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ABSTRACT
Generative Adversarial Networks (GANs) are a machine learning
approach capable of generating novel example outputs across a
space of provided training examples. Procedural Content Genera-
tion (PCG) of levels for video games could benefit from such models,
especially for games where there is a pre-existing corpus of levels
to emulate. This paper trains a GAN to generate levels for Super
Mario Bros using a level from the Video Game Level Corpus. The
approach successfully generates a variety of levels similar to one
in the original corpus, but is further improved by application of
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES).
Specifically, various fitness functions are used to discover levels
within the latent space of the GAN that maximize desired properties.
Simple static properties are optimized, such as a given distribution
of tile types. Additionally, the champion A* agent from the 2009
Mario AI competition is used to assess whether a level is playable,
and how many jumping actions are required to beat it. These fit-
ness functions allow for the discovery of levels that exist within the
space of examples designed by experts, and also guide the search
towards levels that fulfill one or more specified objectives.
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1 INTRODUCTION
Procedural Content Generation (PCG) covers the creation of game
content (e.g., game rules, levels, characters, background stories, tex-
tures and sound) by algorithms with or without help from human
designers [23]. The history of digital PCG goes back to the 1980s,
when the game Elite1 was published. Due to the limited memory
capacities of personal computers of the time, a decision was made
to save only the seed to a random generation process rather than to
store complete level designs. From a specified seed value, a genera-
tor would proceed to deterministically (pseudo-randomly) recreate
a sequence of numbers which were then used to determine the
names, positions, and other attributes of game objects. The adop-
tion of PCG exploded during the 2000s when it was picked up in
application to game graphics [5]. Since then, much work has sprung
up around PCG in both the industry and academic spheres [17].
Additionally, various competitions have been organized in interna-
tional conferences during recent years, such as the Mario AI Level
Generation Competition2, Platformer AI Competition3, AI Birds
Level Generation Competition4 and the General Video Game AI
(GVGAI)5 Level Generation Competition [11]. The approach intro-
duced here is an example of PCG via Machine Learning (PCGML;
[20]), which is a recently emerging research area.

The approach presented in this paper is to create new game
levels that emulate those designed by experts using a variant of a
Generative Adversarial Network (GAN) [7]. GANs are deep neural
networks trained in an unsupervised way that have shown excep-
tional promise in reproducing aspects of images from a training
set. Additionally, the space of levels encoded by the GAN is further
searched using the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [9], in order to discover levels with particular
attributes. The idea of latent variable evolution (LVE) was recently
introduced in the context of interactive evolution of images [2] and
fingerprint generation [3] but so far has not been applied to PCG
of video game levels.

The specific game in this paper is Super Mario Bros6, but the
technique should generalize to any game for which an existing
corpus of levels is available. Our GAN is trained on a single level
1https://en.wikipedia.org/wiki/Elite_(video_game)
2http://www.marioai.org/LevelGeneration
3https://sites.google.com/site/platformersai/LevelGeneration
4https://aibirds.org/other-events/level-generation-competition.html
5http://www.gvgai.net/
6https://en.wikipedia.org/wiki/Super_Mario_Bros.
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Figure 1: Overview of the GAN training process and the evo-
lution of latent vectors. The approach is divided into two distinct
phases. In Phase 1 a GAN is trained in an unsupervised way to gen-
erate Mario levels. In the second phase, we search for latent vectors
that produce levels with specific properties.

from the original Super Mario Bros, available as part of the Video
Game Level Corpus (VGLC) [21]. CMA-ES is then used to find ideal
inputs to the GAN from within its latent vector space (Figure 1).
During the evolution, the generated levels are evaluated using
different fitness functions. This allows for the discovery of levels
that exist between and beyond those sparse examples designed
by human designers, and that also optimize additional goals. Our
approach is capable of generating playable levels that meet various
goals and is ready to be applied to level generation of other games,
such as the games in the GVGAI framework. By training on only
a single level, we are able to show that even with a very limited
dataset, we can apply the presented approach successfully.

