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Abstract

Friction systems are mechanical systems wherein friction is used for force transmission (e.g. mechan-
ical braking systems or automatic gearboxes). For finding optimal and safe design parameters, engineers
have to predict friction system performance. This is especially difficult in real-worlds applications, be-
cause it is affected by many parameters.

We have used symbolic regression and genetic programming for finding accurate and trustworthy
prediction models for this task. However, it is not straight-forward how nominal variables can be included.
In particular, a one-hot-encoding is unsatisfactory because genetic programming tends to remove such
indicator variables. We have therefore used so-called factor variables for representing nominal variables in
symbolic regression models. Our results show that GP is able to produce symbolic regression models for
predicting friction performance with predictive accuracy that is comparable to artificial neural networks.
The symbolic regression models with factor variables are less complex than models using a one-hot
encoding.

1 Introduction

Friction systems are mechanical systems wherein friction is used for force transmission between several
moving components of the system (e.g. mechanical braking systems or automatic gearboxes). For the design
of these systems, engineers have to find an optimal configuration which fulfills given specifications. In this
process, they have to choose a friction material and lubricant type and calculate the necessary dimensions

∗Preprint of G. Kronberger, M. Kommenda, A. Promberger, F. Nickel. ”Predicting friction system performance
with symbolic regression and genetic programming with factor variables”. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 1278-1285. ACM. (July 2018). The final publication is available at:
https://dl.acm.org/doi/10.1145/3205455.3205522
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of the system components. Prediction models for friction system performance can facilitate this process,
because many viable alternatives can be explored and compared based on their predicted performance, and
necessary system dimensions can be calculated based on predicted friction performance. The alternative to
using prediction models is to manufacture prototypes (physical models) of viable designs and performing
tests with these prototypes. Overall, the effort to find a safe, durable and cost-efficient design can be reduced
when using accurate prediction models for friction performance.

Friction is a physical phenomenon that arises from forces acting between surfaces that are moving against
each other. The overall friction force depends on the pressure on the two surfaces and the friction coefficient.
The friction coefficient is mainly determined by the fine-grained structure of the surfaces and the type
and physical characteristics of the lubricant. However, friction performance also depends on many other
(dynamic) factors such as the sliding velocity, the pressure, the temperature of the surfaces and the lubricant
and many more. Especially, in real-world applications there are many influence factors which makes it very
difficult to build an accurate mathematical model derived from physical principles. As a consequence,
empirical modeling techniques have been used to find relevant correlations based solely on recorded data
[Berger, 2002, Hosenfeldt et al., 2014, Aleksendrić and Carlone, 2015, Lughofer et al., 2016]. These methods
can however only be used if enough high-quality data is available to detect all relevant correlations and for
fitting the statistical model.

1.1 Previous Work

Several different supervised learning techniques have been used for empirical modeling of friction systems
[Ricciardi et al., 2017]. Besides mathematical models derived from physical principles, artificial neural net-
works (ANN) seem to be especially popular for this task. For example ANNs have been used to predict wear
of friction materials [Aleksendrić, 2010, Aleksendrić and Carlone, 2015], for optimizing braking performance
as a component within a neuro-genetic system [Ćirović et al., 2014], for the prediction of the coefficient
of friction of different materials [Senatore et al., 2011, Yang et al., 2013], and for predicting the tribologi-
cal behavior of friction system [Hosenfeldt et al., 2014]. Symbolic regression models and prediction models
based on fuzzy systems have been used to predict the coefficient of friction, wear, temperatures, and noise-
vibration-harshness ratings of wet-application friction systems [Lughofer et al., 2016]. There, the symbolic
regression and fuzzy models produced higher prediction errors than random forests, gradient boosted trees,
or support vector machines. However, in [Lughofer et al., 2016] the authors argue that symbolic regression
and fuzzy models still have merit, because both methods produce models with much simpler structure and
much fewer parameters in comparison to random forests or gradient boosted trees.

