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Abstract

We study unbiased (1+1) evolutionary algorithms on linear functions with an
unknown number n of bits with non-zero weight. Static algorithms achieve
an optimal runtime of O(n(ln n)2+ε), however, it remained unclear whether
more dynamic parameter policies could yield better runtime guarantees. We
consider two setups: one where the mutation rate follows a fixed schedule,
and one where it may be adapted depending on the history of the run. For
the first setup, we give a schedule that achieves a runtime of (1±o(1))βn ln n,
where β ≈ 3.552, which is an asymptotic improvement over the runtime of
the static setup. Moreover, we show that no schedule admits a better runtime
guarantee and that the optimal schedule is essentially unique. For the second
setup, we show that the runtime can be further improved to (1±o(1))en ln n,
which matches the performance of algorithms that know n in advance.

Finally, we study the related model of initial segment uncertainty with
static position-dependent mutation rates, and derive asymptotically optimal
lower bounds. This answers a question by Doerr, Doerr, and Kötzing.
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1. Introduction

Mutation-based evolutionary algorithms (EAs) aim to optimize a fitness
function f by alternately executing two phases. In the mutation phase, new
search points are created by mutating the current search points, while in the
selection phase, certain search points (usually the fittest ones) are selected.
Then, the optimization process is continued with the selected search points.
The most basic EA, the (1 + 1) EA, keeps at any step only one search point
x ∈ {0, 1}N. In the mutation phase, an offspring y of the current search point
x is created by flipping each bit independently with probability p, called the
mutation rate. In the selection phase, the fitness values f(x) and f(y) are
compared and the better search point is selected.

The mutation rate is a critical parameter for mutation-based evolution-
ary algorithms. For example, for linear pseudo-boolean fitness functions
f : {0, 1}n → R, Witt has shown in [1] that the optimal static1 mutation
rate for the (1 + 1) EA is 1/n, which leads to a runtime (the number of
function evaluations before a global optimum is found) of (1± o(1))en ln n.2

Interestingly, for any other mutation rate c/n, where c is a constant, Witt
proved a strictly larger runtime of (1 ± o(1))ec/c · n ln n. This runtime is
worse by roughly a factor of 1/c if c < 1, and it becomes exponentially worse
as c > 1 grows. Thus, finding the optimal mutation rate may not only be
difficult but also paramount.

Crucially, even for a simple function like OneMax3, the optimal mutation
rate 1/n can only be used if the problem size n is known. However, consider
the following hidden subset problem: the search space is {0, 1}N , but only
a small subset of n ≪ N positions are fitness-relevant. We call this hidden
set the support of the fitness function, and we study fitness functions that
depend linearly on the supporting bits. In this case, since n is unknown,
the optimal mutation rate is also unknown. This problem was proposed by
Cathabard, Lehre, and Yao [4] and has been studied by Doerr, Doerr, and
Kötzing [5, 6] in the case of OneMax and LeadingOnes4 instead of linear
functions.

1A dynamic or adaptive choice of the mutation rate can be beneficial, but only in lower
order terms, see [2].

2Throughout this paper, we use the Landau notation o(.), O(.), Θ(.), . . . with respect
to n→∞, see for example [3].

3The OneMax function assigns to a bit string x the number of 1 bits in the string.
4The LeadingOnes function assigns to a bit string x the number of consecutive ones

2



Situations in which the fitness is a function of a small hidden subset of
parameters occurs naturally in many practical applications, particularly in
the context of big data. For example, complex models like a biospheric model
or a neural network may come with an immense number of parameters, and
the choice of parameters (which is feasible with sufficient data) often leads
to high-dimensional optimization problems. However, it often turns out in
hindsight that only a small subset of parameters are relevant, which is exactly
the situation captured by the hidden subset problem.

In the aforementioned work [4, 5, 6], the problems were analyzed for a
static choice of mutation rates (cf. below). However, when faced with un-
known problem characteristics, it is natural to consider more dynamic pa-
rameter handling, either scheduled or adaptive ones. In [6] it was speculated
that dynamic parameter handling could improve the runtime compared to
the static setup. In this paper, we quantify the gain or loss of either method.
We restrict ourselves to mutation-based (1 + 1) EAs with standard bit mu-
tation5, and we distinguish three different types of parameter handling.

1. In the static setup, a probability distribution D is fixed before the
algorithm starts, and in each round the mutation rate is drawn from
D.6

2. In the scheduled setup, a sequence Dt of probability distributions is
fixed before the algorithm starts. Then, in the t-th round of the algo-
rithm the mutation rate is drawn from Dt.

7

3. In the adaptive setup, the mutation rate at time t may be chosen de-
pending on the history of the run up to time t− 1.

1.1. Previous work and our contribution

As mentioned before, Witt has shown in [1] that for known n, the optimal
mutation rate for any linear function is 1/n, yielding a runtime of (1 ±
o(1))en ln n. Strictly speaking, Witt only considered static mutation rates.

in the beginning of the string.
5I.e., each offspring is generated by flipping each bit with the same probability, but this

probability may vary from round to round.
6In the classification of [7], this is classified as Parameter Tuning.
7This is also known as Deterministic Parameter Control [7]. As pointed out in [7], this

term may cause confusion as the mutation rate is not necessarily deterministic.
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However, his proof is based on a drift argument, and he shows that for a
suitable potential function, the drift towards the optimum is strongest for
mutation rate 1/n. Thus, his proof also shows that no adaptive policy for
the mutation rate can beat the runtime of (1 ± o(1))en ln n. Therefore, in
our more difficult setting where 1/n is unknown, the bound (1± o(1))en ln n
is also a lower bound on the runtime with any parameter handling policy.
The question is thus: how much do we lose compared to this lower bound,
depending on the parameter handling.

Static Mutation Rate. The static setup has been studied (for OneMax

and the non-linear LeadingOnes function) in [5, 6]. For OneMax, it
turned out that even with the best static setup, the runtime is asymptotically
slower if n is unknown. More precisely, for any static setup the runtime is
at least Ω(n ln2 n) [6], and this bound is tight up to ln ln n factors.8 Since
OneMax is the easiest linear function by [8]9, the lower bound holds for
every linear function.
Scheduled Mutation Rate. For the scheduled setup, we show that there
is an asymptotic improvement of the runtime over the runtime in the static
setup. Moreover, the runtime is only by the factor β/e ≈ 1.307 larger than
in the case where n is known. More precisely, we show that the scheduling
policy Dopt

t that sets the mutation rate in the t-th step deterministically to
α ln(t)/t for α ≈ 1.545 leads whp10 to a runtime of (1 ± o(1))βn ln n for
every linear function with support of size n. This policy is optimal, that is,
for every other schedule11, deterministic or randomized, there are infinitely
many n such that the runtime on every linear function with support of size
n is whp at least (1± o(1))β ′en ln n for some β ′ > β.
Adaptive Mutation Rate. Finally, we show that there is no significant
price for the unknown n if adaptive schedules are used: there is an adaptive
scheduling scheme that achieves whp runtime (1±o(1))en ln n, thus matching
the lower bound from the setting with known n.

There are two ways to interpret the results. Firstly, we may define the

8Actually, the statement is much more beautiful, and they do have matching upper
and lower bounds, see the section on Initial Segment Uncertainty for details.

9For mutation rates at most 1/2, see Section 2.4. It may be further seen that larger
mutation rates are detrimental for large n.

10With high probability denotes with probability 1− o(1).
11Strictly speaking: every schedule that deviates from Dopt

t by at least a constant factor
for a significant density of t’s, see Remark 12 for more details.
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black-box complexity (BBC) of a function with respect to unbiased (1 + 1)
EAs with the respective updating scheme as the best runtime achievable by
algorithms of this kind. In this sense, the result in [6] says that the BBC
of linear functions for static mutation rate is Ω(n ln2 n), while we show that
the BBC for scheduled and adaptive mutation rates is (1± o(1))βn ln n and
(1± o(1))en ln n, respectively.

Secondly, we may consider this result as an analogue to the price of
anarchy [9, 10] in game theory. We may define the price of non-adaptiveness
of a family F = (fn)n≥1 of functions, where fn has support of size n, to be

PoNA(F) := lim sup
n→∞

runtime of best scheduled algorithm on fn

runtime of best adaptive algorithm on fn
.

Then we show in this paper that for every family F = (fn) of linear functions,
we have PoNA(F) = β/e ≈ 1.307. Note that this definition also makes the
somewhat ambiguous concept of “best” algorithm precise. For the adaptive
case, there is a single algorithm which achieves, up to lower order terms, for
all n simultaneously the optimal runtime, so it is clear that this algorithm is
best. For the scheduled setup, this is not the case, so we define the “best”
algorithm as the algorithm which minimizes the PoNA.
Initial Segment Uncertainty. Doerr, Doerr, and Kötzing showed in [6] that
for LeadingOnes there is an intimate connection between the (static) hidden-
subset problem (HSP) considered in this paper, and the following problem
with initial segment uncertainty (ISU). The support is an initial segment
{1, . . . , n} of unknown length n, and for each bit i the algorithm may choose
a probability pi. In each round the offspring is generated by flipping the
i-th bit with probability pi. This ISU variant was historically the first to be
studied and was motivated in [4] by the study of finite state machines [11].
In [6] it was conjectured that there is also a connection between the ISU
model and the HSP for other problems than LeadingOnes, specifically for
OneMax.

It was proved in [6] that for every monotonically decreasing, summable12

sequence (di)i≥1 of positive reals there is an algorithm in the ISU model with
runtime O(ln(n)/dn) on OneMax. As an open problem, the authors asked
for matching lower bounds. In this paper we provide such bounds, in the

12A sequence (di)i∈N is summable if
∑

i∈N
|di| <∞, and it is non-summable otherwise.

For details on (non)-summable sequence see the comprehensive exposition in [6].
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following sense. For every non-summable monotonically decreasing sequence
(di)i≥1 of positive reals there is a constant c > 0 such that every algorithm in
the ISU model has runtime at least c ln(n)/dn on OneMax. Interestingly,
both the upper and lower bound in the ISU model match the upper and
lower bound in the HSP, which were derived in [6]. Although this result is
less tight than the connection for LeadingOnes (where the distributions of
runtimes exactly coincide with each other), this gives further indication for
a fundamental connection between the ISU model and the HSP.

2. Notation, Algorithmic Setup, Tools

2.1. Models of uncertainty

We consider a large search space {0, 1}N . In contrast, the function f to
be optimized13 only depends on a small subspace. More precisely, there is
a set I ⊂ {1, . . . , N} and a function f̃ on {0, 1}n, where n := |I|, such that
f(x) = f̃(x|I) for all x ∈ {0, 1}N . Here, x|I denotes the bit string consisting
of the bits xi of x with i ∈ I. The dimension N of the search space does not
affect the results in this paper. Therefore, we assume that the search space
is {0, 1}N. We call the positions I ⊂ N that f depends on the relevant bits
(or support) of f . To ease notation, we also use the symbol f for f̃ .

We consider two models of uncertainty. In the unrestricted uncertainty
model, the set of relevant bits I and the number of relevant bits n are
unknown. In the initial segment problem, the set I is the initial segment
[n] := {1, . . . , n}, and the number of relevant bits n is unknown.