The rest of this paper is structured as follows. Section 2 intro-
duces the background and related work. The main approach is
described in Section 3. Section 4 details the experimental design.
The experimental results are presented and discussed in Section 5.
Section 6 then concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section, Procedural Content Generation for games is dis-
cussed, followed descriptions of technical tools applied in this paper:
GANs, latent variable evolution, and CMA-ES.

2.1 Procedural content generation
Togelius et al. [23] defined Procedural Content Generation (PCG) as
the algorithmic creation of game content with limited or indirect user
input [22, 23, 25]. Examples of game content include game rules,
levels, maps/mazes, characters, weapons, vehicles, background sto-
ries, textures and sound. Automatic game level generation, with

little or no human intervention, is a challenging problem. For some
games, the levels are represented as maps or mazes [6]. Examples
include Doom, Pac-Man, and Super Mario Bros, one of the classic
platform video games created by Nintendo.

The first academic Procedural Content Generation competition
was the 2010Mario AI Championship [18], in which the participants
were required to submit a level generator which implements a
provided Java interface and returns a new level within 60 seconds.
The competition framework was implemented based on Infinite
Mario Bros 7, a public clone of Super Mario Bros.

The availability and popularity of the Mario AI framework has
led to several approaches for generating levels for Super Mario Bros.
Shaker et al. [16] evolved Mario levels using Grammatical Evolution
(GE). In 2016, Summerville and Mateas [19] applied Long Short-
Term Memory Recurrent Neural Networks (LSTMs) to generate
game levels trained on existing Mario levels, and then improved
the generated levels by incorporating player path information. This
approach inspired a novel approach to level generation, in which
new levels are generated automatically from a sketch of some de-
sired path drawn by a human designer. Another approach that was
trained using existing Mario levels is that of Jain et al. [10], which
trained auto-encoders to generate new levels using a binary encod-
ing where empty (accessible) spaces are represented by 0 and the
others (e.g., terrain, enemy, tunnel, etc.) by 1. Though this approach
could generate interesting levels, the use of random noise inputs
into the trained auto-encoder sometimes led to problematic levels.
Additionally, because of the binary encoding, no distinction was
made between various possible types of tiles.

2.2 Generative Adversarial Networks
Generative Adversarial Networks (GANs) were first introduced by
Goodfellow et al. [7] in 2014. Their training process can be seen
as a two-player adversarial game in which a generator G (faking
samples decoded from a random noise vector) and a discriminatorD
(distinguishing real/fake samples and outputting 0 or 1) are trained
at the same time by playing against each other. The discriminator
D aims at minimizing the probability of mis-judgment, while the
generator G aims at maximizing that probability. Thus, the genera-
tor is trained to deceive the discriminator by generating samples
that are good enough to be classified as genuine. Training ideally
reaches a steady state whereG reliably generates realistic examples
and D is no more accurate than a coin flip.

GANs quickly became popular in some sub-fields of computer
vision, such as image generation. However, training GANs is not
trivial and often results in unstable models. Many extensions have
been proposed, such as Deep Convolutional Generative Adver-
sarial Networks (DCGANs) [15], a class of Convolutional Neu-
ral Networks (CNNs); Auto-Encoder Generative Adversarial Net-
works (AE-GANs) [13]; and Plug and Play Generative Networks
(PPGNs) [14]. A particularly interesting variation are Wasserstein
GANs (WGANs) [1, 8]. WGANs minimize the approximated Earth-
Mover (EM) distance (also called Wasserstein metric), which is used
to measure how different the trained model distribution and the
real distribution are. WGANs have been demonstrated to achieve
more stable training than standard GANs.

7https://tinyurl.com/yan4ep7g

https://tinyurl.com/yan4ep7g
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At the end of training, the discriminator D is discarded, and the
generator G is used to produce new, novel outputs that capture
the fundamental properties present in the training examples. The
input toG is some fixed-length vector from a latent space (usually
sampled from a block-uniform or isotropic Gaussian distribution).
For a properly trained GAN, randomly sampling vectors from this
space should produce outputs that would be mis-classified as exam-
ples of the target class with equal likelihood to the true examples.
However, even if all GAN outputs are perceived as valid members
of the target class, there could still be a wide range of meaningful
variation within the class that a human designer would want to
select between. A means of searching within the real-valued latent
vector space of the GAN would allow a human to find members of
the target class that satisfy certain requirements.

