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ABSTRACT

Local search algorithms have shown good performance for several

multi-objective combinatorial optimization problems. These ap-

proaches naturally stop at a local optimal set (LO-set) under given

definitions of neighborhood and preference relation among subsets

of solutions, such as set-based dominance relation, hypervolume or

epsilon indicator. It is an open question how LO-sets under different

set preference relations relate to each other. This paper reports an

in-depth experimental analysis on multi-objective nk-landscapes.

Our results reveal that, whatever the preference relation, the num-

ber of LO-sets typically increases with the problem non-linearity,

and decreases with the number of objectives. We observe that strict

LO-sets of bounded cardinality under set-dominance are LO-sets

under both epsilon and hypervolume, and that LO-sets under hyper-

volume are LO-sets under set-dominance, whereas LO-sets under

epsilon are not. Nonetheless, LO-sets under set-dominance are

more similar to LO-sets under epsilon than under hypervolume.

These findings have important implications for multi-objective lo-

cal search. For instance, a dominance-based approach with bounded

archive gets more easily trapped and might experience difficulty to

identify an LO-set under epsilon or hypervolume. On the contrary,

a hypervolume-based approach is expected to perform more steps

before converging to better approximations.
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1 INTRODUCTION

Local search methods operate over a search landscape defined by a

triplet (S,≼,N ), where S denotes a finite, or countably infinite, set

of solutions (the search space), ≼ is a preorder on S (the preference

relation) and N is a mapping N : S 7→ 2S (the neighborhood relation).

For any pair of solutions s, s ′ ∈ S , s ≼ s ′ denotes that solution s is

at least as preferred as solution s ′. For a given solution s ∈ S , the set

N (s) is the neighborhood of s and an element s ′ ∈ N (s) is a neighbor

of s . The most basic local search algorithm, commonly known as

hill-climbing, starts from an initial solution s ∈ S , and iteratively

improves the current solution by exploring its neighborhood and

moving to an improving neighboring solution. When no improving

neighbor is available, the algorithm is trapped in a local optimum.

Hence, based on the triplet (S,≼,N ), we can define the notions of

local optimum (LO) and strict local optimum (sLO).

Although the concepts of (strict) LO are well-studied in single-

objective optimization, their extension and properties in a multi-

objective context are much less understood. The difficulties arise

from the fact that the search space S is actually the set of all mutu-

ally nondominated sets of feasible solutions, possibly bounded in

size, thus the neighborhood can be seen as operating on sets. More-

over, the preference relation is usually defined in terms of Pareto

dominance, but it may also be any other quality indicator that in-

duces a preorder, such as the hypervolume. The implications of

these different aspects are still open to investigation and may guide

the design of new multi-objective algorithms, since even global

search methods, such as multi-objective evolutionary algorithms,

can be seen as iteratively identifying better-quality local optima,

without any guarantee of finding a global optimum. Indeed, a global

optimum is also a local optimum for any neighborhood relation.

https://doi.org/10.1145/3205455.3205572
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Paquete et al. [8] provided definitions of local optimality with

respect to solution- and set-dominance, and related them to the

convergence point of multi-objective local search. Verel et al. [9]

introduced a set-based fitness landscape and measured ruggedness

and non-linearity for fixed-size sets of solutions, using the hyper-

volume as the preference relation. That study was later extended to

the quality of LO-sets and the convergence profile of hypervolume-

based local search under different notions of set neighborhoods [2].