1.2 Motivation

Our main motivation for the present research is that based on our background knowledge of the physics of
friction, we know that a given friction system design always responds similarly to changes of load parameters
regardless of the specific type of material or lubricant. For example, the temperature of the system will
increase when the amount of mechanical energy put into the system is increased. Of course the actual
temperature will be strongly dependent on the specific material and lubricant that is used. However, the
overall correlations will be similar over all materials and lubricants. This increase in temperature is just
one example for a known physical dependency, there are many more similar dependencies that describe the
overall behavior of friction systems.

A specific difficulty in this task is that we often do not know details about the specific properties of
materials or oils as numeric features. Instead, we are only given nominal variables for the material type or
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lubricant type. However, since these have a strong effect on performance this information must be included
in the model.

Correspondingly, a kind of a hierarchical empirical model should work well for this particular application.
A hierarchical model should describe the general behavior of the overall system on a higher level and the
specifics for different materials or lubricants on a lower level. In previous empirical modeling efforts especially
those using artificial neural networks, this background knowledge about the physical properties of friction
systems has not been considered. We argue that with symbolic regression and genetic programming it is
rather easy to create such a hierarchical model using so-called factor variables. Factor variables allow to
parameterize a global model whereby the parameters depend on the observed values of nominal variables.

Our aim in this article is to describe how factor variables can be implemented for genetic programming
and to demonstrate that this approach is indeed capable of finding a general model structure and parameter
sets dependent on nominal variables. Finally, we analyze whether it is possible to improve models for
predicting friction system performance.

2 Methods

In the following, we give details on the implementation of factor variables for genetic programming. A simple
problem is used to test the implementation and demonstrate the feasibility of our approach.

Next, we describe the procedure of data preparation for prediction modeling. To check the correctness of
our data preparation procedure and to calculate baselines for the accuracy of our symbolic regression models
we train an ANN as well as a random forest using our dataset. Finally, we test our proposed approach of
symbolic regression with factor variables as well as the straight-forward approach using a one-hot encoding
for nominal variables. The results of these two approaches are discussed in detail to conclude this paper.

2.1 Nominal Variables in Symbolic Regression

Nominal variables cannot usually be used directly in GP systems. Instead, it is necessary to encode nominal
values to map them to numbers. Probably the easiest way is to use a so-called one-hot encoding, whereby
binary indicator variables are included to represent each of the possible values of nominal variables. A
drawback of the one-hot encoding is that (1) it increases the number of variables in the dataset significantly,
and (2) there is no guarantee that the indicator variables are actually included in the symbolic regression
models. Instead, GP tends to remove indicator variables for nominal variable values.

For example, if we want to find a prediction model for the friction performance of twenty different
materials, we have to add twenty additional binary variables, even if we originally only consider three
numeric variables (pressure, sliding velocity, and temperature). Subsequently, it is necessary to increase the
limit for the maximal size of models so that it is possible to include the indicator variables for materials.
However, there is no guarantee that GP actually includes all indicator variables for materials. Instead, it will
only include variables for materials which differ most from the average over all materials. For the remaining
materials the prediction model will produce the same (average) value. Interpretation of the resulting symbolic
expression will be difficult because references to material indicators will be scattered all over the model; in
one part of the expression there might be references to materials A and B while in another part of the
formula A and C are referenced (an example is given in Figure 6).

What we aim for is a model where we can directly compare all materials. It should be possible to compare
how performance is changed over all materials as an effect of changing other parameters such as the pressure
or temperature. Generally, GP should include a nominal variable if it has a strong impact on the output.
If a nominal variable is included, the model should produce an output for all possible values of the nominal
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variable. In the resulting symbolic expression, references to nominal variables can be used in the same way
as references to numeric variables. We call references to nominal variables factor variables. For example it
should be possible to find a linear model with material-specific factors as shown in Equation 1.

f(x,Material) = Material · x+Material (1)

As stated above, we know that the overall behavior of the friction system is more or less the same
regardless of the material or lubricant. For example the friction coefficient decreases when the temperature
is increased regardless of the material. However, the absolute value or the rate of the decline of the friction
coefficient certainly depends on the material. Thus, from the physical understanding of the system we know
that the system follows a general behavior, reacting similarly to changes of input parameters for all materials,
whereby the details might vary with different materials. Accordingly, we aim to find a global model structure
that can be used to describe the whole system and at the same time identify the specific numeric parameters
to fit the model parameters specifically to the observed system outputs for each material. The proposed
factor variables represent exactly these material-specific numeric parameters and distinguish themselves from
numeric model parameters the return the same value for all materials.

