
trigger mechanism which is hampered by spending more than half
of the available generations at a poor δ value.

Figure 6b shows results for the 200D−20c dataset. Here, the
early triggers have a less pronounced effect, suggesting that there
are no significant interesting links beyond the set Γ = sr1. For
the hypervolume-based trigger mechanism, only two triggers are
recorded. The smaller genotype enables greater focus on more in-
teresting combinations of cluster components, allowing the mecha-
nism to obtain the best hypervolume with a final genotype length
of sr3.

6 CONCLUSION AND FUTUREWORK
Our results indicate that the tuning of a hyperparameter control-
ling the length of the encoding for evolutionary clustering has
potential in focusing the search and reducing computational costs.
The current setup has some limitations, however. Specification of a
starting point is required, and the resolution can only be adjusted
in a single direction (expansion of the search space). Further study
is warranted to improve flexibility of the strategies. With addi-
tional development, there is scope for some of these strategies to
generalize to other cluster encodings.

The ability of δ to adapt during run-time is intuitively most use-
ful for large, complex clustering problems. This was confirmed by
the results of the RO strategy: even when starting with a generally
restrictive value of δ , competitive performance was obtained for
a significant reduction in computation time. The absence of sig-
nificant computational overhead associated with the RO strategy

Conference’17, July 2017, Washington, DC, USA Cameron Shand, Richard Allmendinger, Julia Handl, and John Keane

0 20 40 60 80 100
Generations

3900

3950

4000

4050

4100

4150

4200

H
yp

er
vo
lu
m
e

¢¡MOCK(sr5)
RO¡HV
RO¡ Interval
RO¡Random

(a) Generational plot for the 50D−60c dataset

0 20 40 60 80 100
Generations

8250

8300

8350

8400

8450

8500

8550

8600

H
yp

er
vo
lu
m
e

¢¡MOCK(sr5)
RO¡HV
RO¡ Interval
RO¡Random

(b) Generational plot for the 200D−20c dataset

Figure 6: Generational plots for two synthetic datasets com-
paring ∆-MOCK (sr5) with the RO strategy run with each
trigger mechanism. The graphs show a single run to illus-
trate the behaviour of the trigger mechanisms. The points
highlight the generations where δ was decreased.

and its consistent performance indicate that its use in Adaptive ∆-
MOCK allows the application of ∆-MOCK to ever larger problems
at a reduced computational cost.

The current bias of MOCK’s mutation operator is an issue for
generating a population of candidates focused on the area of the ob-
jective space that is most interesting for good partitions of the data,
and has hampered the performance of several strategies explored
here. Future work may consider an appropriate modification to this,
or its complete removal. The success of the RO strategy confirms
that ∆-MOCK’s specialized initialization clearly introduces most
of the genetic material useful for clustering, and mutation may
therefore be of less importance. On the other hand, it is possible
that refinement of the crossover operator to be sensitive to search
space changes may further encourage rapid convergence.

ACKNOWLEDGMENTS
We thank Manuel López-Ibáñez for assistance with the EAF plots;
Cameron Shand acknowledges PhD funding support from the EP-
SRC Manchester Centre for Doctoral Training in Computer Science
(EP/I028099/1).

REFERENCES
[1] Richard Allmendinger and Joshua Knowles. 2010. Evolutionary optimization

on problems subject to changes of variables. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 6239 LNCS, PART 2 (2010), 151–160.

[2] Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Mul-
tiobjective selection based on dominated hypervolume. European Journal of
Operational Research 181, 3 (2007), 1653–1669.

[3] Helen G Cobb. 1990. An Investigation into the Use of Hypermutation as an
Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent
Nonstationary Environments. Technical Report (1990). https://doi.org/doi=10.1.1.
79.4834

[4] Michel Delattre and Pierre Hansen. 1980. Bicriterion cluster analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 4 (1980), 277–291.

[5] Ágoston E Eiben, Robert Hinterding, and ZbigniewMichalewicz. 1999. Parameter
control in evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion 3, 2 (jul 1999), 124–141. https://doi.org/10.1109/4235.771166

[6] Mario Garza-Fabre, Julia Handl, and Joshua Knowles. 2017. An Improved and
More Scalable Evolutionary Approach to Multiobjective Clustering. IEEE Trans-
actions on Evolutionary Computation V (2017), 1–1. https://doi.org/10.1109/TEVC.
2017.2726341

[7] Julia Handl and Joshua Knowles. 2004. Evolutionary multiobjective clustering.
In International Conference on Parallel Problem Solving from Nature. Springer,
1081–1091.