2.3 Latent variable evolution
The first latent variable evolution (LVE) approach was introduced
by Bontrager et al. [3]. In their work the authors train a GAN on a
set of real fingerprint images and then apply evolutionary search
to find a latent vector that matches with as many subjects in the
dataset as possible.

In another paper Bontrager et al. [2] present an interactive evo-
lutionary system, in which users can evolve the latent vectors for
a GAN trained on different classes of objects (e.g. faces or shoes).
Because the GAN is trained on a specific target domain, it becomes
a compact and robust genotype-to-phenotype mapping (i.e. most
produced phenotypes do resemble valid domain artifacts) and users
were able to guide evolution towards images that closely resembled
given target images. Such target based evolution has been shown
to be challenging with other indirect encodings [26].

Because of the promising previous LVE approaches, in this paper
we investigate how latent GAN vectors can be evolved through a
fitness-based approach in the context of level generation.

2.4 CMA-ES
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [9]
is a powerful and widely used evolutionary algorithm that is well
suited for evolving vectors of real numbers. The CMA-ES is a second-
order method using the covariance matrix estimated iteratively by
finite differences. It has been demonstrated to be efficient for opti-
mizing non-linear non-convex problems in the continuous domain
without a-priori domain knowledge, and it does not rely on the
assumption of a smooth fitness landscape.

We applied CMA-ES to evolve the latent vector and applied
several fitness functions on the generated levels. Fitness functions
can be based on purely static properties of the generated levels, or
on the results of game simulations using artificial agents.

3 APPROACH
The approach is divided into twomain phases, visualised in Figure 1.
First, a GAN is trained on an existing Mario level (Figure 2). The
level is encoded as a multi-dimensional array as described in Section
3.1 and depicted in the yellow box. The generator (green) operates
on a Gaussian noise vector (red) and is trained to output levels
using the same representation. The discriminator is then employed
to tell the existing and generated levels apart. Both the generator

and discriminator are trained using an adversarial learning process
as described in Section 2.2.

Once this process is completed, the generator network of the
GAN, G, can be viewed as our learned genotype-to-phenotype
mapping that takes as input a latent vector (blue) of real numbers
(of size 32 in the experiments in this paper) and produces a tile-level
description of a Mario level. Instead of simply drawing independent
random samples from the latent space, we put exploration under
evolutionary control (using a CMA-ES in this case). In other words,
we search through the space of latent vectors to produce levels
with different desirable properties such as distributions of tiles,
difficulty, etc. Specific parts of the training process are discussed in
the following.

3.1 Level representation
Mario levels have different representations within the Video Game
Level Corpus (VGLC) [21] and Mario AI framework. Both represen-
tations are tile based. Specifically, each Mario level from the VGLC
uses a particular character symbol to represent each possible tile
type. However, it should be noted that this VGLC representation is
primarily concerned with functional properties of tiles rather than
artistic properties, and is thus incapable of distinguishing certain
visually distinct tile types. The only exception are pipes, which are
represented by four visually distinct tile types, despite all being
functionally equivalent to an impassable ground block. Interest-
ingly, the VGLC encoding ignores functional differences between
different enemy types by providing only a single character sym-
bol to represent enemies, which we choose to map to the generic
Goomba enemy type.

To encode the levels for training, each tile type is represented
by a distinct integer, which is converted to a one-hot encoded
vector before being input into the discriminator. The generator
network also outputs levels represented using the one-hot encoded
format, which is then converted back to a collection of integer
values. Levels in this integer-based format are then sent to theMario
AI framework for rendering. Mario AI allows for a broader range of
artistic diversity in its tile types, but because of the simplicity of the
VGLC encoding, only a simple subset of the available Mario AI tiles
are used. The mapping from VGLC tile types and symbols, to GAN
training number codes, and finally to Mario AI tile visualizations is
detailed in the Table 1.