2.2. Algorithmic setup

The (1 + 1) EA has the goal of finding a search point that minimizes
a function f . First, it draws u.a.r. a search point x ∈ {0, 1}N. Then, an
offspring y of the current search point x is created in every round by flipping
each bit independently with probability p. The parameter p is usually called
mutation strength, mutation rate or mutation parameter, in this paper we
stick with mutation rate. If f(y) ≤ f(x), then the search point x is replaced
by y, otherwise x stays the current search point; we say that y was accepted
or rejected, respectively.14

13Throughout the paper, we assume a minimization problem.
14In this work, we only consider elitist algorithms, that is, the algorithm accepts the

offspring y of x if and only if f(y) ≤ f(x). This is a natural choice since the drift with
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For compact descriptions of Algorithms 1 to 4, we define the operator
Mutate(x, p), which generates a mutation y of x by flipping each bit inde-
pendently with probability p (if p is a sequence, then each bit xi is flipped
with probability pi). In the static setup (see Algorithm 1), for each time t
the mutation rate pt is drawn from a fixed probability distribution D over the
interval [0, 1], which is identical for all t. In the scheduled setup, a sequence
of such distributions Dt is fixed in advance, and the mutation rates pt at
time t is drawn from Dt, see Algorithm 2. In the adaptive setup, the distri-
butions Dt can depend on the history of the process. However, we assume
that the algorithm is comparison-based, i.e., whenever the fitness values of
the search point x and offspring y are compared, the algorithm receives from
an oracle the information whether the offspring is accepted or not. Then, it
may choose Dt depending on all bits received from the oracle before time t.
We also note that all considered versions of the (1 + 1) EA are unbiased, i.e.,
the mutation operator is invariant under the automorphisms of the search
space. For more background on comparison-based and unbiased algorithms,
see [12].

Finally, for the ISU model, we consider position dependent mutation rates
~p, where an offspring y of x is created by flipping the bit at position i with
probability pi, see Algorithm 3. The pi are fixed over time.

As in previous work, we consider the number of fitness evaluations as
the complexity measure. We define the runtime (or optimization time) as
the number of f -evaluations until the search point with minimal f -value is
reached.

2.3. Basic Notation

We denote sequences (pt)t∈N by ~p. In this paper, we consider the One-

Max function and the class of linear functions f to be minimized. The
OneMax function with support I is defined by f(x) =

∑

i∈I xi for any
x ∈ {0, 1}N. A linear function f with support I depends linearly on the bits
in I, that is, f(x) =

∑

i∈I wixi for some wi ∈ R. Since f(x) can be written
as
∑

i:wi>0 wixi +
∑

i:wi<0 |wi|(1− xi)−
∑

i:wi<0 |wi|, without loss of generality

respect to the OneMax function is maximized by elitist algorithms. Thus, the runtime
on OneMax cannot be improved by non-elitist algorithms. We show that the runtime
on linear functions matches the one for OneMax in the scheduled and adaptive setup.
Therefore, non-elitist algorithms cannot improve the runtime on linear functions in these
settings either.
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we can assume that wi > 0 for all i ∈ I. Therefore, our target search point
is the all 0 string from now on.

Further, we denote by xt the search point at time t. We say bit i flips at
time t if yi is set to 1 − xt

i in the mutation step of the algorithm. We say
that there is a single bit flip in round t if exactly one relevant bit flips, and
there is a multi bit flip if at least two relevant bits flip. Further, we say bit i
changes at time t if xt

i 6= xt−1
i , which happens if bit i flips at time t and the

offspring y is accepted. We say that bit i is optimized at time t if xt
i = 0.

Algorithm 1: The static (1 + 1) EA with mutation rate distribution
D minimizing a pseudo-Boolean function f : {0, 1}N → R

1 Initialization: Sample x ∈ {0, 1}N uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 pt ∼ D ;
4 y ←Mutate(x, pt);
5 if f(y) ≤ f(x) then x← y ; //selection step;

Algorithm 2: The scheduled (1 + 1) EA with mutation rates drawn
from a sequence of probability distributions (Dt)t∈N minimizing a
pseudo-Boolean function f : {0, 1}N → R with a finite number of rele-
vant bits n.
1 Initialization: Sample x ∈ {0, 1}N uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 pt ∼ Dt ;
4 y ←Mutate(x, pt);
5 if f(y) ≤ f(x) then x← y ; //selection step;

2.4. ONEMAX is the easiest linear function

Let A and B be two random variables that take values in N. A stochasti-
cally dominates B if Pr(A ≥ i) ≥ Pr(B ≥ i) holds for all i ∈ N. Witt showed
the following theorem for mutation based EAs with arbitrary population size
in [1]. Here, we state it slightly less general.
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Algorithm 3: The (1 + 1) EA with position dependent mutation rates
~p minimizing a pseudo-Boolean function f : {0, 1}N → R that depends
only on the initial segment of length n.

1 Initialization: Sample x ∈ {0, 1}N uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 y ←Mutate(x, ~p);
4 if f(y) ≤ f(x) then x← y ; //selection step;

Theorem 1. (Theorem 6.2 in [1]) Consider the static (1 + 1) EA A with
mutation rate p ≤ 1/2. Then, the optimization time of algorithm A on any
function with a unique global optimum stochastically dominates the optimiza-
tion time of algorithm A on OneMax.

In [1], Witt proved this theorem by induction over time t. The proof requires
that p ≤ 1/2 for every time step t, but does not require that p is fixed.
Thus, the theorem can be extended to the setup where the mutation rates ~p
are scheduled or adaptively chosen. Therefore, Witt’s proof also implies the
following theorem.

Theorem 2. (Adaptation of Theorem 6.2 in [1]) Let algorithm A be a (1+1)
EA with scheduled or adaptively chosen mutation rates ~p satisfying pt ≤ 1/2.
Then, the optimization time of algorithm A on any function with unique
global optimum stochastically dominates the optimization time of algorithm
A on OneMax.

2.5. Tools

In the proofs throughout this paper, we regularly use the following lem-
mas. First, we state how sums can be approximated by integrals, see for
example Chapter 10 in [13].

Lemma 3 (Integral test). Let f : [1,∞] → R≥0 be a monotone function.
Then, for any integer n ≥ 1, it holds

∫ n

1
f(t) dt ≤

n∑

t=1

f(t) ≤
∫ n

1
f(t) dt + max{f(n), f(1)}.

Next, the following bounds on 1−x for small x turn out to be very useful.
They follow easily from Taylor expansion.

9



Lemma 4. Let 0 ≤ x ≤ 1
2
, then it holds that e−x ≥ 1− x ≥ e−x−x2 ≥ e−2x.

Further, in order to prove concentration of random variables we often use
the method of bounded differences (see Theorem 5.3 in [14]), which is often
referred to as Azuma’s inequality.

Lemma 5 (Method of Bounded Differences). Let d1, . . . , dn be a sequence
of reals and let f := f(x1, . . . , xn) be a function that satisfies for all 1 ≤ i ≤ n

|f(a)− f(a′)| ≤ di

whenever a and a′ differ in just the i-th coordinate. Let X1, . . . , Xn be in-
dependent random variables, let X = f(X1, . . . , Xn) and let S =

∑n
i=1 d2

i ,
then

Pr[X > E[X] + t] ≤ e− t2

2S and

Pr[X < E[X]− t] ≤ e− t2

2S .

Finally, we state the lower bound multiplicative drift theorem.

Theorem 6 (Multiplicative drift, lower bound [15]). Let (Xt)t≥0 be ran-
dom variables describing a Markov process over a finite state space S ⊂ R+.
Let κ > 0, smin ≥

√
2κ and let T be the random variable denoting the earliest

point in time t ≥ 0 such that Xt ≤ smin. If there exists a positive real δ > 0
such that, for all x > smin and t ≥ 0 with Pr[Xt = s] > 0 it holds that

1. |Xt −Xt+1| ≤ κ, and

2. E[Xt −Xt+1|Xt = s] ≤ δs,

then, for alll s0 ∈ S with Pr[X0 = s0] > 0,

E[T |X0 = s0] ≥
1 + ln s0 − ln smin

2δ + κ2

s2
min−κ2

.

3. Scheduled setup

First we give some intuition on how the mutation rates ~p should be chosen.
It turns out that nearly all time of the optimization process is spent to
optimize the last εn non optimized bits (for some ε > 0). In the regime
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where only very few 1-bits are left the probability that the number of 1-bits
decreases given a multi bit flip is much smaller than the same probability
given a single bit flip. If there were only single bit flips, then the fitness
would improve every time a 1-bit is flipped, and therefore a coupon collector
type argument would imply that (1±o(1))n ln n single bit flips are necessary
to optimize a function with n relevant bits. Assuming there are n relevant
bits, the probability of a single bit flip is maximized by p = 1/n. Since n is
unknown, we need to solve the problem for all n simultaneously. If we fix pt,
then round t contributes substantially to optimizing functions f that have
support size n = Θ(p−1

t ), because for these n the probability of a single bit flip
is npt(1− pt)

n−1 = Θ(1). We wish to optimize functions f with support size
n in time Tn = Θ(n ln n). Since there is more time to optimize functions with
large support n, for small t’s the pt should contribute to solving functions
with small support. More precisely, for any n a significant number of pt’s
with t ≤ Tn needs to be chosen of order Θ(1/n). This suggests to choose
pt = Θ(ln(t)/t). As we will see, the optimal choice for the hidden factor will
be a constant α, which we now define together with the constant β.

Definition 7 (α, β). Let α be the unique solution of the equation

∫ 1

0

α1− 1
u

u
du = 1 , (1)

and let β = α/ ln α. The numerical values are approximately α ≈ 1.54468
and β ≈ 3.55248.

Remark 8. Since the left hand side of Equation 1 is monotone decreasing
in α (mind u < 1) it is easy to see that there is a unique solution to Equation
1. Further, the variable transformation z = α/ ln α ·u transforms the integral

into
∫ α/ ln α

0
α
z
e− α

z dz, so the α, β from Definition 7 satisfy

∫ β

0

α

z
e− α

z dz = 1. (2)

Define h(a, b) =
∫ b

0
a
z
e− a

z dz for a, b ≥ 0. We claim that the constants α, β
from Definition 7 satisfy ∂h

∂a
(α, β) = 0. Indeed, this follows from

∂h

∂a
(α, β) =

∫ β

0
(
1

z
− α

z2
)e− α

z dz
(2)
=

1

α
−
[

e− α
z

]β

z=0
=

1

α
− e− α

β
β= α

ln α= 0.
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Moreover, it is easy to see that for fixed b = β, the value a = α is the only
solution of ∂h

∂a
(α, β) = 0. Since h is a non-negative function with h(a, β) = 0

and h(a, β) → 0 for a → ∞, this means that for fixed b = β, the value
a = α is the unique global maximum of h(a, β). On the other hand, h(a, b)
is obviously increasing in b. Thus, for every β ′ < β there is a δ > 0 such that
h(a, β ′) ≤ (1− δ) for all a ≥ 0. Further, for every α′ 6= α there is a β ′ > β
and δ > 0 such that h(α′, β ′) ≤ (1− δ).

Now we are ready to state matching upper and lower bounds on the
optimization time of the (1 + 1) EA with scheduled mutation rates on linear
functions (see Algorithm 2).

Theorem 9 (Lower bound). Let (Dt)t∈N be any scheduling policy and let
β be as in Definition 7. For infinitely many n, the optimization time of
the (1 + 1) EA with scheduling policy (Dt)t∈N on any linear function with n
relevant bits is whp at least (1− o(1))βn ln n.