This approach is conceptually very similar to non-linear regression using a predefined model structure
and fitting the model independently to separate datasets containing only data for a specific material. The
important difference is that GP with factor variables is able to consider the complete dataset while trying
to find a globally valid model structure automatically.

2.2 Implementation of Factor Variables for Genetic Programming

It is relatively easy to extend any GP system that is capable to solve symbolic regression problems to
support factor variables. In the following, we assume a tree-based GP implementation which supports
numeric variables and random constants as terminal symbols. The system must be capable of evolving
or fitting numeric constants either via some form of mutation or via specialized numerical optimization
techniques [Topchy and Punch, 2001, Kommenda et al., 2013].

Representation A new type of symbol must be implemented and added to the terminal set. For a given
dataset, the set of numeric variables and the set of nominal variables must be determined. Additionally, the
set of possible values has to be determined and stored for each nominal variable.

Initialization of Random Trees The routine for creation of random trees must be extended to randomly
initialize the parameters for factor variables. When a terminal node for a factor variable is created, the routine
must first select one variable from the set of nominal variables. Next a real-valued vector must be initialized,
which maps each possible nominal to a numeric value (factor values). The reference to the nominal variable
as well as the factor values are stored as data elements of the tree node.

Mutation If there is no other mechanism for fitting the numeric parameters of the model then the routine
for mutating trees should be adapted to allow small changes to the factor values. We have found that adding
a small normally distributed random value to a single factor value or to the whole vector works well.

Evaluation Factor variables are evaluated to the value which corresponds to the observed value of the
nominal variable. An example for a tree with a factor variable as well as the value of the expression for
three input vectors is shown in Figure 1. When evaluating a factor variables for a given row we look up the
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A : 1.0
B : 2.0
C : 1.5

*

x

c
A : 1.0
B : 2.0
C : 1.0

x c f(x, c)
3.0 A 4.0
2.0 B 6.0
1.0 C 2.5

Figure 1: Example for an expression tree for a linear model with two factor variables referencing the same
nominal variable c. The table shows the values of the expression for three different input vectors.

θ = (1.0, 2.0, 1.5, 1.0, 2.0, 1.0)

x c f(x, c) δf
δθ
(x, c)

3.0 A 4.0 (1, 0, 0, 3, 0, 0)
2.0 B 6.0 (0, 0, 1, 0, 0, 2)
1.0 C 2.5 (0, 1, 0, 0, 1, 0)

Table 1: Calculation example for the partial derivatives δf
δθ
(x, c) for the linear model shown in Figure 1. θ

is the vector of the parameters values shown in the tree. Partial derivatives are necessary for optimizing θ.

value of the referenced nominal variable and for this value the matching numeric value in the tree node is
returned. For example, for the left node in the tree we would return the value 1.0 if the value of c is A and
1.5 if the value is C.

Memetic optimization of numeric parameters It is possible to rely solely on mutation to fit the
numeric parameters to the available data. An alternative is to use guided techniques for fitting numeric
constants, such as simple gradient descent or the L-BFGS algorithm [Liu and Nocedal, 1989]. When factor
variables are included in the representation, the number of numeric parameters that need to be optimized is
significantly increased. Thus, is it recommended to use a routine for optimizing constants before evaluating
trees. These methods rely on gradient information, so it is necessary to be able to evaluate the partial
derivatives of the loss function and therefore of the model itself for all numeric parameters and evaluate
them for all observations in the dataset. Luckily, it is not necessary to calculate the derivative of the
function symbolically. Instead, the partial derivatives can be evaluated together with the function output
using automatic differentiation (cf. [Rall, 1981]).