More recently, López-Ibáñez et al. [7] showed that the size of sets

that are LO with respect to dominance (Pareto local optimum sets

or PLO-sets) is exponentially correlated with the number of objec-

tives or with their degree of conflict, while variable interactions

have a minor effect. In addition, they showed that the estimated

number of PLO-sets is also correlated with the number of objectives

or their degree of conflict. It is also known that the number of PLO-

solutions increases linearly with the problem non-linearity [10],

but that the number of unbounded PLO-sets decreases [7]. Finally,

the use of bounded size archives [6] does not change these trends,

but increases the number of bounded PLO-sets significantly by a

factor that depends on the size of the unbounded PLO-sets. How-

ever, so far, no work has examined how various definitions of local

optimality relate to each other. In this paper, we extend previous

work on LO-sets by considering various types of local optima, in-

duced by different set preference relations (dominance, epsilon,

hypervolume), and by analyzing their properties.

The paper is organized as follows. Section 2 defines the concept

of (strict) LO-sets in a way the matches the usual definition of LO

solutions in the single-objective case, but allows the use of set pref-

erence relations based on dominance or quality metrics. In addition,

we describe an adaptive walk for sampling such LO-sets. Section 3

describes the multi-objective nk-landscapes and the experimental

setup used for our experimental study. Section 4 describes the ex-

periments carried out in this paper and the conclusions that can be

extracted from them. Finally, we summarize our main findings and

list remaining open questions in Section 5.

2 LOCAL OPTIMAL SETS

Multi-objectiveOptimization. Let us assume thatwe are given

an optimization problem characterized by a pair (X , f ), where X is

the set of feasible solutions (the decision space) and f is the objective

function f : X 7→ Rm , to be maximized. In multi-objective optimiza-

tion (m > 1), one is often interested in finding more than one opti-

mal solution. Given two solutions x ,x ′ ∈ X , we say that x weakly

dominates x ′ (x ≼dom x ′) if fi (x
′) ⩽ fi (x) for all i ∈ {1, . . . ,m}.

In terms of Pareto optimality, the goal is to find a set X⋆ ⊆ X for

which there exists no solution x ∈ X such that x ≼dom x
⋆ for all

x⋆ ∈ X⋆. The setX⋆ is the Pareto set, and its image in the objective

space is the Pareto front.

Set Preference Relations. In set-based multi-objective opti-

mization [12], the search space can be defined as the collection

of sets of feasible solutions (feasible sets): Σ ⊂ 2X . We restrict to

sets of mutually nondominated solutions and we consider that the

cardinality of the sets is bounded by µ ∈ N+, that is, we define

Σ := {A ∈ 2X : |A| ⩽ µ ∧ ∀x ,x ′ ∈ A,x , x ′ ⇒ ¬(x ≼dom x ′)}.

Notice, however, that if the Pareto set X⋆ is larger than µ, then

X⋆
< Σ.

The aforementioned dominance relation among solutions can

naturally be extended to sets. Given two sets A,B ∈ Σ, A weakly

dominates B (A ≼dom B), if for all b ∈ B there exists an a ∈ A such

that a ≼dom b. The quality of a set A ∈ Σ can also be measured as a

single scalar value through a unary quality indicator I : Σ 7→ R. We

consider the (additive) epsilon indicator (Ieps), to be minimized, and

the hypervolume indicator (Ihv), to be maximized [11]. Interestingly,

Ieps(resp. Ihv) is order-preserving (resp. strictly order-preserving)

with respect to the weak-dominance set preference relation [11]:

A ≼dom B ⇒ Ieps(A) ⩽ Ieps(B) , (1)

(A ≼dom B) ∧ ¬(B ≼dom A) ⇒ Ihv(σ ) < Ihv(σ
′) . (2)

We also define the corresponding set preference relations:

A ≼eps B ⇐⇒ Ieps(A) ⩽ Ieps(B) , (3)

A ≼hv B ⇐⇒ Ihv(A) ⩾ Ihv(B) . (4)

Local Optimality. Let A,B ∈ Σ. We define the strict partial

order ≺ of a given partial order ≼ as:

A ≺ B ⇐⇒ ¬(B ≼ A) ∧ (A ≼ B) . (5)

Sets A and B are incomparable if neither (A ≺ B) nor (B ≺ A) holds.