[8] Julia Handl and Joshua Knowles. 2007. An evolutionary approach to multiob-
jective clustering. IEEE Transactions on Evolutionary Computation 11, 1 (2007),
56–76. https://doi.org/10.1109/TEVC.2006.877146

[9] Adán José-García and Wilfrido Gómez-Flores. 2017. Evolutionary Clustering
Using Multi-prototype Representation and Connectivity Criterion. In Mexican
Conference on Pattern Recognition. Springer, 63–73.

[10] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E Eiben. 2015. Parameter
control in evolutionary algorithms: Trends and challenges. IEEE Transactions on
Evolutionary Computation 19, 2 (2015), 167–187.

[11] Manuel López-Ibáñez, Luis Paquete, and Thomas Stützle. 2010. Exploratory
Analysis of Stochastic Local Search Algorithms in Biobjective Optimization. In
Experimental Methods for the Analysis of Optimization Algorithms, Thomas Bartz-
Beielstein, Marco Chiarandini, LuÃŋs Paquete, and Mike Preuss (Eds.). Springer,
Berlin, Germany, 209–222. https://doi.org/10.1007/978-3-642-02538-9_9

[12] Saúl Zapotecas Martínez, Edgar G Yánez Oropeza, and Carlos A Coello Coello.
2011. Self-adaptation techniques applied to multi-objective evolutionary al-
gorithms. In International Conference on Learning and Intelligent Optimization.
Springer, 567–581.

[13] YoungJa Park and ManSuk Song. 1998. A Genetic Algorithm for Clustering
Problems. In Genetic Programming 1998: Proceedings of the Third Annual Confer-
ence. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA,
568–575.

[14] WilliamM Rand. 1971. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association 66, 336 (1971), 846–850.

[15] Hendrik Richter. 2009. Detecting change in dynamic fitness landscapes. In
Evolutionary Computation, 2009. CEC’09. IEEE Congress on. IEEE, 1613–1620.

[16] Craig G. Shaefer. 1987. The ARGOT Strategy: Adaptive Representation Genetic
Optimizer Technique. In Proceedings of the Second International Conference on
Genetic Algorithms on Genetic Algorithms and Their Application. L. Erlbaum
Associates Inc., Hillsdale, NJ, USA, 50–58. http://dl.acm.org/citation.cfm?id=
42512.42520

[17] Heike Trautmann, Uwe Ligges, Jörn Mehnen, and Mike Preuss. 2008. A conver-
gence criterion for multiobjective evolutionary algorithms based on systematic
statistical testing. In International Conference on Parallel Problem Solving from
Nature. Springer, 825–836.

[18] Darrell Whitley, Keith Mathias, and Patrick Fitzhorn. 1991. Delta coding: An
iterative search strategy for genetic algorithms. In ICGA, Vol. 91. 77e84.

[19] David H. Wolpert and William G. Macready. 1997. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation 1, 1 (Apr 1997),
67–82. https://doi.org/10.1109/4235.585893

[20] Eckart Zitzler and Simon Künzli. 2004. Indicator-based selection in multiobjec-
tive search. In International Conference on Parallel Problem Solving from Nature.
Springer, 832–842.

[21] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective optimization using evolu-
tionary algorithms — A comparative case study. In Parallel Problem Solving from

https://doi.org/doi=10.1.1.79.4834
https://doi.org/doi=10.1.1.79.4834
https://doi.org/10.1109/4235.771166
https://doi.org/10.1109/TEVC.2017.2726341
https://doi.org/10.1109/TEVC.2017.2726341
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1007/978-3-642-02538-9_9
http://dl.acm.org/citation.cfm?id=42512.42520
http://dl.acm.org/citation.cfm?id=42512.42520
https://doi.org/10.1109/4235.585893

Towards an Adaptive Encoding for Evolutionary Data Clustering Conference’17, July 2017, Washington, DC, USA

Nature — PPSN V, Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-
Paul Schwefel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 292–301.

	Abstract
	1 Introduction
	2 Related Work
	3 Delta-MOCK and its Hyperparameter
	4 Adaptive Delta-MOCK
	4.1 Trigger Mechanisms
	4.2 Search Strategies
	4.3 Impact on Precomputation

	5 Experimental Study
	5.1 Experimental Design
	5.2 Results

	6 Conclusion and Future Work
	Acknowledgments
	References