It turns out that there is an optimal deterministic scheduling policy. De-
fine Dopt

t to be the distribution that sets pt = α ln(t)/t with probability 1,
where α is defined in Definition 7.

Theorem 10 (Upper Bound). Let β be defined as in Definition 7. Then
the optimization time of the (1 + 1) EA with scheduled policy Dopt

t is whp at
most (1 + o(1))βn ln n for any linear function f with n relevant bits.

As mentioned in the introduction the lower bound can be strengthened
in the sense that Theorem 9 holds for a subset of N with positive density,
and that the scheduling policy Dopt is essentially unique. In order to make
this precise, define the following measure µ on N. For any N ⊂ N define
µ(N) =

∑

t∈N ln(t)/t. The density of a set N is defined as lim infn→∞ µ(N ∩
[n])/µ([n]). For example, if a set contains for all n at least εn elements of
[n, 2n] for some ε > 0, then it has positive density with respect to µ. The
proof of Theorem 9 also shows the following two remarks.

Remark 11. Theorem 9 holds for a subset N ⊂ N with positive density
with respect to µ.

Remark 12 (Uniqueness of Dopt). Assume that a policy (Dt)t∈N deviates
from Dopt on a set N with positive density with respect to µ, that is, for each

12



t ∈ N either pt ≤ (1−ε)α ln(t)/t or pt ≥ (1+ε)α ln(t)/t holds. Then, there is
a β ′ > β such that for infinitely many n, the optimization time of the (1 + 1)
EA with scheduling policy (Dt)t∈N on any linear function with n relevant bits
is whp at least (1− o(1))β ′n ln n.

3.1. Proof of Lower Bound

As discussed in Section 2.4, the optimization time of the scheduled (1+1)
EA (Algorithm 2) on any function with unique global optimum stochasti-
cally dominates the optimization time of Algorithm 2 on OneMax, for any
sequence ~p of mutation rates. Therefore, in order to prove Theorem 9 it
suffices to show the following lemma.

Lemma 13. Let (Dt)t∈N be any scheduling policy and let β be as in Defini-
tion 7. For infinitely many n, the optimization time of the (1 + 1) EA with
scheduling policy (Dt)t∈N on the OneMax function with n relevant bits is
whp at least (1− o(1))βn ln n.

Due to the symmetry of the OneMax function, the relevant bits can
be permuted arbitrarily. Therefore, we can assume from now on that the
offspring y of x is only accepted if it has strictly better fitness f(y) < f(x).
For the remainder of this section we let T ′

n = β ′n ln n for some arbitrary
β ′ < β.

Before we can prove Lemma 13, we first need some preparations. The
following lemma follows easily from concentration inequalities.

Lemma 14. It holds whp that the OneMax function with n relevant bits is
not optimized at time T ′

n or there was a point in time with cn/ ln2 n relevant
non-optimized bits for some 1 ≤ c ≤ 2.

Proof. The proof consists of three steps. Firstly, the Chernoff-Hoeffding
bounds imply that the initial search point has whp roughly the same amount
of 1 and 0 bits. Secondly, the number of 1 bits whp does not jump from above
2n/ ln2 n to below n/ ln2 in one time step. Thirdly, an union bound argument
concludes that whp this does not happen in any timestep. More precisely, in
the beginning of Algorithm 2, the bit string is initialized randomly. For the
initial number of 0-bits X, the Chernoff-Hoeffding inequality implies that

Pr
(

0.99n

2
≤ X ≤ 1.01n

2

)

≥ 1− e−0.012n/3 .

13



Since we want to prove that the statement of the lemma holds whp, it is
legitimate to assume 0.99n

2
≤ X ≤ 1.01n

2
. As the number of 0-bits never

decreases, the current number of 0-bits Xt is always at least 0.99n
2

. Denote

by At the event that 0.99n
2
≤ Xt ≤ n− 2n/ ln2 n. Denote by Yt the number of

0-bits in the offspring of the current search point. We bound the probability
that Yt is larger than n − n/ ln2 n. For this purpose, note that E[Yt | Xt =
x] = x(1− 2p) + np. If x ≥ n/2 then this value is at most x, and otherwise
it is at most n − x. Therefore, E[Yt | At] ≤ n − 2n/ ln2 n. Since every
bit is flipped independently with probability p and the outcome of a single
bit has an effect of at most 1 on Yt|At, Lemma 5 can be applied to show
concentration of Yt|At. It holds

Pr
(

Yt ≥ n− n

ln2 n

∣
∣
∣
∣ At

)

≤ Pr
(

Yt ≥ E[Yt | At] +
n

ln2 n

∣
∣
∣
∣ At

)

≤ e− n
2 ln4 n

By a union bound argument over the first βn ln n rounds, it follows that
whp the number of 0-bits will not jump from below n − 2n/ ln2 n to above
n−n/ ln2 n in one step during these rounds. Therefore, there is whp a round
with cn/ ln2 n 1-bits for some 1 ≤ c ≤ 2 or the OneMax function is not
optimized within these rounds. �

To show that a statement holds with high probability like in Lemma 13, we
may assume that other events of high probability do occur. In particular,
by Lemma 14 we may assume from now on that the process starts with
ℓ0 := cn/ ln2 n relevant non-optimized bits for some 1 ≤ c ≤ 2. It will turn
out that in this situation it is rather unlikely that the fitness improves by
multi bit flips. Thus, the next lemma which bounds the number of single bit
flips constitutes the core of the proof of Lemma 13.

Lemma 15. Given n relevant bits, denote by Zn the number of single bit
flips until time T ′

n. There exists a δ > 0 such that for infinitely many n it
holds E[Zn] ≤ (1 − δ/3)n ln n. For each of these n it holds with probability
1− o(n−3) that Zn ≤ (1− δ/6)n ln n.

Proof. Let us first give a brief proof sketch. We would like to bound the
number of single bit flips Zn by (1 − δ/3)n ln n for certain n’s. It is clear
that this bound is not true for all n, for example, if pt = 1/m for all t, then
E[Zm] = β ′/e ·m ln m, which is larger than m ln m if β ′ > e. In order to show
that the bound holds for infinitely many n, we consider instead a weighted

14



average B =
∑

n ρ(n)Zn over many n. The choice of ρ is delicate, but it turns
out that ρ(n) = 1/n2 is the right choice.15

In the technical part of the proof, we derive an upper bound on B =
∑

n Zn/n2. Note that Zn counts the single bit flips until time T ′
n. To bound

B, we first change the order of summation and then approximate the con-
tribution of each pt to B by an integral. Using variable transformations, it
turns out that the contribution of pt can be bounded by

∫ β′

0
α
z
e−α/zdz, which

is smaller than 1− δ if β ′ < β. Finally, the upper bound on B implies that
E[Zn] ≤ (1− δ/3)n ln n for infinitely many n.

Let us now make the proof precise. For now, we assume that ~p is given
deterministically, and we will comment later how our proof generalizes if it is
drawn from distributions Dt. For any given n let Y n

t be the indicator random
variable that is 1 if a single bit flip happens at time t and 0 otherwise. For
reasons that will become clear later, we assume from now on that Zn counts
the single bit flips from time 10β ′ = O(1) to time T ′

n. Note that there are
only constantly many single bit flips from time 1 to time 10β ′ and therefore

we can neglect this smaller order term. Thus, let Zn =
∑T ′

n
t=10β′ Y n

t .
Recall that T ′

n = β ′n ln n for some β ′ < β. Thus, there is a δ > 0 such that

supα∈[0,∞)

∫ β′

0
α
z
e− α

z dz = 1 − δ (cf. Remark 8). For notational convenience
define real numbers α′

t such that pt = α′
t ln t/t holds. Let N be an integer

large enough such that (1−δ+β ′/ ln N)(1+2/ ln N) ≤ 1−5δ/6 holds and let
M be an integer larger than N . Next, let us define B, which was mentioned
in the proof sketch, precisely. Define A =

∑M
n=N ln n/n and define

B := E

[
1

A

M∑

n=N

1

n2
Zn

]

=
1

A

M∑

n=N

T ′
n∑

t=10β′

1

n2
E[Y n

t ].

Now we switch the order of summation. Note that for t/β ′ ≥ 10, both
ln(t/β ′) > 0 and ln ln(t/β ′) > 0 are satisfied. Therefore, β ′n ln n ≥ t implies
that

n ln n ≥ t

β ′ −
t/β ′ ln ln(t/β ′)

ln(t/β ′)
=

t/β ′

ln(t/β ′)
ln

t/β ′

ln(t/β ′)
.

The last inequality is equivalent to n ≥ t/β′

ln(t/β′)
, since n ln n is monotone.

15For example, any function ρ(n) = Θ(1/n2) would give a non-tight result if the Θ hides
a function that oscillates by at least a factor 1±ε for a constant ε > 0. The optimal scaling
ρ(n) = 1/n2 can be found by variational methods, but once it is known (or guessed), the
derivation of ρ is no longer required for a proof.
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Thus, {(n, t) | N ≤ n ≤M, 10β ′ ≤ t ≤ β ′n ln n} is a subset of {(n, t) | 10β ′ ≤
t ≤ β ′M ln M, M ≥ n ≥ max{N, t/β′

ln(t/β′)
}}. Define N̂ = max{N, t/β′

ln(t/β′)
}.

Then,

B ≤ 1

A

T ′
M∑

t=10β′

M∑

n=N̂

1

n2
E[Y n

t ] .

Define S1 = {t | 10β ′ ≤ t ≤ T ′
M , pt ≥ 1

ln N
} and S2 = {t | 10β ′ ≤ t ≤

T ′
M , pt < 1

ln N
}. We partition above sum according to S1 and S2 into B1 and

B2, respectively. It holds
E[Y n

t ]

n2 = pt

n
(1 − pt)

n−1 ≤ 1
n
e−pt(n−1) ≤ (e− 1

ln N )n−1

for t ∈ S1. Therefore, using the formula for the sum of geometric series, it
follows

B1 :=
1

A

∑

t∈S1





M∑

n=N̂

1

n2
E[Y n

t ]



 ≤ 1

A

∑

t∈S1





∞∑

n=N̂

(e− 1
ln N )n−1





≤ 1

A

∞∑

t=10β′

(

e− 1
ln N

) t/β′

ln(t/β′)
−1

1− e− 1
ln N

.

Let st = (e− 1
ln N )

t/β′

ln(t/β′)
−1

/
(

1− e− 1
ln N

)

. We bound the sum
∑∞

t=10β′ st by some

constant c. Let t0 such that for all t ≥ t0 it holds (e− 1
ln N )

t/β′

ln(t/β′)
−1

< 1
2
√

t
e−

√
t.