Given a collection of sets Σ, a preorder (preference relation) be-

tween sets≼, and a neighborhood relation between sets N : Σ 7→ 2Σ,

the definition of local optima can be adapted as follows.

Definition 2.1 (Local optimal set, LO-set (Σ,≼, N)). A set A ∈ Σ is

a local optimal set iff ∀B ∈ N(A) \A, ¬(B ≼ A).

Definition 2.2 (Strict LO-set, sLO-set (Σ,≼, N)). A set A ∈ Σ is a

strict local optimal set iff ∀B ∈ N(A) \A, A ≺ B.

Under the definitions above, a Pareto local optimum set [7, 8] is

an LO-set where ≼ is the set-dominance relation ≼dom. It would be

a strict LO-set under the same definitions if there is no B ∈ N(A)

such that A and B are incomparable. As another example, a multi-

objective local search based on hypervolume (≼hv) stops on an

LO-set A ∈ Σ if there exists no neighboring set B ∈ N(A) that

has a larger hypervolume value. It stops on a strict LO-set if all

neighboring sets have a (strictly) smaller hypervolume value than

the current set. Therefore, the proposed definitions allow us to

compare various types of LO-sets under a common terminology.

A Walk to Sample Local Optimal Sets. Following the def-

initions of strict and non-strict LO-sets, we define a set-based

adaptive walk (Alg. 1), where the first improving neighboring set

encountered during neighborhood exploration is accepted. This

set-based local search is analogous to a classical single-objective

first-improvement local search (or hill-climber). In Alg. 1, µ initial

solutions are randomly generated and added to a nondominated

archive A, which represents the current solution-set. Then, a main

loop explores each neighboring solution x ′ of each element in A

in a random order without replacement. If this neighbor x ′ is non-

dominated with respect to any solution in A and the cardinality

of A is smaller than µ, then A can be trivially improved by adding

solution x ′. Otherwise, the algorithm explores all sets that are con-

structed by replacing one solution from A with x ′. If the resulting

set improves overA, it is accepted. In the case of a neutral walk, the

solution is also accepted if the resulting set is incomparable with A.

Otherwise, the procedure explores the next neighboring set. The



Dominance, Epsilon, and Hypervolume Local Optimal Bounded Sets GECCO ’18, July 15–19, 2018, Kyoto, Japan

Algorithm 1: Adaptive Walk

Input :Set cardinality bound µ, neutral ∈ {true, false},

partial order ≼∈ {≼dom,≼eps,≼hv}

Output :Nondominated set A

1 A← ∅

2 for i ← 1 to µ do

3 x ← RandomSolution()

4 A← FilterDominated(A ∪ {x})

5 repeat // main loop

6 for each x ′ ∈ {N (x) \A | x ∈ A} do // random order

7 A′ ← FilterDominated(A ∪ {x ′})

8 if |A′ | ⩽ µ then

9 A← A′

10 goto line 19

11 for each x ′′ ∈ A do // random order

12 A′ ← {A ∪ x ′} \ {x ′′}

13 if (A′ ≺ A) then // A′ better than A

14 A← A′

15 goto line 19

16 else if neutral ∧A′ ≼ A then

17 A← A′ // A′ at least as good as A

18 goto line 19

19 until A is a (s)LO-set or no budget left or cutoff reached

main loop stops once all neighbors have been explored, returning

a (possibly strict) LO-set, when a budget of solution evaluations

has been consumed, or when there is a number of steps without

any strict improvement. A step is here defined as a change in the

current set, i.e., an iteration of the main loop (lines 5ś19).