Table 1 shows the results when calculating the gradient for the parameter vector θ and vectors x and c.
The elements of the vector θ are the same as in the tree in Figure 1. The θ1 . . . θ3 stem from the left leaf of
the tree in Figure 1, θ4 . . . θ6 from the right leaf node.

Therefore, it is possible to optimize numeric parameters of symbolic regression models with factor vari-
ables using information about the gradient of the loss function which can be calculated efficiently in O(nk)
time using automatic differentiation where n is the number of data points and k is the number of parameters
to be optimized.
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f(x) = θc,1 exp (−0.08 · x)− exp (θc,2 · x)− 0.1 (2)

c θ1 θ2
A 1.0 −0.16
B 1.0 −0.32
C 1.5 −0.80
D 2.0 −1.60

Figure 2: A non-linear function with different parameterization depending on the variable c. We use this
function to show the feasibility of genetic programming with factor variables.

f̂(x) = c0 + c1 · exp (x · c2) + c3 · exp (c4 · x) · exp (c5 · x) + c6 (3)

c0 −0.25744 c3,c=A 1.0
c1 −1.0 c3,c=B 1.0

c2,c=A −0.16 c3,c=C 1.5
c2,c=B −0.32 c3,c=D 2.0
c2,c=C −0.8 c4 −0.034663
c2,c=D −1.6 c5 −0.045337

c6 0.15744

Figure 3: Symbolic regression model with factor variables found by GP for the training dataset sampled
from the synthetic problem shown in Figure 2. The identified expression can be rearranged to match the
original function (Equation 2) exactly.

We use a squared error loss function and the Levenberg-Marquardt algorithm (LM) [Levenberg, 1944]
for optimization of numeric parameters in all experiments discussed in this paper. For each model that is
evaluated by GP we first perform ten LM iterations. If the squared error can be reduced within those ten
iterations the model in the population is updated with the optimized parameters. The number of iterations
is set to such a small number because running LM to convergence for each model would incur a large runtime
cost. It has been shown that a small number of iterations combined with writing back the parameters to the
population is sufficient [Kommenda et al., 2013].

2.3 A Synthetic Example for Factor Variables

To demonstrate the applicability of factor variables we have prepared a synthetic dataset using a function
with a non-trivial shape which can be parameterized to take on different shapes shown in Equation 2. The
parameterizations for four different values of the nominal variable c are shown in the table below.

To generate a dataset for training we sampled the function on a regular grid over x for all four values of c.
The sampled points are shown in Figure 4. Using standard settings for tree-based genetic programming with
the extensions for factor variables and gradient-based optimization of constants we found a perfect model in
only a few generations. The resulting expression is shown in Equation 3. It can be seen that GP was able
to find a correct model structure and parameters. The identified expression in Figure 3 can be simplified to
a form that matches Equation 2.
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1.5
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train (c=B)

train (c=C)

train (c=d)

pred (c=A)

pred (c=B)

pred (c=C)

pred (c=D)

Figure 4: Data points used for training as well as the predictions from the symbolic regression model
(Equation 3) for the synthetic problem . For this simple problem GP with factor variables produces perfect
predictions.

Figure 4 shows the outputs of the model shown in Equation 3 as well as the data points that have been
used for training. The model interpolates perfectly between the sampled training points.

This result demonstrates the merit of factor variables. In this example this is clearly beneficial as we
know that there is a common model structure describing a family of models and only the parameterization
depends on the values of nominal variables. To stress the same point again; the procedure is equivalent to
non-linear least squares fitting with a given model structure and for four independent datasets for A,B,C,
and D. However, since we assume that the correct model structure is unknown and should be identified it
is worthwhile to combine all data.

3 Experiments

In the following we describe our experiments, in which we used GP with factor variables to produce prediction
models for the performance of friction systems.

3.1 Data Preparation

We use data published together with [Lughofer et al., 2016]1. This is a collection of data acquired over
multiple years from standardized friction tests in an industrial setting. It contains data from tests for a
diverse set of of materials, oils, and types of surface grooving.

