
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 23, 2024

Medium step sizes are harmful for the compact genetic algorithm

Lengler, Johannes; Sudholt, Dirk; Witt, Carsten

Published in:
2018 Proceedings of the Genetic and Evolutionary Computation Conference

Link to article, DOI:
10.1145/3205455.3205576

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lengler, J., Sudholt, D., & Witt, C. (2018). Medium step sizes are harmful for the compact genetic algorithm. In
2018 Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1499-1506). Association for
Computing Machinery. https://doi.org/10.1145/3205455.3205576

https://doi.org/10.1145/3205455.3205576
https://orbit.dtu.dk/en/publications/20b2fefa-4edd-442e-b755-0413c1fbb6e7
https://doi.org/10.1145/3205455.3205576


Medium Step Sizes are Harmful for the
Compact Genetic Algorithm

Johannes Lengler
Department of Computer Science

ETH Zürich
Zürich, Switzerland

Dirk Sudholt
Department of Computer Science

University of Sheffield
Sheffield, United Kingdom

Carsten Witt
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

ABSTRACT
We study the intricate dynamics of the Compact Genetic Algorithm
(cGA) on OneMax, and how its performance depends on the step
size 1/K , that determines how quickly decisions about promising bit
values are fixed in the probabilistic model. It is known that cGA and
UMDA, a related algorithm, run in expected time O(n logn) when
the step size is just small enough (K = Θ(

√
n logn)) to avoid wrong

decisions being fixed. UMDA also shows the same performance in a
very different regime (equivalent to K = Θ(logn) in the cGA) with
much larger steps sizes, but for very different reasons: many wrong
decisions are fixed initially, but then reverted efficiently.

We show that step sizes in between these two optimal regimes
are harmful as they yield larger runtimes: we prove a lower bound
of Ω(K1/3n+n logn) for the cGA onOneMax forK = O(

√
n/log2 n).

For K = Ω(log3 n) the runtime increases with growing K before
dropping again to O(K

√
n + n logn) for K = Ω(

√
n logn). This

suggests that the expected runtime for cGA is a bimodal function
inK with two very different optimal regions andworse performance
in between.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics;

KEYWORDS
Estimation-of-distribution algorithms, compact genetic algorithm,
evolutionary algorithms, running time analysis, theory.
ACM Reference Format:
Johannes Lengler, Dirk Sudholt, and Carsten Witt. 2018. Medium Step Sizes
are Harmful for the Compact Genetic Algorithm. In GECCO ’18: Genetic and

Evolutionary Computation Conference, July 15–19, 2018, Kyoto, Japan. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3205455.3205576

1 INTRODUCTION
Estimation-of-distribution algorithms (EDAs) are general meta-
heuristics for optimisation that represent a more recent alternative
to classical approaches like evolutionary algorithms (EAs). EDAs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205576

typically do not directly evolve populations of search points but
build probabilistic models of promising solutions by repeatedly sam-
pling and selecting points from the underlying search space. Hence,
information about the search can be stored in a relatively compact
way, which can make EDAs space-efficient and time-efficient.

Recently, there has been significant progress in the theoretical
understanding of EDAs, which supports their use as an alternative
to evolutionary algorithms. It has been shown that EDAs are ro-
bust to noise [5] and that they have at least comparable runtime
behaviour to EAs. Different EDAs like cGA [13], ACO [11, 13], and
UMDA [8, 9, 14] have been investigated from this perspective.

In this paper, we pick up recent research about the runtime be-
haviour of the Compact Genetic Algorithm (cGA) [6]. The behaviour
on the theoretical benchmark function OneMax is of particular
interest since this function illustrates important properties and
serves as a basis for the analysis on more complicated functions.
Droste [2] was the first to prove that cGA is efficient onOneMax by
providing a bound of O(n1+ϵ ) on the runtime. Recently, this bound
was refined to O(n logn) by Sudholt and Witt [13]. However, this
bound only applies to a very specific setting of the step size 1/K ,
which is an algorithm-specific parameter of the cGA. Parameters
equivalent to step sizes exist in other EDAs, including the UMDA
mentioned above.

The choice of the step size is crucial for EDAs. It governs the
speed at which the probabilistic model is adjusted towards the
structure of recently sampled good solutions. If the step size is
too large, the adjustment is too greedy, it is too likely to adapt
to incorrect parts of sampled solutions and the system behaves
chaotically. If it is too small, adaptation takes very long. However,
the dependency of the runtime of cGA and UMDA on the step size is
even more subtle1. For both cGA and UMDA, small step sizes lead to
optimal performance where with high probability all decisions are
made correctly, but still as fast as possible. For UMDA it was shown
that there is another, much bigger step size that allows incorrect
decisions to be reflected in the probabilistic model for a while, but
this is compensated by faster updates.