The proposed adaptive walk shares similarities with existing

multi-objective local searchmethods. Compared against PLS [8] and

SEMO [5], we consider mutually nondominated sets of bounded car-

dinality. The neighbors of a set are the same as those in SEMO [5];

i.e., given A ∈ Σ, then B ∈ N(A) ⇐⇒ |B \ A| ⩽ 1 ∧ ∀b ∈

B \ A,∃a ∈ A such that b ∈ N (a) [2]. The main difference is that

we explore neighboring sets without replacement, which allow us

to detect when the walk falls into a (possibly strict) LO-set. As in

single-objective local search, the proposed non-neutral adaptive

walk always falls into an LO-set, whereas a neutral walk may either

eventually fall into a strict LO-set, or terminate without reaching

any type of LO-set. By using this adaptive walk, we can experi-

mentally estimate the number, quality, and dissimilarity of various

types of LO-sets, as shown below.

3 EXPERIMENTAL SETUP

Multi-objective nk-Landscapes. We consider nk-landscapes

as a problem-independent model of multi-objective multimodal

landscapes [1, 10]. Candidate solutions are binary strings of size n

and the objective function vector f = (f1, . . . , fi , . . . , fm ) is defined

as f : {0, 1}n 7→ [0, 1]m such that each objective fi is to be max-

imized. As in well-established single-objective nk-landscapes [3],

each separate objective function value fi (x) of a solution x =

(x1, . . . ,x j , . . . ,xn ) is an average value of the individual contri-

butions associated with each variable x j . Given objective fi , i ∈

{1, . . . ,m}, and variable x j , j ∈ {1, . . . ,n}, a component function

fi j : {0, 1}
k+1 7→ [0, 1] assigns a real-valued contribution for ev-

ery combination of x j and its k epistatic interactions {x j1 , . . . ,x jk }.

These fi j -values are uniformly distributed in [0, 1]. Thus, the in-

dividual contribution of a variable x j depends on its value and on

the values of k < n other variables {x j1 , . . . ,x jk }. In this work,

the epistatic interactions, i.e., the k variables that influence the

contribution of x j , are set uniformly at random among the (n − 1)

variables other than x j [3]. By increasing the number of epistatic

interactions k from 0 to (n − 1), landscapes can be gradually tuned

from smooth to rugged. We use the same epistatic degree and in-

teractions for all the objectives. By construction, it is very unlikely

that different solutions map to the same point in the objective space.

Parameter Settings. We generate 15 multi-objective nk-land-

scapes with the following settings. The problem size is set to n = 16,

number of objectives m ∈ {2, 3, 5}, and problem non-linearity

k ∈ {0, 1, 2, 4, 8}, that is, from linear to highly rugged landscapes.

We generate one instance independently at random for each combi-

nation of instance settings. We run the adaptive walk (Alg. 1) with

respect to the set preference relations {≼dom,≼hv,≼eps} and with

various set cardinality bounds µ ∈ {2, 4, 8, 16, 32}. The reference set

for computing Ieps is the (exact) Pareto front. The reference point

for computing Ihv is set to (0, . . . , 0). We experiment with both neu-

tral and non-neutral walks. In order to ensure a reasonable runtime

for neutral walks, we set a maximum budget of 107 evaluations

and a cutoff of 30 consecutive iterations of the main loop without

improvement. The neighborhood relation among solutions (N ) is

defined by the 1-bit-flip operator; i.e., two solutions are neighbors

if the Hamming distance between them is one. We replicate each

experiment 30 times with different random seeds.

4 EXPERIMENTAL ANALYSIS

4.1 Number of Local Optimal Sets

As a first question, we investigate the number of LO-sets of each

type, that is, for each set preference relation (≼dom, ≼hv, and ≼eps)

and either strict or non-strict definition (LO/sLO). Given previous

results regarding Pareto local optimum sets [7], we expect the

number of LO-sets to be affected by the number of objectives (m),

the epistasis (k) and the cardinality bound (µ). However, we do not

know how each type of LO-set is affected by these characteristics.

Moreover, although we conjecture that some LO-sets of one type

are also LO-sets of other types, their relative ratios are unknown.