We filtered the data and kept only data from tests using the most frequently used oil type and grooving
type. From the remaining rows we only kept data for the most commonly used materials. This filtering
of the data is necessary because the original dataset does not contain data for all possible combinations of
materials and oils even for a single grooving type. Therefore, it is not feasible to fit a model which contains

1available from https://dev.heuristiclab.com/AdditionalMaterial
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interaction effects between materials and oils. The filtered dataset contains data from tests for four different
materials identified by the nominal values A,B,C,D. In the testing procedure, a rotating disk is pressed
against a fixed disk until the rotating disk is stopped (brake test). The starting velocity of the rotating disk is
the same for all cycles in the test; the pressure is varied over the test. For each pressure level multiple cycles
(repetitions) are performed. For each cycle, the average coefficient of friction is determined by measuring
the time until the rotating disk is completely stopped.

Consequently, the data allows to build a model to predict the coefficient of friction as a function of two
numerical variables (pressure and the number of cycles performed) and one nominal variable (material).
As we will see below, the number of cycles is relevant, because the material deteriorates over the test run
because of wear, with the effect of a decreased friction performance.

The numeric variables were both scaled to the range [0..1].

3.2 Modeling

For prediction modeling we used four different techniques: artificial neural network, random forest, symbolic
regression and symbolic regression with factor variables. Only the later can handle nominal variables directly.
For the other algorithms we extended our dataset to include binary indicator variables for each of the four
materials. In the following we describe the algorithm configurations for our experiments in detail. The
results are discussed in the next section.

Artificial Neural Network First, we trained an artificial neural network using our filtered dataset for a
comparison of the accuracy of the models with previously published results. For the artificial neural network
we used the implementation available in ALGLIB2. We used six input neurons (pressure, cycles, Mat=a,
Mat=b, Mat=c, Mat=d) and only one hidden layer of ten nodes. This particular implementation allows to
set a decay parameter for regularization of network weights. We used 10-fold cross-validation to determine
the best value for the decay parameter (∈ {1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3, 4 × 10−3, 1 ×
10−2, 5× 10−2, 0.1}).

Random Forest As reported in [Lughofer et al., 2016], the random forest model performed very well;
often producing the best predictions. We therefore also trained a random forest model with the filtered
dataset using ALGLIB and the same set of features as for ANN. The number of trees was set to 200.
The parameter M was set to 0.5; therefore, for each tree half of the features were selected randomly).
The parameter R that determines how many rows are selected randomly was determined through 10-fold
cross-validation (R ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}).

Symbolic Regression For symbolic regression we used genetic programming with and without factor vari-
ables3. In both cases, we used a population size of 200 trees initialized randomly using the PTC2 algorithm
[Luke, 2000]. Number of generations was fixed to 100. For the function set we used {+,−, ∗, /, log(), exp()}.
The fitness function is the mean of squared errors for both configurations. We do not apply grouping by
factor values for the calculation of the fitness criterion. A grouping by factors is not necessary because with
factor variables the symbolic regression solutions can be evaluated on the complete dataset. In both con-
figurations the numeric parameters of all models are optimized before fitness evaluation using ten iterations
of LM. 75% of the data were used for training. The best model on the training set is evaluated on the

2http://www.alglib.net
3We used the GP implementation in HeuristicLab http://dev.heuristiclab.com
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Model average relative error
Linear regression 4.15 %
Artificial neural network 2.86 %
Random forest 3.08 %
Sym. reg. with one-hot-encoding 2.77 %
Sym. reg. with factor variables 2.84 %

Table 2: Overview of the modeling results. Linear regression is not able to capture the non-linear effect of
the pressure and therefore produces worse predictions compared to the other techniques.

remaining data. For the runs with factor variables we set the limit for the size of trees to 25 nodes because
we aim to find rather simple models. For the experiments with one-hot encoding of materials we increased
the limit to 50 nodes to allow inclusion of all indicator variables. When nominal variables can be referenced
directly we have three different variables, with the one-hot encoding the dataset is increased to six variables.
Correspondingly, we also doubled the limit for the tree size.