The GAN input files were created by processing a level file from
the VGLC for the original Nintendo game Super Mario Bros, which is
shown in Figure 2. Each level file is a plain text file where each line
of the file corresponds to a row of tiles in the Mario level. Within
a level all rows are of the same length, and each level is 14 tiles
high. The GAN expected to always see a rectangular image of the
same size, hence each input image was generated by sliding a 28
(wide) x 14 (high) window over the raw level from left to right,
one tile at a time. The width of 28 tiles is equal to the width of the
screen in Mario. In the input files each tile type is represented by a
specific character, which was then mapped to a specific integer in
the training images, as listed in Table 1. This procedure created a
set of 173 training images.

While we could have used a larger dataset instead of this rel-
atively small one, its use allows us to test the GAN’s ability to



GECCO ’18, July 15–19, 2018, Kyoto, Japan V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi

Figure 2: The Training Level. The training data is generated by sliding a 28 × 14 window over the level from left to right, one tile at a time.

Table 1: Tile types used in generatedMario levels. The symbol
characters come from the VGLC encoding, and the numeric identity
values are then mapped to the corresponding values employed by
the Mario AI framework to produce the visualization shown. The
numeric identity values are expanded into one-hot vectors when
input into the discriminator network during GAN training.

Tile type Symbol Identity Visualization
Solid/Ground X 0
Breakable S 1

Empty (passable) - 2
Full question block ? 3

Empty question block Q 4
Enemy E 5

Top-left pipe < 6
Top-right pipe > 7

Left pipe [ 8
Right pipe ] 9

learn from relatively little data, which could be especially impor-
tant for games that do not offer such a large training corpus as
Mario. Additionally, because of the smaller training set it is possible
to manually inspect if the LVE approach is able to generate levels
with properties not directly found in the training set itself.

3.2 GAN training
Our Deep Convolutional GAN (DCGAN) is adapted from the model
in [1] and trained with the WGAN algorithm. The network archi-
tecture is shown in Figure 3. Following the original DCGAN archi-
tecture, the network uses strided convolutions in the discriminator
and fractional-strided convolutions in the generator. Additionally,
we employ batchnorm both in the generator and discriminator after
each layer. In contrast to the original architecture in [1], we use
ReLU activation functions for all layers in the generator, even for
the output (instead of Tanh), which we found gave better results.
Following [1], the discriminator uses LeakyReLU activation in all
layers.

Generator 

32 z 

4 x 4 x 256 8 x 8 x 128 
16 x 16 x 64 

32 x 32 x 10 

conv 
conv 

conv 

Discriminator 

1 

Figure 3: The Mario DCGAN architecture.

When training the GAN, each integer tile was expanded to a
one-hot vector. Therefore the training inputs for the discriminator
are 10 channels (one-hot across 10 possible tile types) of size 32 ×

32 (the DCGAN implementation we used required the input size to
be a multiple of 16 so the levels were padded). For example, in the
first channel, the location of ground titles are marked with a 1.0,
while all other locations are set to 0.0. The size of the latent vector
input to the generator has a length of 32.

Once training of the GAN is completed the generator represents
our learned genotype-to-phenotype mapping. When running evo-
lution, the final 10× 32× 32 dimensional output of this generator is
cropped to 10×28×14 and each output vector for a tile is converted
to an integer using the argmax operator, resulting in a level that
can be decoded by the Mario AI framework.

4 EXPERIMENTS
The approach of this paper is tested in two different sets of exper-
iments that can be divided into representation-based and agent-
based testing, which are described in more detail below. The exper-
iments are intended as a proof of concept. To apply the proposed
approach within a game, the employed fitness functions need to be
designed more carefully to correspond to the intended purpose and
required properties of the generated content. The whole project is
available on Github8.

4.1 Representation-based testing
In the representation-based scenarios we directly optimize for a
certain distribution of tiles using CMA-ES. In more detail, we test (1)
if the approach can generate levels with a certain number of ground
titles, and (2) a combination of ground titles and number of enemies.
The goal of the second experiment is to create a level composed
of multiple subsections that increases gradually in difficulty. In all
experiments, we seek to minimize the following functions.