To answer these questions, after running the adaptive walk as

described in the previous section, we simply count how many of

the sets returned at the end of the runs satisfy the definition of each

type of LO-set. Results are shown in Fig. 1 for selected settings.

Results on other instances confirm the trends observed here.

The first observation is that non-neutral walks using a particular

set preference relation always find a non-strict LO-set according

to the same relation, in every run. That is, a walk based on ≼dom

(resp.≼eps,≼hv) always falls into an LO≼dom
(resp. LO≼eps

, LO≼hv
).

Moreover, the LO-set where a given walk falls into might be the

same at different executions, as observed, for instancem = 2, k = 0

with µ = 32. This suggests that there is a single LO-set in this case,

which is not a surprise because the corresponding nk-landscape is

linear (k = 0) and its Pareto set cardinality is lower than µ = 32.
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Figure 1: Number of each type of LO-set found by each type of LS walk (by column) for different instances (by row), depending

on the set cardinality bound (µ). Results for neutral walk (hv) is not reported because they are the same as for walk (hv).

We did not notice any difference between neutral or non-neutral

walks with ≼hv, which suggests that neighboring LO-sets with

the same hypervolume value are rare, thus there is no neutrality

in the corresponding landscapes. Although we do not expect that

real-world problems have many sets with the same hypervolume

value, we cannot generalize this finding to any landscape since it

is easy to think of artificial examples where two neighboring sets

have equal hypervolume values. By contrast, we observe a large

neutrality for ≼dom and ≼eps, as shown by the large differences

between neutral and non-neutral walks in such cases. In fact, the

neutral walk using ≼dom is only able to find a sLO≼dom
when µ is

large, and when there are few objectives, e.g., form = 2 and k = 8.

We attribute this to a large non-linearity in the objective values in

such cases, with many incomparable neighboring sets, which seem

to increase the number of strict LO-sets. By contrast, the neutral-

walk using ≼eps is only able to find a sLO≼eps
when µ is small

and/or when non-linearity is small (k = 0), whereas the neutral-

walk using≼hv is always able to find a sLO≼hv
, as already reported

above. The probable reason is that there are more neighboring sets

with the same epsilon value and/or that the hypervolume gradient

is easier to optimize that of epsilon. Interestingly, when there are

many objectives, and when µ is especially small relative to the

size of the exact Pareto set, it appears to be difficult to obtain a

LO≼hv
with any method besides a walk based on ≼hv.

To summarize, by comparing LO-sets under ≼dom and ≼hv, we

conjecture that: sLO≼dom
⇒ sLO≼hv

⇒ LO≼hv
⇒ LO≼dom

. Al-

though we do not obtain any clear trend by comparing LO-sets

under ≼dom and ≼hv with LO-sets under ≼eps, we conjecture that

sLO≼dom
⇒ LO≼eps

. We also suspect that there are slightly more

LO≼eps
than LO≼hv

, given that the walk based on≼dom consistently

finds more of those, but the difference seems to be rather small.

Finally, a general observation worthmentioning is that, whatever

the set preference relation, the adaptive walk gets more easily

trapped into an LO-set as the problem non-linearity k increases,

and as the number of objectivesm decreases.

4.2 Length of Adaptive Walks

As in single-objective optimization, the length of the adaptive walk

provides an estimation of the number of LO-sets. The number of

steps performed by the algorithm defines the length of the adaptive

walk. This length is an estimator of the diameter of local optima’s

basins of attraction. Roughly speaking and assuming isotropy in

the search space, the longer the walk, the larger the basins size,

and the lower the number of local optima [3]. Fig. 2 reports the
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Figure 2: Number of steps performed by each walk (colors) for different instances (non-linearity k and number of objectives

m, by column), depending on the set cardinality bound.

number of steps performed by each type of adaptive walk. In our

experiments, the solution space has the same size for all instances;

i.e. |X | = 2
n
= 2

16, whatever k and m. However, the number of

candidate sets depends on the set cardinality bound µ and on the

dominance relations between solutions. For a given µ, the num-

ber of candidate sets is bounded by
∑µ
i=1

( |2X |
i

)

=

∑µ
i=1

(

2
(216)−1
i

)

.