Clearly,
∑t0

t=10β′ st < c1 for some constant c1. For the second part of the sum

it holds:
∑∞

t=t0
st ≤ st0 +

∫∞
t0

1
2
√

t
e−

√
t dt =

∫∞√
t0

e−x dx = c2. Therefore, the
whole sum can be bounded by some constant c = c1 + c2. Lemma 3 implies
that A ≥ ∫M

N
ln n
n

dn = ln2 M−ln2 N
2

. It follows that

B1 ≤
c

A
≤ 2c

ln2 M − ln2 N
≤ δ

6
,

where the last inequality holds if M is large enough.
Now, we bound the second term B2 of B from above. It holds that
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E[Y n
t ]

n2 = pt

n
(1− pt)

n−1 ≤ pt

n
(1− pt)

n(1 + 2pt) ≤ pt

n
e−npt(1 + 2pt) and therefore,

B2 :=
1

A

∑

t∈S2





M∑

n=N̂

1

n2
E[Y n

t ]



 ≤ 1

A

∑

t∈S2






M∑

n= t
β′ ln t

pt

n
e−npt(1 + 2pt)






≤ 1

A

T ′
M∑

t=10β′






M∑

n= t
β′ ln t

pt

n
e−npt

(

1 +
2

ln N

)






Above we used that all the summands are positive and pt ≤ 1
ln N

. Using
Lemma 3 to bound the inner sum by an integral, we get

M∑

n= t
β′ ln t

pt

n
e−npt ≤

∫ M

t
β′ ln t

pt

n
e−npt dn + f

(

t

β ′ ln t

)

,

where f( t
β′ ln t

) = β′ ln t
t

pte
− α′

t
β′ ≤ ln t

t
ptβ

′ ≤ ln t
t

β′

ln N
.

The integral can be rewritten using the variable transformation x = t
n ln t

(implying n = t
x ln t

and dn
dx

= − t
x2 ln t

). First plugging in pt =
α′

t ln t

t
yields

∫ M

t
β′ ln t

1

n

α′
t ln t

t
e−n

α′
t ln t

t dn =
∫ t

M ln t

β′

(

xα′
t ln2 t

t2
e− α′

t
x

)(

− t

x2 ln t

)

dx

≤ ln t

t

∫ β′

0

α′
t

x
e− α′

t
x dx ≤ ln t

t
(1− δ) ,

where
α′

t

x
e− α′

t
x > 0 for x > 0 implies the first inequality, and the definition of

δ the second one.
Combining these bounds shows that

B2 ≤
1

A

T ′
M∑

t=10β′

ln t

t

(

1− δ +
β ′

ln N

)(

1 +
2

ln N

)

≤ 1

A

T ′
M∑

t=10β′

ln t

t

(

1− 5δ

6

)

≤ ln2(β ′M ln M)

ln2 M − ln2 N

(

1− δ

2

)

≤ 1− 4δ

6
,

where the last inequality holds for M large enough.
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It follows that B = B1 + B2 ≤ 1− δ
2

for M large enough, and therefore,
it holds E[Zn] < (1 − δ

3
)n ln n for infinitely many n. This proves the first

statement in Lemma 15. Before we prove the probability tail bound, we give
some remarks.

Remark 16. It can be immediately seen that E[Zn] < (1 − δ
3
)n ln n holds

for a subset of N with positive density with respect to the measure µ defined
above Remark 11.

Remark 17. If α′
t deviates from α, then for small enough β ′ > β, there is a

δ′ > 0 such that
∫ β′

0
α′

t

x
e− α′

t
x dx < 1− δ′. Therefore if the α′

t’s deviate from α

on a subset of N with positive density ε′. Then, B can be bounded by 1− ε′δ′

2

which implies Remark 12.

Remark 18. The bound B still holds if the pt are drawn from distributions
Dt. Assume that ~p is drawn from D = ⊗t∈NDt, and define B in the same
way.

B =
1

A

M∑

n=N

T ′
n∑

t=10β′

1

n2
E[Y n

t ] =
∫

1

A

M∑

n=N

T ′
n∑

t=10β′

pt

n
(1− pt)

n−1 dD(~p)

≤
∫
(

1− δ

2

)

dD(~p) = 1− δ

2
,

where the inequality follows from the fact that the derived upper bound 1− δ
2

holds for M large enough uniformly for all ~p.

For the second statement in Lemma 15, it is left to show that Zn <
(1 − δ

6
)n ln n with probability o(n−3). Let n be such that E[Zn] < (1 −

δ
3
)n ln n. We apply Azuma’s inequality to show concentration of Zn. Since

the distributions Dt are independent, Zn =
∑T ′

n
t=1 Y n

t is a sum of independent
Bernoulli variables. The outcome of each Y n

t influences Zn by at most 1,
therefore by Lemma 5 we obtain

Pr

(

Zn ≥ (1− δ

6
)n ln n

)

≤ Pr

(

Zn ≥ E[Zn] +
δ

6
n ln n

)

≤ e
− (δn ln n/6)2

2T ′
n = e

− δ2n ln n
72β′ = o(n−3) .

�
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Now, we are ready to show Lemma 13.

Proof of Lemma 13. Let n be such that the statement of Lemma 15
holds, that is, the event A that Zn ≤ (1− δ/6)n ln n holds with probability
1 − o(n−3), and recall that we assume to start with ℓ0 = cn/ ln2 n relevant
non-optimized bits, where c is some constant between 1 ≤ c ≤ 2.

Denote by Wi the (Bernoulli) indicator random variable that is 1 if the i-
th of the initial ℓ0 relevant 1-bits is 1 at time T ′

n and let W =
∑ℓ0

i=1 Wi be the
number of such bits. Furthermore, denote by Vi the Bernoulli random vari-
able that is equal to Wi if Zn > (1− δ/6)n ln n. If Zn ≤ (1− δ/6)n ln n, then
assume that after time T ′

n the optimization process continues with additional
(1−δ/6)n ln n−Zn random single bit flips (i.e. in every round the offspring y
is produced by flipping one random bit of x, and y is accepted if f(y) < f(x)).
In this case we set Vi to be 1 if the i-th bit is 1 after these additional random
single bit flips, and let Vi be 0 otherwise. The advantage of the variables Vi is
that conditioned on event A there are exactly (1− δ/6)n ln n single bit flips,
which will make calculations simpler than with the variables Wi. Denote
V =

∑ℓ0
i=1 Vi. Clearly, it holds Vi ≤ Wi, and thus V ≤ W . Therefore, it is

enough to show that whp V > 0 in order to imply W > 0 whp, which proves
Lemma 13. We will show this with the second moment method. We claim
that Var(V ) = O(E[V ]2/ ln n). Then, Chebyshev’s inequality implies that

Pr(V = 0) ≤ Pr
(

|V − E[V ]| ≥ E[V ]
)

≤ Var[V ]

E[V ]2
= O

(
1

ln n

)

.

In order to prove Var(V ) = O(E[V ]2/ ln n), we need some additional
notation.

Let i 6= j be two arbitrary relevant bits. Let Bt be the random variable
that denotes the number of flipped relevant bits at time t, and let Ct be the
random variable that denotes the number of relevant 1-bits at time t. Define

qk,ℓ := Pr(xt
i = 0 | xt−1

i = 1, Bt = k, Ct−1 = ℓ),

rk,ℓ := Pr(xt
i = 0 ∨ xt

j = 0 | xt−1
i = xt−1

j = 1, Bt = k, Ct−1 = ℓ).

Recall that we can assume that the offspring only gets accepted if it has
strictly better fitness. Then, the following claim follows easily, we first will
finish the proof of the lemma before we will prove the claim.
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Claim 19. It holds that q0,ℓ = 0, r0,ℓ = 0, q1,ℓ = 1/n and r1,ℓ = 2/n. For
ℓ ≤ n/20 and k ≥ 2 it holds that qk,ℓ ≤ 160ℓ/n2.

Conditioning on the event A, there are exactly (1− δ/6)n ln n single bit flips
and at most T ′

n multi bit flips. Above claim states that, the probability that
bit i changes in a single bit flip is 1/n and the probability that it changes in
a multi bit flip is at most 160ℓ0

n2 ≤ 320
n ln2 n

. Therefore,

Pr(Vi = 1) ≥ Pr(Vi = 1 | A) Pr(A)

≥
(

1− 1

n

)(1− δ
6

)n ln n(

1− 320

n ln2 n

)T ′
n

Pr(A)

=
(

1− 1

n

)(1− δ
6

)n ln n(

1−O
(

1

ln n

))

By Lemma 4 it follows that

E[V ] = ℓ0 Pr(Vi = 1) ≥ nδ/6

ln2 n

(

1−O
(

1

ln n

))

.

In order to bound Var(V ), we first bound Pr(Vi = Vj = 1) from above.
Note that the probability that neither i nor j changes in a single bit flip is
(1− 2/n).

Pr(Vi = Vj = 1)

= Pr(Vi = 1 ∧ Vj = 1 | A) Pr(A) + Pr(Vi = 1 ∧ Vj = 1 | Ā) Pr(Ā)

≤
(

1− 2

n

)(1− δ
6

)n ln n

+ Pr(Ā) ≤
(

1− 1

n

)2(1− δ
6

)n ln n

+ o
(

1

n3

)

We use this and the lower bound on Pr(Vi = 1) to bound Var(V ).

Var(V ) =
∑

i,j

Pr(Vi = Vj = 1)− Pr(Vi = 1) Pr(Vj = 1)

≤ E[V ] +
∑

i6=j

Pr(Vi = Vj = 1)− Pr(Vi = 1) Pr(Vj = 1)

≤ E[V ] +
∑

i6=j

(

1− 1

n

)2(1− δ
6

)n ln n

O
(

1

ln n

)

≤ E[V ] +
∑

i6=j

E[Vi]E[Vj ]O
(

1

ln n

)

= O
(
E[V ]2

ln n

)

.
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It is left to show the claim. q0,ℓ = 0 and r0,ℓ = 0 holds because the
search point does not change if no bit flips. If exactly one bit flips, then the
probability that a specific bit is flipped is 1/n. Therefore, q1,ℓ = 1/n and
r1,ℓ = 2/n hold.

For k ≥ 2ℓ, it is clear that the fitness cannot improve and therefore
qk,ℓ = 0.

Now, let us consider 2 ≤ k ≤ n/10.

qk,ℓ = Pr(xt
i = 0 | xt−1

i = 1, Bt = k, Ct−1 = ℓ) =

∑k
i=⌈ k−1

2
⌉

(
ℓ−1

i

)(
n−ℓ

k−i−1

)

(
n
k

)

Using that
(

n
m+1

)

=
(

n
m

)

(n−m
m+1

), we can bound the (i + 1)-th summand in
terms of the i-th summand.