4 Results

Table 2 shows the prediction errors for all tested methods.
Overall, the results for all methods are similar. All models have an average prediction error which is

well below 5%. The difference between the linear model with an error of 4% and the best models (SR
and ANN) with errors around 2.7% is huge from a practical point of view. The larger prediction error
produced by the linear model is a consequence of the fact, that the linear model cannot capture the assumed
non-linear effect of the pressure parameter. This is in line with previous results [Lughofer et al., 2016,
Hosenfeldt et al., 2014] and the expected behavior of the studied friction systems. This assumed non-linearity
was the initial motivation for us to apply GP to this particular problem.

Our results for this dataset are slightly better than reported in [Lughofer et al., 2016] where prediction
errors for the coefficient of friction between 5% and 6% are reported. Our results are also significantly better
than the results reported by [Hosenfeldt et al., 2014], where the authors report an deviation of 8% and state
that the measurement error with reference to friction is around 5%.

As a consequence, we checked the plausibility of our results using partial dependence plots of the model
outputs over the input variables. Figure 5 shows the outputs of the ANN and the RF models for independent
variation of pressure and the number of cycles. The training points are also shown for reference. In the
plots in Figure 5, the step-wise interpolation of the RF model becomes apparent. These discrete jumps
in the predicted performance are highly problematic from a practical point of view because the underlying
friction system does not have such jumpy behavior. Therefore, we cannot recommend the RF model for
this application. In contrast, the ANN produces a nice smooth interpolation. This might be a reason why
ANNs are rather popular in empirical modeling of friction. The predictions produced by the ANN model
for our data are smooth and plausible. The model behaves similar over the whole space of valid values for
the pressure and the cycles. The charts do not give an indication of overfitting.

Figure 6 shows the resulting symbolic regression model when a one-hot encoding for the material is used.
It is difficult to read and interpret the model because the references to the binary indicator variables are
scattered over the whole model. The binary indicator variables have the effect that numeric parameters are
turned on or off depending on the observer material. For example, c2 is only active for material b. Notably,
GP has removed the variable Mat=a because it found a model that produces the correct predictions for

9



0 0.5 1

6 · 10−2

8 · 10−2

0.1

0.12

pressure

µ
a
v
g
.

Mat=a

0 0.5 1

pressure

Mat=b

0 0.5 1

pressure

Mat=c

0 0.5 1

pressure

Mat=d

NN
RF
Data

0 0.5 1

6 · 10−2

8 · 10−2

0.1

0.12

cycles

µ
a
v
g
.

0 0.5 1

cycles

0 0.5 1

cycles

0 0.5 1

cycles

NN
RF
Data

Figure 5: Training data and partial dependence plots for ANN and the RF models over pressure (first row)
and the number of cycles (second row). The RF model produces a step-function typical for decision tree
models. The ANN model produces a smooth interpolation. The plots show no signs of overfitting. Materials
c and d have very similar performance. The data contains a set of measurements at the beginning and the
end of the test procedure.
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µ̂avg =
c0 · cycles + c1 · p+ c2 ·M=b+ exp (c3 ·M=c) · c4

exp (c5 ·M=d+ c6 · cycles + c7 · p) · c8

+ exp (c9 ·M=d+ c10 · p) · c11 +
c12 · cycles + c13 ·M=b+ c14 · p+ c15 ·M=c + c16 ·M=d

exp (c17 ·M=b+ c18 · p) · (c19 · p+ c20 · cycles) + c21
+ c22

Figure 6: Symbolic regression model for the coefficient of friction using one-hot encoding. M=* variables
represent binary indicator variables for the four materials. Notably, the variable M=a does not occur in the
model, meaning that the model produces the predictions for material a if all material indicator variables
have the value zero. The model is difficult to read because references to materials are scattered over the
whole model. The coefficient values c1 − c22 are not shown because of limited space.