Therefore, for a given instance, a larger value of µ induces an expo-

nentially larger number of candidate sets. Of course, depending on

the dominance relations between solutions, many candidate sets

might be equivalent once dominated solutions are discarded.

We observe that the length of adaptive walks typically increases

with µ. Therefore, a local search is more easily stuck when µ is small.

This means that the absolute number of LO-sets decreases with µ.

When relating that to the number of candidate sets, we argue that

the proportional number of LO-sets is larger when µ is small, what-

ever the set preference relation. As expected, the length of adaptive

walks decreases with the problem non-linearity k . As for single-

objective nk-landscapes, the larger k , the larger the number of local

optima [3]. When considering the number of objectivesm, we ob-

serve that adaptive walks runs longer as m increases, especially

when µ is relatively large. A local search has a larger probability

of getting stuck for two-objective landscapes than for three- and

five-objective landscapes. This suggests that the number of LO-sets

decreases with the objective space dimension.

When comparing neutral and non-neutral walks for a given set

preference relation, we observe that neutral walks typically run

longer. There are two potential explanations for this result: (i) a

neutral walk may fail to identify a strict LO-set simply because

it does not exist, explaining why the number of steps reaches the

overall budget limit for some settings; and (ii) every strict LO-set

under a given set preference relation is also an LO-set under the

same relation, thus the number of sLO-sets is smaller or equal

than the number of LO-sets. This is the case for ≼dom and ≼eps.

Interestingly, the gap between the number of strict and non-strict

LO-sets seems to decrease with µ for ≼dom, whereas it increases

for ≼eps. In fact, for large sets, almost all LO≼dom
are sLO≼dom

, as

also noticed in Fig. 1. We attribute this to the fact that it is more

unlikely to come across a neighboring solution that is not dominated

by the set when this set is larger. As already mentioned above, in the

case of≼hv, there is no distinction between neutral and non-neutral

walks for the considered instances, an LO≼hv
is always a sLO≼hv

.

Let us now compare non-neutral walks and non-strict LO-sets

for different set preference relations. Form = 2 and µ ∈ {16, 32},

the length of the adaptive walk is roughly the same for all relations.

They are the sole settingswhere the cardinality of LO-sets is actually

smaller than the bound µ (not reported here due to space restriction),

which is explained by the fact that µ is larger than the Pareto set in

those cases. This suggests that there is no distinction between LO-

sets under the different set preference relations when µ has the same

order of magnitude than the Pareto set, as also observed in Fig. 1.

By contrast, for other instances, the length of the adaptive walk

for ≼dom is typically smaller than for ≼eps, which is itself typically

smaller than for ≼hv. This gives us more evidence that, when µ

is smaller than the Pareto set, we have more LO≼dom
than LO≼eps

,

and more LO≼eps
than LO≼hv

. A multi-objective local search with

bounded archive is then expected to get more easily trapped when

comparing sets in terms of dominance rather than in terms of

epsilon or hypervolume. On the contrary, a hypervolume-based

local search is expected to perform more steps before being stuck.

4.3 Quality of Local Optimal Sets

In Fig. 3, we report the quality of the final set obtained by each walk

on a selected subset of instances. The quality of the resulting sets is

evaluated both in terms of the additive epsilon indicator (Ieps) and

of the relative hypervolume deviation (Ihvr). The relative hypervol-

ume deviation is computed as Ihvr(A) := (Ihv(R) − Ihv(A))/Ihv(R),

where R is the Pareto set. Although a walk based on ≼hv (resp.

≼eps) always outputs the best hypervolume (resp. epsilon) value,

the indicator value of the final set is not necessarily the best one

observed during the search process for walks that are based on a

different set preference relation. In the next section, we will analyze

the best indicator value obtained at different time steps.