(

ℓ− 1

i + 1

)(

n− ℓ

k − (i + 1)− 1

)

=

(

ℓ− 1

i

)(

n− ℓ

k − i− 1

)

(ℓ− 1− i)(k − i− 1)

(i + 1)(n− ℓ− (k − (i + 1)− 1))

≤
(

ℓ− 1

i

)(

n− ℓ

k − i− 1

)

(ℓ− 1− i)

(n− ℓ− (k − (i + 1)− 1))

≤
(

ℓ− 1

i

)(

n− ℓ

k − i− 1

)

ℓ
8
10

n
,

where the first inequality follows from i ≥ ⌈k−1
2
⌉. Now, we can bound qk,ℓ

by a geometric series. Note that nk

k!
≥
(

n
k

)

≥ (n−k)k

k!
will imply the third
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inequality and that we use a ≤ 2a−1 for a ≥ 2 in the fifth inequality.

qk,ℓ ≤

(
ℓ−1

⌈ k−1
2

⌉

)(
n−ℓ

⌊ k−1
2

⌋

)
1

1− 10ℓ
8n(

n
k

) ≤ 2

(
ℓ−1

⌈ k−1
2

⌉

)(
n−ℓ

⌊ k−1
2

⌋

)

(
n
k

)

≤ 2

(

⌊k−1
2
⌋+ 1

)

ℓ⌈ k−1
2

⌉(n− ℓ)⌊ k−1
2

⌋

(n− k)k

(

k

⌈k−1
2
⌉

)

≤ 2

n− k

(

ℓ

n− k

)⌈ k−1
2

⌉ (
n− ℓ

n− k

)⌊ k−1
2

⌋
2k

(

⌊k − 1

2
⌋+ 1

)

≤ 8

n

(

ℓ

n− k

)⌈ k−1
2

⌉
2⌊ k−1

2
⌋2k−12⌊ k−1

2
⌋

≤ 8

n

(

16ℓ

n− k

)⌈ k−1
2

⌉
≤ 8

n

(

16ℓ
9
10

n

)⌈ k−1
2

⌉
≤ 160ℓ

n2

3.2. Proof of Upper Bound

Proof of Theorem 10. In [1], Witt proves an upper bound on the op-
timization time of the standard (1 + 1) EA on any linear function with n
relevant bits. We adapt the proof of [1] to obtain an upper bound on the
runtime for the scheduled setup. In [1], the author defines a potential func-
tion g(x) and the random variables X t = g(xt), where xt is the search point
at time t. He bounds the multiplicative drift at time t with respect to this
potential function, see Equation 4.1 in [1]. For any ζ > 1 (note that Equation
4.1 in [1] this variable is called α) and any mutation rate 0 < p < 1 it holds:

E[X t−1 −X t | X t−1 = s] ≥ sp(1− p)n−1 (1− 1/ζ) . (3)

More precisely, let f be a linear function depending on the n bits in
I. Since Algorithm 2 treats each bit symmetrically, we can assume that
f(x) = wnxn + . . . + w1x1 with wn ≥ . . . ≥ w1. Then, the function g
is defined as g(x) =

∑n
i=1 gixi, where g1 = 1, gi = min{γi, gi−1

wi

wi−1
} and

γi = (1 + ζp
(1−p)n−1 )i−1. Let g be the above defined function with ζ = ln ln n

and p = 1
n
. In the scheduled setup the pt changes every round. However,

when choosing ζt = ζ p(1−pt)n−1

pt(1−p)n−1 , then the potential function defined by pt and
ζt coincides with the one defined by p and ζ . Therefore, for every fixed round
t, Equation (3) also holds for pt and ζt. If ζt > 1, then the expected drift
with respect to g at time t is by (3) at least
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E[X t−1 −X t | X t−1 = s] ≥ spt(1− pt)
n−1 (1− 1/ζt) . (4)

In the sequel, we use this bound on the drift together with standard
techniques to bound E[XT ] for some T = (1 + o(1))βn ln n. Finally, the
theorem will follow by applying Markov’s inequality.

For pt ≤ ln(ζ1/3)p we get that

ζt = ζ
p

pt

(1− pt)
n−1

(1− p)n−1
≥ ζ

1

ln ζ1/3

e−2ptn

(1− p)n−1
= ω(ζ1/4),

where we used Lemma 4 for the inequality. Define S = n ln(n)h(n), where
h(n) = (ln(4) n)−1, then pS ≤ ln ζ1/3p holds for n large enough. Especially,
ζt > 1 for all t ≥ S implies Equation (4) for these t.

Note that

E[X t] =
∑

s

E[X t | X t−1 = s] Pr(X t−1 = s)

≤
∑

s

s Pr(X t−1 = s)

(

1− pt(1− pt)
n−1

(

1− 1

ζt

))

= E[X t−1]

(

1− pt(1− pt)
n−1

(

1− 1

ζ1/4

))

≤ E[XS]
t∏

k=S+1

(

1− pk(1− pk)n−1

(

1− 1

ζ1/4

))

≤ E[XS]e
−
∑t

k=S+1
pk(1−pk)n−1

(

1− 1

ζ1/4

)

As shown in [1], XS can be bounded:

E[XS] ≤
n∑

i=1

gi ≤
n∑

i=1

γi ≤
(

1 + ζp
(1−p)n−1

)n−1 − 1

ζp(1− p)n−1

≤ enζp(1−p)1−n

ζp(1− p)1−n
= O

(

neζ/e

ζ

)

.

Let T = βn ln n(1+k(n)), where k(n) = (ln(4) n)−1, and let k̂(n) = k(n)αe−α/β .
We claim that

T∑

k=S+1

pk(1− pk)n−1

(

1− 1

ζ1/4

)

≥ ln(n)(1 + k̂(n)(1 + o(1))) , (5)
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which implies

E[XT ] ≤ eln n+ ζ
e

−ln ζ−ln(n)(1+k̂(n)(1+o(1)) = e− ln(n)k̂(n)(1+o(1)) .

Since XT ≥ 0 and XT cannot take values in the interval (0, 1), it follows by
Markov’s inequality that Pr(XT 6= 0) = Pr(XT ≥ 1) ≤ E[XT ] = o(1), which
proves the Theorem.

It is left to show that (5) holds. This can be done by approximating the
sum by an integral. Let A be the left hand side of Equation (5) without the
(1− 1/ζ1/4) term.

Note that

pt(1− pt)
n−1 ≥ pt(1− pt)

n ≥ pte
−ptn−p2

t n ≥ pte
−ptn(1− p2

t n),

where the last two inequalities follow by Lemma 4. Therefore,

A ≥
T∑

t=S

pte
−ptn(1− p2

t n) ≥
T∑

t=S

pte
−ptn(1− p2

Sn) ≥
T∑

t=S

pte
−ptn(1−O(n−0.9)) ,

where we used pt ≤ pS for t ≥ S and p2
Sn = O(n−0.9).

Next, we approximate the sum by an integral. Note that the function
f(p) = pe−np is monotone increasing until p ≤ 1

n
and monotone decreasing

for p ≥ 1
n

and obtains its maximal value 1
en

at p = 1
n
. Therefore, by Lemma

3

A ≥
(
∫ T

S
pte

−nptdt− 1

en

)

(1− O(n−0.9)) .

Next, we lower bound the integral. Recall that S = n ln(n)h(n) and T =
βn ln(n)(1+k(n)). First, we use the variable transformation x = t

n ln n
. Then,

we use nα ln(xn ln n)
xn ln n

= α
x

+ α ln(x ln n)
x ln n

≥ α
x

and Lemma 4.
∫ T

S
pte

−nptdt =
∫ T

S

α ln t

t
e−n α ln t

t dt

= ln n
∫ β(1+k(n))

h(n)

nα ln(xn ln n)

xn ln n
e− nα ln(xn ln n)

xn ln n dx

≥ ln n
∫ β(1+k(n))

h(n)

α

x
e− α

x
− α ln(x ln n)

x ln n dx

≥ ln n
∫ β(1+k(n))

h(n)

α

x
e− α

x

(

1− α ln(x ln n)

x ln n

)

dx

≥ ln n

(

1− ln(h(n) ln n)

h(n) ln n

)
∫ β(1+k(n))

h(n)

α

x
e− α

x dx ,
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where in the last step we used the monotonicity of the function ln x/x.
The remaining integral evaluates by Definition 7 to

1 +
∫ β(1+k(n))

β

α

x
e− α

x dx−
∫ h(n)

0

α

x
e− α

x dx

≥ 1 +
∫ β(1+k(n))

β

α

β(1 + k(n))
e

− α
β(1+k(n)) dx−

∫ h(n)

0

α

h(n)
e

− α
h(n) dx

= 1 + k(n)
α

(1 + k(n))
e− α

β(1+k(n)) − αe− α
h(n)

= 1 + k(n)αe− α
β (1 + o(1)) = 1 + k̂(n)(1 + o(1))

For the inequality we used the monotonicity of the function α
x
e− α

x in the
regimes x > α and x < α.

Since 1/ζ1/4 = o(k̂(n)), n−0.9 = o(k̂(n)), 1
en

= o(k̂(n)), and ln(h(n) ln n)
h(n) ln n

=

o(k̂(n)), there exists n0 such that for n ≥ n0 Equation 5 holds. �

4. Adaptive setup

As mentioned in the introduction, Witt’s proof in [1] can be generalized
to obtain the following lower bound for the adaptive setup.

Theorem 20 (Lower bound). For any adaptive choice of mutation rates,
the runtime of the (1 + 1) EA on any linear function with n relevant bits is
whp at least (1− o(1))en ln n.

Note that this lower bound on the optimization time coincides with the op-
timization time of the standard (1 + 1) EA if the number of relevant bits n
is known. Since it is known that mutation rate p = 1/n is the optimal choice
for n relevant bits, it is not surprising that adaptive mutation rates cannot
achieve smaller runtime.

Interestingly, we propose an unbiased, comparison-based (1 + 1) EA (see
Algorithm 4) with adaptive mutation rate policy that optimizes any linear
function with unkown number n of relevant bits in time (1 + o(1))en ln n.
The idea of Algorithm 4 is the following. Assume we would know a value
m = Θ(n), say for concreteness n/2 ≤ m ≤ 2n. To estimate the exact value
of n, we start from a random search point x, and create an offspring y with
a mutation rate of p = m−1−ε. Note that p = o(1/n), so it is very unlikely to
flip more than one relevant bit. Hence, we may assume that no multi bit flip
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occurs. Then, the probability to flip a relevant bit is np, and with probability
≈ 1/2 it is a 0-bit. Hence, if we repeat the test m times, always starting
with a new random x, then we expect to see m ·np/2 cases with f(y) > f(x).
Let S be the number of observed cases with f(y) > f(x). This number is
concentrated, so m′ := 2S/(mp) is a reasonable estimate of n. Afterwards,
we optimize with the standard (1+1) EA with mutation rate p′ := 1/m′. This
approach works if we start with an m such that n/2 ≤ m ≤ 2n. However,
if m is too small, then the same test will tell us so, since we will get an
estimate m′ > 2m in this case. Therefore, Algorithm 4 consists of two parts.
In the estimation part, in every iteration, m is doubled and an estimate m′

of n is computed as described above. Only if m/2 ≤ m′ ≤ 2m, then the
optimization part is executed, that is, the (1 + 1) EA is run with p = 1/m′

for 10m′ ln m′ steps. We show the following theorem.

Theorem 21 (Upper Bound). The optimization time of Algorithm 4 on
any linear function f with n relevant bits is whp at most (1 + o(1))en ln n.

Proof. Algorithm 4 executes exponential search (the m is doubled in every
round). For each m the estimation part of the algorithm needs 2m function
evaluations and the optimization part needs O(m ln m) function evaluations
if it is executed and 0 function evaluations otherwise . In order to bound
the number of function evaluations of Algorithm 4, we divide an execution of
Algorithm 4 into three phases and use standard concentration inequalities.

We define the first phase by all iterations of the for-loop in line 3 with m ≤√
n. Note that there are O(ln n) iterations of the for-loop since m is doubled

in every iteration. We can pessimistically assume that the optimization part
is executed in every iteration of the for-loop. Then, the number of function
evaluations in this phase is O(

√
n ln2 n).