Fitness in the first experiment is based on the distance between
the produced fraction of ground titles д and the targeted fraction t :

Fдround =
√
(д − t)2.

In the second experiment, we evolve five different subsections with
100% ground coverage for sections 1 and 2, and 70% coverage for
sections 3–5. For the fourth and fifth subsection fitness is also
determined by maximizing the total number of n of enemies:

F = Fдround + 0.5(20.0 − n).

This particular weighting was found through prior experimentation.

4.2 Agent-based testing
While being able to generate levels with exactly the desired number
of ground tiles and enemies is one desirable feature of a level gen-
erator, a fitness function based entirely on the level representation
has two inherent weaknesses:

8https://github.com/TheHedgeify/DagstuhlGAN
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• Levels with maximal fitness value might not be playable,
especially if they are optimized for a small number of ground
tiles and/or a large number of enemies.

• The number of ground tiles and enemies does not necessarily
affect the playthrough of a human or AI agent, and may
thus not result in levels with the desired difficulty. E.g., the
enemies might fall into a hole before Mario can reach them
or there might exist an alternative route that avoids difficult
jumps.

These problems can be alleviated by using an evaluation that is
based on playthrough data instead of just the level representation.
This way, playability can be explicitly tested and characteristics of
a playthrough can be observed directly.

To this end, we implemented agent-based testing using theMario
AI competition framework, as there are a variety of agents already
available [24]. The CMA-ES is used to find levels that optimize an
agent-based fitness function described in the following. To evaluate
a level, the latent vector in question is mapped to [−1, 1]n with a
sigmoid function and then sent to the generator model in order to
obtain the corresponding level. The level is then imported into the
Mario AI framework using the encoding detailed in Table 1, so that
agent simulations can be run.

While there are a variety of properties that can be measured
using agent-based testing, for this proof-of-concept we chose to
specifically focus on the two weaknesses of representation-based
fitness functions mentioned above. As before, our use case is to find
playable levels with a scalable difficulty.

Given that the A* agent by Robin Baumgarten9 (winner of the
2009 Mario AI competition) performs at a super-human level, we
use its performance to determine the playability of a given level. For
an approximation of experienced difficulty, we use the number of
jump actions performed by the agent. The correlation between the
number of jumps and difficulty is an assumption, however, jumping
is the mainmechanic inMario and is required to overcome obstacles
such as holes and enemies. The fitness function we seek to minimize
is:

F1 =

{
−p for p < 1
−p − #jumps for p = 1,

where p is the fraction of the level that was completed in terms of
progress on the x-axis.

In order to investigate the controllability of the level generation
process via agent-based testing, we ran additional experiments
where we sought playable levels with a minimal number of required
jumps. The fitness function in this case is

F2 =

{
−p + 60 for p < 1
−p + #jumps for p = 1,

where p is the fraction of the level that was completed in terms of
progress on the x-axis. The offset of 60 for the incomplete levels
was chosen after preliminary experiments so that unbeatable levels
where the agent is trapped and repeatedly jumps are discouraged.
As a result, passable levels will always score a higher fitness than
impassable ones.

9https://www.youtube.com/watch?v=DlkMs4ZHHr8

Since the exact number of jumps is non-deterministic and can
produce outliers if the agent gets stuck under an overhang, the
actual fitness value in both cases is the average of 10 simulations.

4.3 Experimental parameters
For the non-agent testing we use a Python CMA-ES implementa-
tion10. Because Mario AI is implemented in Java, we use a Java
implementation of CMA-ES for the agent-based testing11 to evolve
the latent vector passed to the trained Python generator.

For both Java and Python, the CMA-ES population size is λ = 14.
For the non-agent based settingwe set the initial point to 0, while we
set it to a random point within [−1, 1]n for the more complex fitness
function in the agent-based setting. Similarly, the standard deviation
is initialized to 1.0 for non-agent and 2.0 for agent-based testing.
The CMA-ES is run for a maximum of 1, 000 function evaluations.