Unsurprisingly, the quality of LO-sets always improves with

higher set cardinality bound µ, for both hypervolume and epsilon.

In fact, as suspected above, for all variants, the set found by each
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Figure 3: Final relative hypervolume deviation and epsilon value obtained by each walk (colors) for different instances (non-

linearity k and number of objectivesm, by column), depending on the set cardinality bound.

walk always maps to the Pareto set for the linear two-objective

instance (k = 0,m = 2), as long as the cardinality bound is larger

than the number of Pareto optimal solutions (µ = 32). This means

that, whatever the set preference relation, there is only one LO-set

for this setting: the Pareto optimal set.

For all instances, the walk based on ≼hv consistently converges

to better LO-sets in terms of hypervolume. When analyzing LO-sets

in terms of epsilon values, it is more difficult to distinguish between

the walk based on ≼hv and the (non-neutral) walk based on ≼eps.

However, a neutral walk based on≼eps often leads to better epsilon

values for the most difficult instances (with largem and k), although

inmuchmore steps as depicted in Fig. 2. This once again emphasizes

the high neutral degree induced by≼eps. As such, we argue that an

epsilon-based local search will not necessarily converge to better

epsilon values than a hypervolume-based local search, unless it

explicitly handles equivalent sets in terms of epsilon. At last, the

walks based on ≼dom seem to converge to lower-quality LO-sets,

in terms of both indicators, as the number of objectives increases.

This confirms that dominance is probably not the best option to

distinguish between candidate sets in many-objective local search.

4.4 Convergence Profile of Adaptive Walks

In order to better appreciate the anytime behavior of the walks

under different settings, we report in Fig. 4 the convergence of the

best-found indicator value for different budgets, measured in terms

of a number of evaluations. This is different from Fig. 3, where only

the quality of the final set was analyzed. It is worth noticing that

we do not consider any restart mechanisms in our algorithm, and

once an algorithm stops at a given iteration, it is assumed that the

quality remains the same for subsequent ones.

First, we observe that a (non-neutral) walk under ≼dom is only

efficient when µ = 32 andm = 2, that is, when µ is larger than the

Pareto set. Otherwise, the performance of such awalk is always very

low, both in terms of epsilon and hypervolume. A walk based on

≼eps follows the same trend according to hypervolume, although

it is always slightly better. By contrast, it performs much better

in terms of epsilon, although it is mostly outperformed by the

walk under ≼hv, except when µ is particularly small. The latter

is actually never outperformed in terms of hypervolume, except

for a few settings with a small µ and smallm. It is also often the

second-best approach in terms of epsilon, even consistently better

than the former when µ ⩾ 8.

Regarding neutral walks, the one based on≼dom performs nicely

for small µ values, but not so good form = 5, which once again

might explain the low performance of dominance-based search in

many-objective optimization. Showing the opposite behavior, the

neutral walk based on ≼eps is often the best-performing approach

in terms of epsilon, and second-best approach in terms of hypervol-

ume, except for large µ and smallm. It performs particularly well

form = 5, whatever the set cardinality bound.
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Figure 4: Convergence profile of hypervolume and epsilon for each walk (colors), for different instances (non-linearity k and

number of objectivesm, by column) and different set cardinality bound (µ, by row), depending on the number of evaluations.

4.5 Distance between Local Optimal Sets

As a last question, we go deeper into the comparison of LO-sets

under different set preference relations by investigating their dis-

similarity in the space of sets. In particular, we want to know how

much different is a LO≼eps
or a LO≼hv

from a LO≼dom
. We do not

consider strict LO-sets in this section, since they do not necessarily

exist for all settings, and since the success rate for the corresponding

neutral walks is typically lower than 1.