The second phase is defined by all iterations of the for-loop in line 3 with√
n ≤ m ≤ n

100
. As shown below, the estimate m′ of n will whp never be close

to m, and therefore, the optimization part will not be executed. Thus, there
are 2m function evaluations for each m. Since m grows exponentially, the to-
tal number of function evaluations in this phase is O(n). It is left to show that
whp the optimization part is not executed. Let

√
n ≤ m ≤ n

100
and p = 1

m1+ε .
The variable S counts the number of events f(y) > f(x), where y is the off-
spring of a randomly initialized bit string x. Here, we interpret S as a random
variable. Consider one mutation step and let A be the event that at least one
relevant bit flips. Conditioning on A, we claim that Pr(f(y) > f(x)) ≤ 1/4.
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Without loss of generality, we can first randomly choose the set I of bits
that will be flipped according to the distribution determined by p, and then
initialize the bit string x randomly. Let x̄ be the bit string that differs in
every bit from x. Let y and ȳ be the mutations of x and x̄, respectively, when
mutating the bits in I. It holds f(x)−f(y) = −(f(x̄)−f(ȳ)). Since x is cho-
sen uniformly, Pr (f(y) > f(x)) = (1− Pr(f(y) = f(x)) /2. Now, fix an i ∈ I
and let x̂ be the bit string that differs only in position i from x. Again denote
by y and ŷ the mutation of x and x̂, respectively, when mutating the bits in
I. Then, f(x) = f(y) excludes f(x̂) = f(ŷ). Thus, Pr(f(y) = f(x)) ≤ 1/2
and the claim follows.

Denote by q0 the probability that A does not happen, that is, no relevant
bit flips. We have argued that Pr(f(y) > f(x)) ≥ (1− q0)/4. It follows that

E[S] ≥ m
1− q0

4
=

m

4
(1− (1− p)n) ≥ m

4
(1− e−np)

It holds E[S] ≥ 2m/mε. To see this, we distinguish two cases. First, if
np ≤ 1/2, then by Lemma 4 it holds that e−pn ≤ 1 − pn/2. Therefore,
E[S] ≥ m

8
np ≥ m

8
100m
m1+ε ≥ 2m

mε . Second, if np ≥ 1/2, Then E[S] ≥ (1 −
e−1/2)/4 · m ≥ 2m/mε. Note that m′ = 2Smε. Since S is the sum of m
independent Bernoulli variables, Lemma 5 implies that

Pr(m′ ≤ 2m) = Pr
(

S ≤ m

mε

)

≤ Pr
(

S ≤ E[S]− m

mε

)

≤ e− m2

2m1+2ε = e−Ω(n0.5−ε) .

By a union bound argument over O(ln n) iterations of the for loop in line
3, m′ > 2m holds whp for all of these iterations in the second phase.

The third phase is defined by n/100 ≤ m ≤ 2n. We show that in this
phase the estimate m′ of n is whp within a 1±O(m−ε) factor of the true value.
Therefore, the first time that the optimization part is executed, it holds that
(1 − O(m−ε)) 1

n
≤ p ≤ (1 + O(m−ε)) 1

n
. Corollary 4.2 in [1] implies that

the function f will be optimized after (1± o(1))en ln n function evaluations.
The number of function evaluations until this happens is O(n), because until
then the optimization part was never executed. In the sequel we show that
the estimate m′ for n is concentrated. Assume that n/100 < m ≤ 2n. Let
p = m−1−ε, let x be a random bit string, and let y be an offspring of x.
Note that the probability of a single bit flip is nm−1−ε(1 − m−1−ε)n−1 =
nm−1−ε(1− O(m−ε)), the probability of a multi bit flip bit is O(m−2ε), and
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conditioned on a single bit flip, the probability of f(y) > f(x) is 1/2. Thus,

Pr(f(y) > f(x)) =
1

2

n

m1+ε
(1 + O(m−ε))

Further, the expected number of times f(y) > f(x) occurs among m muta-
tions is

E[S] =
n

2mε
(1 + O(m−ε)) .

Since every fitness comparison has effect at most 1 on S, Lemma 5 implies

Pr((1−m−ε)n ≤ m′ ≤ (1 + m−ε)n)

= Pr

(

(1−m−ε)
n

2mε
≤ m′

2mε
≤ (1 + m−ε)

n

2mε

)

= Pr
(

(1− O(m−ε))E[S] ≤ S ≤ (1 + O(m−ε))E[S]
)

≥ 1− 2eΩ(m1−4ε) .

�

5. Initial Segment Uncertainty Model

In this section we analyze the runtime of the (1+1) EA with position
dependent mutation rates ~p on the OneMax function with support on the
initial segment [n]. For every summable and monotone decreasing sequence
~p the expected runtime is upper bounded by O(ln(n)/pn), cf. Theorem 14 in
[5]. Note that it is advantageous for this upper bound to take a summable
sequence that decays as slowly as possible. However, it is known that there
exist no slowest decaying summable sequence (cf. Section 2.6 in [6]).

Our next theorem states a lower bound on the runtime that is asymp-
totically as tight as possible. To reduce the technicality of the proof, we
will assume that the position dependent mutation rates ~p are monotonically
decreasing and smaller than 1

2
, that is, 1

2
≥ p1 ≥ p2 ≥ . . .. Further, we define

Sn = Sn(~p) =
∑n

i=1 pi and S = S(~p) = limn→∞ Sn.

Theorem 22. Let ~p be a monotone decreasing sequence with p1 ≤ 1/2, and
let ~q be an arbitrary non-summmable sequence. Then there is a constant c > 0
such that for infinitely many n ∈ N the expected optimization time of the
(1+1) EA with position dependent mutation probabilities ~p on the OneMax

function with support on the initial segment [n] is at least c ln(n)/qn.
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Algorithm 4: Adaptive setup: The (1 + 1) EA with adaptive choice of
mutation rates ~p minimizing a pseudo-Boolean function f : {0, 1}N → R

with a finite number n of relevant bits.
1 m← 1 ;
2 ε← 0.01 ;
3 for i = 1, 2, . . . do
4 m← 2m;
5 [ Estimate whether m/2 ≤ n ≤ 2m: ]
6 p← 1

m1+ε ;
7 S ← 0;
8 for j = 1, . . . , m do
9 x ∈u.a.r. {0, 1}N;

10 y ←Mutate(x, p);
11 if f(y) > f(x) then
12 S ← S + 1;

13 m′ ← 2Smε;
14 if m

2
≤ m′ ≤ 2m then

15 [ Optimize f : ]
16 Run Algorithm 1 with p = 1

m′ for 10m′ ln m′ steps;
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We denote the k-fold iterative logarithm by ln(k)(x), where we truncate
any values smaller than 1 to avoid negative or undefined terms. I.e., we
define iteratively ln(0)(x) = max{1, x} and ln(k)(x) = max{1, ln(ln(k−1)(x))}.
It is known [6, Lemma 2.4] that the sequence pn = 1/(n

∏∞
j=1 ln(j)(n)) is

non-summable. Thus, we obtain the following lower bound.

Corollary 23. Let ~p be a monotone decreasing sequence with p1 ≤ 1/2.
Then there is c > 0 such that the expected optimization time of the (1+1) EA
with position dependent mutation probabilities ~p on the OneMax function
with support on the initial segment [n] is at least cn ln2(n)

∏∞
j=2 ln(j)(n) for

infinitely many n ∈ N.

Note that this lower bound is tight in the sense that for any k ≥ 0 the
summable sequence pn := 1/(n

∏k
j=1 ln(j)(n)) achieves an optimization time

of O(n ln2(n)
∏k

j=2 ln(j)(n)) as shown in [5].

5.1. Proof of Lower Bound

In the following, we assume that the position dependent mutation rates
~p are monotonically decreasing and smaller than 1/2. Further, we define
Sn =

∑n
i=1 pi and S = limn→∞ Sn.

Before we come to the technical details, we first give an overview over
the proof. The crucial step will be to show that the expected runtime is at
least Ω(ln(n)Mn), where Mn := min{eSn/(Snp⌈n/2⌉), n1.01/ ln(n)}. This will
be done in Lemma 24 for the case that ~p is summable, where the formula
can be simplified. The hard part of the proof is to show this bound for
non-summable ~p, which is done in Lemma 25. Afterwards, we show by a
rather short argument in Lemma 31 that the inverse of the sequence Mn is
summable for every monotone sequence ~p, and that for any non-summable
sequence ~q we have Mn ≥ 1/qn for infinitely many values of n.

We start with the lower bound on the optimization time. The first lemma
assumes that ~p is summable, and it follows rather easily from the fact that
every bit in {⌈n/2⌉, . . . , n} that is initialized with 1 needs to flip at least
once.

Lemma 24. Let ~p be such that S <∞. Then the expected optimization time
of the (1+1) EA with position dependent mutation rates ~p on the OneMax

function with support on the initial segment [n] is at least Ω(ln(n)/p⌈n/2⌉).
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Proof. Let Tn = ln n
4p⌈n/2⌉

and let I ⊂ {⌈n/2⌉, . . . , n} be the set of bits that

are initialized by 1. By the Chernoff-Hoeffding bounds, there are whp at
least n/6 such bits. The probability that bit i is never flipped until time
Tn is (1 − pi)

Tn ≥ e−2piTn ≥ e− ln(n)/2 = n−0.5. Since all bits are flipped
independently, it holds that the probability that all bits in I are flipped until
time T is at most (1−n−0.5)n/6 ≤ e−n0.5/6 = o(1). It follows that the expected
optimization time is Ω(ln(n)/p⌈n/2⌉). �

A similar bound holds for non summable sequences, but is much harder to

prove. Note that the first term ln(n)eSn

Snp⌈n/2⌉
in the bound in Lemma 25 generalizes

the bound in Lemma 24, since there we have Sn = Θ(1).

Lemma 25. Let ~p be such that S =∞. The optimization time of the (1+1)
EA with position dependent mutation rates ~p on the OneMax function with

support on the initial segment [n] is at least Ω(min{ ln(n)eSn

Snp⌈n/2⌉
, n1.01}).

Proof. Let us first sketch the proof and give some intuition for the problem.
First, we observe that the bound is easy in some cases: if pn ≤ n−1−δ for
δ := 0.01, then it takes a long time to flip the n-th bit, and if Sn ≥ 2 ln n,
then it takes a long time to make the very last step towards the optimum,
because we typically flip many bits at once. So we assume that none of these
cases happen. Then, we argue by pigeonhole principle that there is a medium
sized set B of bits (|B| = n1−2δ) such that all pi, i ∈ B, differ by at most a
factor of 2, and such that pi = O(pn/2). In particular, it can be shown that
∑

i∈B pi = o(1). We consider the case that B is close to optimal, i.e., that the
number B1(t) of 1-bits in B is at most ε|B| for some small ε. Then, we study
the drift ∆t := B1(t)−B1(t + 1). The main part of the proof is to show that
E[∆t] ≤ Cε|B|pn/2Sne−Sn for a constant C, from which the theorem follows
by a lower bound multiplicative drift theorem [1].

Note that the term Cε|B|pn/2Sne−Sn roughly resembles the probability
that exactly one 1-bit is flipped in B (probability ≈ ε|B|pn/2) and at most
one bit is flipped in A := [n] \B (probability ≈ Sne−Sn). However, it would
be incorrect to say that this is the leading term of the drift. It is not even nec-
essarily a leading term among those terms that contribute positively to the
drift. For example, consider the case that A is not well-optimized, for illus-
tration we may imagine that all of these bits are 1-bits. Then, a much more
likely scenario for an improvement in B is that many bits in A are flipped
(which improves the fitness, and has probability Θ(1) instead of O(Sne−Sn)),
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and one 1-bit in B is flipped. However, in this case there is an even more
likely scenario: a similar combination of bits in A is flipped, a 0-bit in B
is flipped, and thus B1(t) moves away from the optimum. In general, the
situation is more complex than for the case that A consists only of 1-bits. So
what we really show is that all terms that contribute positively to the drift
are either at most Cε|B|pn/2Sne−Sn, or they are counterbalanced by even
larger terms that contribute negatively to the drift. Nevertheless, this gives
a drift bound of E[∆t] ≤ Cε|B|pn/2Sne−Sn , as required.