µ̂avg =
(
c0 · cycles + c1,M · exp (c2 · cycles + c3 · p)

+ c4,M · (c5 · p+ exp (c6 · p) + c7)
)
·

1

c8 · p+ c9,M + c10
+ c11

Figure 7: Symbolic regression model with factor variables for the coefficient of friction. Factor variables are
given as c

·,M . This model is more readable than the model with one-hot encoding (6) because the material-
dependent parameters are collected in three factor variables. The overall properties of the prediction function
are thus easier to identify.

material a when all other material indicators equal to zero. The output of the model is shown in Figure 8.
Figure 7 shows the symbolic regression model when using factor variables. In comparison to the model

with one-hot encoding, this model is easier to read because the material-specific parameters are collected in
three factor variables. However, the number of parameters is 22 for both models. The output of the model
with factor variables is also shown in Figure 8. In comparison, all three models ANN, symbolic regression
with one-hot encoding, and symbolic regression with factor variables are very similar. The two symbolic
regression models are almost indistinguishable.

Figure 8 shows the partial dependence plots of the trained ANN model, the symbolic regression models
with one-hot encoding (Figure 6), and the symbolic regression model with factor variables (Figure 7). The
outputs and the overall accuracy of all models are very similar (cf. Table 2). All three models clearly show
the expected non-linear correlation with the pressure parameter. However, the symbolic regression model
with factor variables is much easier to read and verify than the model using a one-hot encoding. The ANN
model has two orders of magnitude more parameters and is a black-box model.

5 Summary and Conclusions

We proposed an extension of genetic programming for symbolic regression which makes it possible to use
nominal variables directly instead of using a one-hot encoding.

The results of our experiments show that it is possible to find accurate and trustworthy models for
predicting friction system performance using genetic programming with factor variables. The symbolic
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Figure 8: Partial dependence plots of the two symbolic regression models (Figures 6 and 7) and the trained
ANN model. The two SR models are almost indistinguishable. The ANN model smooths slightly more
strongly.

regression models are more compact (number of nodes) than with one-hot-encoding, and easier to read
because references to nominal variable value are collected within factor variables. The total number of
parameters could however not be reduced and might be even increased because each factor variable contains
one parameter for each possible value of the nominal variable.

The usage of factor variables enforces that parameters for each nominal value are identified, in contrast
to the one-hot encoding where some indicator variables might be removed by GP. As an additional benefit,
the identified factor values can be compared directly to find for which nominal values the predictions are
similar or dissimilar. This could be interesting to estimate the similarity of materials using the similarity in
the parameter space for the symbolic regression model.

Both symbolic regression models as well as the ANN produce very similar predictions for our friction
dataset with average errors of around 2.8%. From a practical point of view the difference between the linear
model with an average error of 4% and the best models with average errors of 2.8% is huge.

The comparison with techniques used in previous work for empirical modeling and prediction of friction
system performance showed that the ANN model also produce very good predictions and smooth interpola-
tions. However, ANN models are black-boxes and cannot be as easily inspected or verified as the SR models.
The RF model is not satisfactory for this application because of its step-wise prediction function. Even
tough the cross-validation error of around 3% of the RF model is good, it cannot be recommended for the
predicting friction performance in the design of friction systems.

We have not yet studied how the usage of factor variables might increase the likelihood of overfitting.
Especially, for datasets with nominal variables with many different values (e.g. more than 10), overfitting
might become an issue because of the large number of parameters that are introduced. Similarly, if a dataset
contains multiple nominal variables, the data becomes increasingly sparse relative to the number of possible
combinations of nominal, leading to problems when fitting a model. In this paper, we have used datasets
with only a single nominal variable. Further research is necessary to study the sensitivity of the method to
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a growing number of nominal variables in detail.
In our experiments, we have used a gradient-based technique for the optimization of factor values. We

have not yet analyzed whether this is strictly necessary, or whether the factor values can also be evolved
directly e.g. through mutation. We strongly believe that it will be hard to find good factor values without
gradient-based optimization, but we do not have enough evidence to support this. There might be a trade-off
where a certain number of iterations is necessary to find reasonable values but too many iterations lead to
overfitting because of the large number of parameters.
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