Let us define the distance between a LO≼dom
and a LO≼eps

as

the length (number of steps) required by a walk based on ≼eps to

reach a LO≼eps
, while starting from a LO≼dom

as an initial set. To

do so, (i) we simply start by running a walk under ≼dom until it

falls into a LO≼dom
, and then (ii) we run a walk under≼eps starting

from the obtained LO≼dom
. Only the steps performed in the second

phase are taken into account to measure the distance. The distance

between a LO≼dom
and a LO≼hv

follows the same reasoning, but

using a walk under ≼hv. This notion of distance gives how many

1-bit-flips, performed on any solution from the initial set, separates

a set A from a set B. Thus, if dist(A,B) = d , then A may differ from

B in d solutions, all connected at Hamming distance 1, or they may

differ in a single solution with Hamming distance d .

The obtained distances are reported in Fig. 5. When compared

against the walks that start from a random set, as reported in Fig. 2,

the number of steps performed from a LO≼dom
is lower by an order

of magnitude. This means that a LO≼dom
is much closer to a LO≼eps

or a LO≼hv
than a random set is with any of the three. The distance

between a LO≼dom
and a LO≼eps

is often larger for medium µ values

(µ ∈ {4, 8}) than for small and large values (µ ∈ {2, 16, 32}).

When considering the hypervolume, the distances from a LO≼dom

to a LO≼hv
are always larger than to a LO≼eps

. Whenm = 2, these

distances roughly follow the same trend as for LO≼eps
, however,
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Figure 5: Number of steps performed by the walk to go from a LO≼dom
to a LO≼eps

and LO≼hv
for different instances (non-

linearity k and number of objectivesm, by column), depending on the set cardinality bound.

whenm ⩾ 3, they seem to increase with µ, with the exception of

µ = 32 andm = 3 where the distance is close to 1. Form = 5, the

gap relative to the distances corresponding to LO≼eps
increases by

several orders of magnitude.

5 CONCLUSIONS

In this paper, we empirically studied the properties of various types

of LO-sets. Our results confirm previous findings and observations

in multi-objective optimization, such as the fact that algorithms

relying solely on dominance tend to perform worse for more than

three objectives. We also observed that the number of LO-sets of

any type increases with increasing ruggedness of the landscape, and

with decreasing number of objectives and decreasing cardinality

bound. Similar results were previously known for (bounded size)

PLO-sets [7] and here we show that they are true for other types

of LO-sets. In addition, we advance several hypotheses based on

our experimental results. In particular, we conjecture that:

sLO≼dom
sLO≼hv

LO≼hv
LO≼dom

LO≼eps

which means that there are more LO≼dom
than LO≼hv

, but more

sLO≼hv
than sLO≼dom

(except for the trivial case when the cardinal-

ity bound is larger than the actual size of the Pareto set, in such case

there is no distinction between the various LO-sets). In addition

to the implications above, we also observed that there are many

more LO≼dom
than LO≼eps

, and slightly more LO≼eps
than LO≼hv

,

the latter being perhaps the most surprising conclusion.

We conjecture that our findings regarding LO≼eps
(resp. LO≼hv

)

generalize to other LO-sets under any order-preserving (resp. strictly

order-preserving) indicators. Our analysis should also guide the

design of newmulti-objective optimizers. For instance, we conclude

that an epsilon-based local search does not necessarily converge to

better epsilon values than a hypervolume-based local search, unless

it explicitly handles sets that are equivalent in terms of epsilon.

Our conclusions provide at least two directions for further work.

One direction should attempt to formally prove some of our con-

jectures, thus increasing our theoretical understanding of multi-

objective landscapes. A second direction should try to extend our

experimental analysis to additional problems, different neighbor-

hoods and other order-preserving indicators, to corroborate that

our conjectures indeed generalize as expected. Of particular interest

is the extension of our work to LO-sets for continuous problems [4].

Furthermore, there are other factors that were not considered here,

such as the size of the search space and the correlation between

objectives.
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