A total of 20 runs were performed for the non-agent based ex-
periments and 40 runs each for both (F1 and F2) of the agent-based
CMA-ES experiments.

Our WGAN implementation is built on a modified version of the
original PyTorch WGAN code12. Both the generator and discrim-
inator are trained with RMSprop with a batch size of 32 and the
default learning rate of 0.00005 for 5,000 iterations.

5 RESULTS
To get a better understanding of the GAN’s suitability as a genotype-
to-phenotype mapping we first tested for expressivity of the encod-
ing and to what degree it has locality (i.e. small mutations resulting
in small phenotype changes). Figure 4 shows examples of (a) a
randomly sampled GAN and (b) samples around a particular latent
vector generated by adding uniformly sampled noise in the range
[-0.3, 0.3]. While some aspects (e.g. pipes) are sometimes not cap-
tured perfectly, the GAN is able to generate a variety of different
level layouts that capture some important aspects of the training
corpus (Figure 4). Additionally, mutations around a particular latent
vector vary in interesting ways while still resembling the parent
vector.

5.1 Representation-based testing
Figure 5 shows how close the approach can optimize the percentage
of ground tiles towards a certain targeted distribution. The results
demonstrate that in almost every run we can get very close to a
targeted percentage.

Figure 6 shows a level that was created with increasing difficulty
in mind: 100% ground coverage for sections 1 and 2, 70% coverage
for sections 3–5, and maximizing the total number n of enemies for
section 4 and 5. The approach is able to optimize both the ground
distribution as well as the number of enemies.

5.2 Agent-based testing
Figure 7 shows some of the best and worst results obtained for both
fitness functions. CMA-ES did discover some non-playable levels as
depicted in Figure 7c. Among the best results for fitness function F1
(i.e. playable levels with a high number of required jumps) are level
10https://pypi.python.org/pypi/cma
11https://www.lri.fr/~hansen/cmaes_inmatlab.html#java
12https://github.com/martinarjovsky/WassersteinGAN

https://www.youtube.com/watch?v=DlkMs4ZHHr8
https://pypi.python.org/pypi/cma
https://www.lri.fr/~hansen/cmaes_inmatlab.html#java
https://github.com/martinarjovsky/WassersteinGAN
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(a) Random Sampling

(b) Mutations

Figure 4: Generated Examples. Shown are samples produced by the GAN by (a) sampling random latent vectors, and (b) randomly
mutating a specific latent vector. The main result is that the generator is able to produce a wide variety of different level layouts, but varied
offspring still resemble their parent.
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Figure 5: Optimized for different percentage of ground tiles.
Mean values across 20 runs are shown along with one standard
deviation. Except for a ground level fraction of 20% the approach is
able to always discover the latent code that produces the desired
target percentage of ground tiles.

sections with and without slight title errors (a and d). In the future,
the representation of levels could be improved or directly repaired
in such a way that the pipes are no longer a cause for visually faulty
levels. The level depicted in (b) is one of the best examples found
when optimizing for fitness F2 (i.e. playable with a small number
of required jumps). The level requires only one single jump over
the enemy and is easy to solve.

Despite using a noisy fitness function, which is only an approxi-
mation of actual level difficulty, the optimization algorithm is able
to discover a variety of interesting results. While we observe some
individuals with a small fitness being generated even late into the
optimisation process (Figure 8, top), the average fitness value of
generated individuals decreases with increasing iteration (Figure 8,
bottom). The overall decrease of fitness over time does suggest that
the GAN-based level generation process is indeed controllable. It
is likely that the low-scoring individuals in later iterations result
from the fact that levels that require a high jump count and levels
that are not playable are close in the search space. We suspect that
further modification of the fitness function and using a more ro-
bust CMA-ES version intended for noisy optimization could further
improve the observed optimization efficiency.

Overall, we show that we are able to create a variety of levels that
translate to a plethora of different playthroughs. However, it is of
course difficult to find a suitable fitness function, that (1) expresses
the desired game qualities but (2) is also tractable for an optimiza-
tion algorithm. Additionally, the noise of the function should be
investigated in depth. Since the evaluation of the fitness function
does take considerable time, one should probably also consider
using other approaches, for example surrogate-based algorithms.