Let us formalize above ideas. Let δ = 0.01. If pn ≤ 1
n1+δ , then the

expected optimization time is at least Ω(n1+δ), because with probability 1
2

the n-th bit is initialized with 1 and the expected time until it is flipped for
the first time is 1

pn
= n1+δ.

If Sn ≥ 2 ln n, then the probability that the offspring y of any x is the all
0 string is

∏

xi=0, i∈[n]

(1− pi)
∏

xi=1, i∈[n]

pi ≤
∏

i∈[n]

(1− pi) ≤ e−Sn ,

where the first inequality follows from pi ≤ 1/2. It follows that the expected
time until the all 0-string is hit is at least eSn = Ω(n1+δ).

So let us assume that pn ≥ 1
n1+δ and Sn ≤ 2 ln n. Let X be the expected

number of bits in [n] that flip in one mutation step. The Chernoff-Hoeffding
bounds states that Pr(X ≥ t) ≤ 2−t for t ≥ 2eE[X]. Note that E[X] = Sn.
Therefore, the Chernoff-Hoeffding bounds imply that Pr(X ≥ 4e ln n) ≤
2−4e ln n ≤ n−2. Therefore, a union bound argument over the n1+δ time steps
imply that whp there is no step in which more than 4e ln n bits are flipped.
Since we want to prove a lower bound on the expected optimization time,
we can assume for the remainder of this proof that at most 4e ln n bits are
flipped in every step.

Consider the intervals Ik = [2−k, 2−(k+1)] for k = 1, . . . ⌈log2 n1+δ⌉. By
the pigeon-hole principle there exists a k such that the set Jk = {i | n/2 ≤
i ≤ n, pi ∈ Ik} has size at least n

log3
2 n

. Let k̂ be the largest such k. Define

B to be an arbitrary subset of Jk̂ of size n1−2δ, and let A := [n] \ B. Let
pB = 1

2−(k̂+1)
. Note that 2pB ≥ pi ≥ pB for all i ∈ B, and pB ≤ p⌈n/2⌉ because

~p is monotone. Since |Jk| < n
ln3

2 n
holds for k > k̂, there are (1 − o(1))n

positions i with pB ≤ pi. It follows (1 − o(1))npB ≤ Sn, which implies
pB ≤ (1 + o(1))2 ln n/n. Further, for a search point xt define A0 and A1 to
be the set of positions of A where xt is 0 and 1, respectively. Define B0 and
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B1 analogously. Next, define

SA
0 :=

∑

i∈A, xt
i=0

pi , SA
1 :=

∑

i∈A, xt
i=1

pi , SA := SA
0 + SA

1 ,

and define SB
0 , SB

1 , SB analogously. Note that SB ≤ 2pB|B| ≤ (1 +
o(1))2 ln n/n · n1−2δ ≤ n−δ for n large enough.

In order to prove the asymptotic lower bound on the optimization time, it
turns out that it is enough to consider the time until there are less than n0.5+δ

one bits. Let us assume n0.5+δ ≤ |B1| ≤ 2n0.5+2δ and define ε := |B1|/|B|.
In the sequel, we will consider the drift ∆t := B1(t)−B1(t + 1), and we will
show that there is a constant C > 0 such that

E[∆t | |B1| = ε|B|] ≤ C|B1|max{pBSne−Sn, n−1−δ} (6)

for all n−0.5+3δ ≤ ε ≤ 2n−0.5+4δ. This will then allow us to lower bound
the optimization time with a multiplicative drift theorem. Note that an
analogous lower bound on E[∆t] does not need to hold. Depending on the
bits in A, the absolute value |E[∆t]| can be much larger than the right hand
side of (6), but only if E[∆t] < 0.

So let us show (6). Indeed, this argument will constitute the main part of
the proof. Denote by A01 the number of 0-bits in A that flip to 1 and by A10

the number of 1-bits in A that flip to 0, and define B01 and B10 analogously.
In order to bound E[∆t], we write it as a sum of 6 terms D1, . . . , D6 defined
as follows. Note that in the sequel, we always condition on |B1| = ε|B| but
omit this for ease of notation.

D1 := Pr(A01 < A10)E [∆t | A01 < A10] ,

D2 := Pr(A01 = A10 = 0)E [∆t | A01 = A10 = 0] ,

D3 := Pr(A01 = A10 > 0)E [∆t | A01 = A10 > 0] ,

D4 := Pr(A01 = 1 + A10 = 1)E [∆t | A01 = 1 + A10 = 1] ,

D5 := Pr(A01 = 1 + A10 > 1)E [∆t | A01 = 1 + A10 > 1] ,

D6 := Pr(A01 ≥ 2 + A10)E [∆t | A01 ≥ 2 + A10] .

The idea is the following. We show that D1+D3+D5 ≤ 0, while for D2, D4

and D6 we derive precise upper bounds. Intuitively, it is very unlikely that
more than one bit flips in B. Therefore, if A01 = A10 = 0 or A01 = A10+1 = 1
(this corresponds to the terms D2 and D4), then the leading term of E[∆t] is
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caused by the event that one 1-bit and no 0-bits flip in B. If A01 ≥ 2 + A10

(this corresponds to D6), then E[∆t] is small since at least two 1-bits in B
need to be flipped such that the offspring is accepted. Otherwise, it turns
out to be likely that the number of 1-bits decreases in A (this corresponds to
D1, D3 and D5), which will cause E[∆t] to be negative because the leading
term is caused by the event that one 0-bit and no 1-bit flips in B.

In order to formalize the steps outlined above, define Fk be the event
that k bits flip in B. ∆t = 0 if no bit flips in B, and thus, E[∆t] =
∑B

k=1 Pr(Fk)E[∆t | Fk]. Further, define ∆̂t to be the drift B1(t)−B1(t+1) as-
suming that the offspring would be accepted if and only if B1(t) > B1(t + 1).
More formally, let B̄1(t) be the number of 1-bits in B of the offspring at time

t. Then, ∆̂t = i if B1(t) − B̄1(t) = i for i ≥ 1, and ∆̂t = 0 otherwise. Note

that ∆t ≤ ∆̂t holds no matter which events in A we condition on.

Claim 26. It holds (1 − o(1))|B|pB ≤ Pr(F1) ≤ 2BpB. Further, it holds

that Pr(Fk) ≤
(

B
k

)

(2pB)k ≤ (2n−δ)k. Moreover, there is a constant c1 such

that E[∆̂t | Fk] ≤ c1ε
2 for 2 ≤ k ≤ 4e ln n.

Let us show this claim. It holds that Pr(F1) =
∑

i∈B
pi

1−pi

∏

j∈B(1−pj) and

the first statement of the claim follows by
∏

j∈B(1−pj) = 1−O(SB) = 1−o(1).
For the second statement note that Pr(Fk) =

∑

I⊂B:|I|=k

∏

i∈I pi
∏

i∈B\I(1−
pi) and the first part of the statement follows from pi ≤ 2pB and (1−pi) ≤ 1.

The second part of the statement follows from
(

|B|
k

)

≤ |B|k, |B| = n1−2δ and

pB ≤ (1 + o(1))2 ln n/n.
Let us prove the third statement. For two k-subsets I and J of B de-

note by FI and FJ the events that exactly the bits in I and J are flipped,
respectively. pi ≤ 2pj and pi, pj ≤ (1 + o(1))4 ln n/n implies Pr(FI )

Pr(FJ )
=

∏

i∈I pi/(1 − pi)
∏

j∈J(1 − pj)/pj ≤ 2k(1 + o(1)). Let us assume that k is

odd. Let us count the number of k-sets I such that ∆̂t = 1+2i. The number
of such sets I is

(

ε|B|
k+1

2
+ i

)(

(1− ε)|B|
k−1

2
− i

)

≤ (ε|B|) k+1
2

+i

(k+1
2

+ i)!

((1− ε)|B|) k−1
2

−i

(k−1
2
− i)!

.
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Using Stirlings formula, the total number of k subsets of B is

(

|B|
k

)

=
|B|!

k!(|B| − k)!
= (1 + o(1))

|B||B|

k!ek(|B| − k)|B|−k

√

|B|
√

|B| − k

= (1 + o(1))
|B|k

k!ek(1− k
|B|)

|B|−k+0.5

≥ (1 + o(1))
|B|k

k!eke−k−k(k−0.5)/|B| = (1 + o(1))
|B|k
k!

,

where we used Lemma 4 for the inequality and k ≤ 4e ln n.
Recall that the probabilities FI and FJ for two k-subsets I and J are

by at most a factor 2k(1 + o(1)) apart. In order to obtain an upper bound

on Pr(∆̂t = 2i + 1), we assume pessimistically that the subsets for which
the number of 0-bits improve are by a factor 2k(1 + o(1)) times as likely.

Therefore, the probability that ∆̂t = 2i + 1 is at most the quotient of the
above two terms multiplied by 2k(1 + o(1)):

Pr(∆̂t = 2i + 1 | Fk) ≤ (1 + o(1))2kε
k+1

2
+i(1− ε)

k−1
2

−i

(

k
k+1

2
+ i

)

≤ (1 + o(1))(24ε)
k+1

2
+i .

It follows easily that there is a constant c1 such that E[∆̂t | Fk] =
∑(k−1)/2

i=0 (1 + 2i) Pr(∆̂t = 2i + 1 | Fk) ≤ c1ε
2 for all odd k in {2, . . . , 4e ln n}.

The calculations for even k are analogous and Claim 26 follows.

Claim 27. For n large enough it holds D2 ≤ |B1|max{8e−SnpB, n−1−δ}.

Denote by E the event A01 = A10 = 0. Note that Pr(E) =
∏

i∈A(1 − pi) ≤
e−SA ≤ 2e−Sn . By Claim 26 it holds Pr(F1|E) = Pr(F1) ≤ 2BpB and

E[∆t | Fk, E] ≤ E[∆̂t | Fk] ≤ c1ε
2 for 2 ≤ k ≤ 4e ln n. Further, note that

E[∆t | F1, E] = ε and
∑

k≥2 Pr(Fk) ≤ 1. It follows that

D2 ≤ 2e−Sn(2BpBε + c1ε2) ≤ |B1|max{8e−SnpB, n−1−δ} ,

where 4e−Snc1ε
2/|B1| ≤ n−1−δ holds for n large enough.

Claim 28. For n large enough it holds D4 ≤ |B1|max{8Sne−SnpB, n−1−δ}.
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Denote by E the event A01 = 1 + A10 = 1. It holds that Pr(E) =
∑

i∈A0
pi
∏

j∈A\i(1 − pi) which is smaller than
∑

i∈A0
pie

−SA+pi ≤ 2Sne−Sn ,
where the last inequality follows from SB ≤ (1 + o(1))n−δ and e0.5 < 2 . As
above, by Claim 26 it holds Pr(F1|E) = Pr(F1) ≤ 2BpB and E[∆t | Fk, E] ≤
E[∆̂t | Fk] ≤ c1ε2 for 2 ≤ k ≤ 4e ln n. Further, note that E[∆t | F1, E] = ε
and

∑

k≥2 Pr(Fk) ≤ 1. It follows that

D4 ≤ 2Sne−Sn(2BpBε + c1ε2) ≤ |B1|max{8Sne−SnpB, n−1−δ} ,

where 4Sne−Snc1ε
2/|B1| ≤ n−1−δ holds for n large enough.