5.3 Discussion and Future Work
Although GANs are known for their success in generating photo-
realistic images (composed of pixels with blendable color values),
their application to discrete tiled images is less explored. The results
in this paper demonstrate that GANs are in general able to capture
the basic structure of a Mario level, i.e. a traversable ground with
some obstacles (cf. Figure 4). Additionally, we are able to evolve lev-
els that are not just replications of the training examples (compare
Figures 2 and 6).

However, sometimes certain broken structures in the output
of the GAN are apparent: e.g. incomplete pipes. In the future, this
might be addressed by borrowing ideas from text (symbol sequence)
generation models such as LSTMs [12]. In these models the discrete
choice of symbol at each observable location is conditioned not
only on the continuous output of a hidden layer but also the dis-
crete choice of the immediately preceding symbol. This approach
would combine the discrete context dependence of Snodgrass’Multi-
dimensional Markov Chains (which accurately capture only local
tile structures) with the global structure enforced by the upsampling
convolutional layers used in our GAN.

An intriguing future possibility is to first train a generator off-
line and then distribute the architecture and weights of this network
with a game so that extremely rapid on-line level generation can
be carried out with the model (perhaps to support evolving player-
adapted level designs). Depending on the fitness function chosen,
this could be employed for both dynamically adapting the difficulty
of levels, but also for providing more exploration-focused content
by adding more coins in places that are difficult to reach.
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Figure 6: Level with increasing difficulty. Our LVE approach can create levels composed of multiple parts that gradually increase in
difficulty (less ground tiles, more enemies). In the future this approach could be used to create a level in real-time that is tailored to the
particular skill of the player (dynamic difficulty adaptation).

(a) Playable level maximizing jumps (b) Playable level minimizing jumps

(c) Unplayable level (d) Broken titles

Figure 7: Agent-based optimization examples. (a) and (b) show good examples of levels in which the number of jumps is maximized
(F1), and minimized (F2), respectively. (c) shows an example of one of the worst individuals found (not playable, F1). An example of an
individual that reaches high fitness (maximizing jumps, F1) but has broken titles is shown in (d).

Our generator focuses on recreating just the tile-level description
of a level primarily because this is the data available in the Video
Game Level Corpus. With a richer dataset capturing summaries
of player behavior (which actions they typically took when their
character occupied a given tile location), we could also train a
network to output level designs along with design annotations
capturing expectations about player behavior and experience for
the newly generated level. Even if these annotation layer outputs
go unused for generated levels, having them present in the training
data could help the network learn patterns that are specifically
relevant to player behavior, beyond basic spatial tile patterns. In
general, training with a larger level corpus could allow the GAN to
capture a greater variety of different Mario level styles.

One potential area of future work is the use of Multi-Objective
Optimization Algorithms [4] to evolve the latent vector using multi-
ple evaluation criteria. Many different criteria can make video game

levels enjoyable to different people, and a typical game needs to
contain a variety of different level types, so evolving with multiple
objective functions could be beneficial. Given such functions, it
would also be interesting to compare our results with other proce-
durally generated content, as well as manually designed levels, in
terms of the obtained values. However, further work on automatic
game evaluation is required to define purposeful fitness functions.

6 CONCLUSION
This paper presented a novel latent variable evolution approach that
can evolve new Mario levels after being trained in an unsupervised
way on an existingMario level. The approach can optimize levels for
different distributions and combinations of tile types, but can also
optimize levels with agent-based evaluation functions. While the
GAN is often able to capture the high-level structure of the training
level, it sometimes produces broken structures. In the future this
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Figure 8: Agent-based fitness progression F1: Top: Fitness of
generated individual at CMA-ES iteration. Bottom: Average fitness
of individuals generated at given iteration. Lower values are better.

could be remedied by applying GAN models that are better suited
to the discrete representations employed in such video game levels.
The main conclusion is that LVE is a promising approach for fast
generation of video game levels that could be extended to a variety
of other game genres in the future.
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