Claim 29. For n large enough it holds D6 ≤ |B1|n−1−δ.

Denote by E the event A01 ≥ 2 + A10. Clearly, Pr(E) ≤ 1. If A01 ≥ 2 + A10,
then there need to be at least 2 bits more that flip in B1 than in B0 such
that the number of 0-bits in B increases. Therefore, at least 2 bits need
to flip in B such that the number of 0-bits increases. Thus, E[∆t|E] ≤
∑

k≥2 Pr(Fk)E[∆t|Fk, E] ≤ c1ε
2, where the last step follows by Claim 26 and

∆t ≤ ∆̂t. Thus, for n large enough it holds D6 ≤ c1ε2 ≤ |B1|n−1−δ.

Claim 30. For n large enough it holds D1 + D3 + D5 ≤ 0.

If we condition on A01 < A10 and F1, then the offspring will be accepted and
therefore ∆t = −1 happens with probability 1− ε, and ∆t = 1 happens with
probability ε. Thus, E[∆t | F1, A01 < A10] = −1 + 2ε. Since ∆t ≤ ∆̂t and

since ∆̂t does not depend on the flips in A, we can bound E[∆t | Fk, A01 <

A10] ≤ E[∆̂t | Fk] = O(ε2) for k ≥ 2. It follows that

E[∆t | A01 < A10] ≤ Pr(F1)(−1 + 2ε) + O(ε2) . (7)

Note that this is smaller than 0 since by Claim 26 it holds Pr(F1) ≥ (1 +
o(1))BpB ≥ (1 + o(1))(n−3δ) = ω(ε2).

If A01 = A10 > 0, then the number of 0-bits in B increases if and only if
more 1-bits than 0-bits flip in B . It holds that E[∆t | F1, A01 = A10 > 0] = ε

and E[∆t | Fk, A01 = A10 > 0] ≤ E[∆̂t | Fk] = O(ε2) for k ≥ 2. It follows
that

E[∆t | A01 = A10 > 0] ≤ Pr(F1)ε + O(ε2) . (8)
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If A01 = 1 + A10 > 1, then the number of 0-bits in B increases if and only
if more 1-bits than 0-bits in B flip. It holds that E[∆t | F1, A01 = 1 + A10 >

1] = ε, and E[∆t | Fk, A01 = 1 + A10 > 1] ≤ E[∆̂t | Fk] = O(ε2) for k ≥ 2. It
follows that

E[∆t | A01 = 1 + A10 > 1] ≤ Pr(F1)ε + O(ε2) . (9)

Recall that

D1 + D3 + D5 = Pr(A01 < A10)E[∆t | A01 < A10]

+ Pr(A01 = A10 > 0)E[∆t | A01 = A10 > 0]

+ Pr(A01 = 1 + A10 > 1)E[∆t | A01 = 1 + A10 > 1] .

Note that the assumption that at most 4e ln n bits are flipped in every
step implies (mind the inequality in the first line)

Pr(A01 < A10) ≥
4e ln n∑

i=1

Pr(A01 = i− 1) Pr(A10 = i) , (10)

Pr(A01 = A10 > 0) =
4e ln n∑

i=1

Pr(A01 = i) Pr(A10 = i) , (11)

Pr(A01 = 1 + A10 > 1) =
4e ln n∑

i=1

Pr(A01 = i + 1) Pr(A10 = i) . (12)

Next, define

D̂i := Pr(A01 = i− 1)E[∆t | A01 < A10]

+ Pr(A01 = i)E[∆t | A01 = A10 > 0]

+ Pr(A01 = i + 1)E[∆t | A01 = 1 + A10 > 1] .

In the sequel, we show that D̂i ≤ 0 for all 1 ≤ i ≤ 4e ln n. This implies the
claim since because it is fine to underestimate Pr(A01 < A10) as done in 10
since E[∆t | A01 < A10] ≤ 0. Pr(A01 = k) can be lower bounded by

∑

i∈A0
pi

Sn

Pr(A01 = k) =
1

Sn

∑

i∈A0

pi

∑

J⊂A0:|J |=k




∏

j∈J

pj

∏

j∈A0\J

(1− pj)





≥ k + 1

2Sn

∑

J⊂A0:|J |=k+1




∏

j∈J

pj

∏

j∈A0\J

(1− pj)



 =
k + 1

2Sn
Pr(A01 = k + 1) ,
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where we used 1−pj ≥ 1
2

and the fact that every factor appears k+1 times in
the sum. Using Pr(A01 = k)/ Pr(A01 = k + 1) ≥ (k + 1)/(2Sn) ≥ 1/(4 ln n),
we can upper bound D̂i/ Pr(A01 = i− 1) by

E[∆t | A01 < A10] + 4 ln nE[∆t | A01 = A10 > 0]

+ (4 ln n)2
E[∆t | A01 = 1 + A10 > 1]

≤Pr(F1)(−1 + 2ε) + O(ε2) + 4 ln n
(

Pr(F1)ε + O(ε2)
)

+ (4 ln n)2
(

Pr(F1)ε + O(ε2)
)

≤0 ,

where (7), (8) and (9) imply the first inequality, and the second inequality
follows for n large enough since Pr(F1) ≥ (1 − o(1))|B|pB ≥ n−3δ and ε ≤
2n−0.5+2δ. This proves Claim 30.

Altogether, the claims 27, 28, 29, and 30 prove (6).
In the following, we apply the lower bound multiplicative drift theorem,

Theorem 6, on the process B1(t). Since we assume that in every step at
most 4e ln n bits are flipped, there is a point in time with B1(t) = cn0.5+2δ

for some 1 ≤ c ≤ 2 or the optimum will not be found. Define κ = 4e ln n,
then condition (1) of Theorem 6 is satisfied. Further, let smin = n0.5+δ and
s0 = cn0.5+2δ. Let T be the first point in time such that B1(t) ≤ smin. Let

δ̂ = C max{pBSne−Sn , n−1−δ}. By Equation 6 it holds E[∆t | B1(t) = s] ≤ δ̂·s
for n0.5+δ ≤ s ≤ 2n0.5+2δ, which is Condition (2) in Theorem 6. 16 Therefore,
the multiplicative drift theorem implies that

E[T | B1(0) = s0] ≥ 1 + ln s0 − ln smin

2δ̂ + κ2

s2
min−κ2

≥ 1 + ln s0 − ln smin

max{4pBSne−Sn , 4n−1−δ, 2 κ2

s2
min−κ2}

≥ c2 ln n min{ eSn

SnpB
, n1+δ} ,

where the last inequality holds for n and c2 large enough. This concludes the
proof since pB ≤ p⌈n/2⌉.

16Here we cheat slightly, as we only show this condition for smin ≤ s ≤ 2n0.5+2δ, not
for all s ≥ smin. However, the proof of Theorem 6 in [15] reduces multiplicative drift to
additive drift by considering the rescaled random variable Yt := ln(B1(t)). It was shown
in [15] that this has still at most constant additive drift whenever smin ≤ B1(t) ≤ s0, and
the additive drift theorem only requires drift for these values.
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The next lemma links the bound on the runtime with non-summable
sequences.

Lemma 31. Let (pn)n≥1 and (qn)n≥1 be sequences of positive reals with pn ≤
1 for all n ∈ N. Let I ⊆ N be the set of all indices n such that

min

{

n1.01

ln n
,

exp{∑n
i=1 pi}

p⌈n/2⌉ ·
∑n

i=1 pi

}

≤ 1

qn

. (13)

Then
∑

n∈I qn <∞. In particular, if
∑∞

n=1 qn =∞ then |N \ I| =∞.

Proof. We abbreviate an := ln n/n1.01 and bn := p⌈n/2⌉
∑n

i=1 pi·exp{−∑n
i=1 pi},

so the left hand side of (13) is min{a−1
n , b−1

n } = (max{an, bn})−1. By taking
the inverse of (13) and summing over all n ∈ I, we get

∑

n∈I

qn ≤
∑

n∈I

max{an, bn} ≤
∞∑

n=1

an

︸ ︷︷ ︸

=:Sa

+
∞∑

n=1

bn

︸ ︷︷ ︸

=:Sb

. (14)

Obviously Sa < ∞, so it remains to show Sb < ∞. To ease notation, let
f(x) := xe−x, so Sb =

∑∞
n=1 p⌈n/2⌉f(

∑n
i=1 pi). The function f is easily seen

to be increasing from 0 to 1, and to be decreasing afterwards.
If
∑∞

n=1 pn = c < ∞, then Sb ≤
∑∞

n=1 p⌈n/2⌉c ≤ 2c2, and we are done.
So assume

∑∞
n=1 pn = ∞. Then for all k ∈ N the index nk := min{n ≥ 1 |

∑n
i=1 pi ≥ k} is well-defined, and we set n0 := 1. Since pn ≤ 1, we have

2nk+1−2
∑

n=2nk−1

p⌈n/2⌉ = 2

(

pnk
+

nk+1−1
∑

i=1

pi −
nk∑

i=1

pi

)

≤ 4.

Therefore,

Sb =
∞∑

k=1

2nk−2
∑

n=2nk−1−1

p⌈n/2⌉f

(
n∑

i=1

pi

)

≤
∞∑

k=1

2nk−2
∑

n=2nk−1−1

p⌈n/2⌉ sup
x∈[k−1,∞)

{f(x)}

≤
∞∑

k=1

4 · sup
x∈[k−1,∞)

{f(x)} = 4

(

f(1) +
∞∑

k=2

f(k − 1)

)

=
4

e
+

4e

(e− 1)2
<∞,

as required. �
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Proof of Theorem 22. Let ~p be any monotone decreasing sequence with
p1 ≤ 1/2, and let ~q be any non-summable sequence. If ~p is summable, then
Lemma 24, otherwise Lemma 25, implies that the expected optimization time

is Ω(min{ ln(n)eSn

Snp⌈n/2⌉
, n1.01}). Then, Lemma 31 implies the theorem. �

6. Conclusions

We have precisely analyzed the optimal strategies for the hidden subset
problem for the scheduled and the adaptive setup. Both are asymptotically
faster than the best strategy for the static setup. For the adaptive setup,
the unknown n does not increase the runtime. For the non-adaptive setup,
there is a price to pay, namely we lose a factor of β/e ≈ 1.307 in the runtime.
The best algorithm in this case follows a rather natural schedule pt = αt/ ln t,
except for the surprising factor α. The best schedule is surprisingly rigorously
determined, and even slight deviations from the optimal schedule lead to a
loss in performance. On the other hand, the algorithm that achieves runtime
(1± o(1))en ln n in the adaptive case is arguably rather artificial and ad hoc.
Most common strategies like the 1/5-rule adapt the mutation rate in small
steps, see [7, 16] for reviews. It is an interesting question whether the same
runtime can be achieved with such strategies.

Another intriguing question is on the connection between the hidden sub-
set problem and the initial segment uncertainty model. On all studied fitness
functions, the optimal runtimes of these algorithms are asymptotically equal
– for LeadingOnes the connection is even more intimate. It remains an
open question whether a general connection can be found between the two
models.
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