More concretely, the results from [13] show that for K ≥

c
√
n logn, where c is an appropriate constant, cGA and UMDA

(with K being replaced by the corresponding parameter λ) optimise
OneMax efficiently since for all bits the probabilities of sampling
a one increase smoothly towards their optimal value because of
the small step size 1/K . The same holds for UMDA, leading to run-
time bounds O(K

√
n) and O(λ

√
n), respectively. At K = c

√
n logn

1Unfortunately, our understanding of these algorithms is somewhat fragmented, since
some results are proven only for cGA and some are proven only for UMDA. However,
despite their different appearances, cGA and UMDA have been shown to be closely
related, and where results for both algorithms exist, they coincide. Thus we take results
for the UMDA as strong indication for analogous behaviour of the cGA, and vice versa.

1499

https://doi.org/10.1145/3205455.3205576
https://doi.org/10.1145/3205455.3205576


GECCO ’18, July 15–19, 2018, Kyoto, Japan Johannes Lengler, Dirk Sudholt, and Carsten Witt

(resp. λ = c
√
n logn) both algorithms optimiseOneMax in expected

time O(n logn). For smaller step sizes (larger K ), at least for cGA it
is known that the runtime increases as Ω(K

√
n) [13].

On the other hand, it has been independently shown in [9] and
[14] that the UMDA achieves the same runtime O(n logn) for λ =
c ′ logn for a suitable constant c ′. The bound at these very large step
sizes emphasises that the search dynamics seem to proceed very
differently from the dynamics at small step sizes. Namely, for many
bits the model first learns incorrectly that the optimal value is 0 and
then efficiently corrects this decision. The results in [9] and [14]
show a general runtime bound ofO(λn) for all λ ≥ c ′ logn and λ =
o(
√
n logn). We call this regime the medium step size regime, and it

is separated from other regimes by two phase transitions: one for
small step sizes,K > c

√
n logn as discussed above, and one for even

larger step sizes, corresponding to K = o(logn), where the system
behaves so chaotically that correct decisions are regularly forgotten
and the expected runtime on OneMax becomes exponential2.

We also know that the runtime of cGA is Ω(n logn) for allK [13].
However, it remained an open question whether the runtime
is Θ(n logn) throughout the whole medium step size regime, or
whether the runtime increases with K as suggested by the upper
bound O(λn) for UMDA.

Here we show that the runtime of cGA does indeed increase.
Our main result is as follows.

Theorem 1.1. If K = O(n1/2/(log(n) log logn)) then the optimi-

sation time of cGA on OneMax is Ω(K1/3n+n logn) with probability
1 − o(1) and in expectation.

This result suggests that the runtime and the underlying search
dynamics depend in an astonishingly complex way on the step size:
as long as the step size is in the large regime (K = o(logn)), the run-
time is exponential [11]. Assuming that the upper bound for UMDA
also holds for cGA, it then decreases toO(n logn) at the point where
the medium regime is entered. Then the runtime grows with K in
the medium regime, where it grows up to Ω(n7/6/logn). Before
entering the small step size regime (K = c

√
n logn) the runtime

drops again toO(n logn) [13]. For even smaller step sizes (larger K )
the runtime increases again [13]. Preliminary experiments confirm
that the runtime indeed shows this complex bimodal behaviour.

The proof of our main theorem is technically demanding but in-
sightful: we obtain insights into the probabilistic process governing
cGA through careful drift analysis. In very rough terms, we analyse
the drift of a potential function that measures the distance of the
current sampling distribution to the optimal distribution. However,
the drift depends on the sampling variance, which is a random
variable as well. This leads to a complex feedback system between
sampling variance and drift of potential function that tends to self-
balance. We are confident that the approach and the tools used here
yield insights that will prove useful for analysing other stochastic
processes where the drift is changing over time.

This paper is structured as follows. Section 2 defines the cGA
and presents fundamental properties of its search dynamics. Sec-
tion 3 elaborates on the intriguing search dynamics of cGA in the
medium parameter range, including a proof of the fact that many

2This second phase transition has been made explicit in [11] with respect to an ACO
algorithm that in fact represents a simple EDA, similar to cGA.

probabilities in the model initially are learnt incorrectly. Section 4
is the heart of our analysis and presents the so-called Stabilisation
Lemma, proving that the sampling variance and, thereby, the drift
of the potential approach a steady state during the optimisation. It
starts with a general road map for the proof. Finally, Section 5 puts
the whole machinery together to prove the main result.

Due to space limitations, many proofs are reduced to proof
sketches. In particular, standard arguments like drift analysis and
Chernoff bounds are only sketched for the sake of brevity. For back-
ground on techniques from the analysis of randomised algorithms
used in this work (martingales, gambler’s ruin, coupling, principle
of deferred decisions) we refer to [10].

2 THE COMPACT GENETIC ALGORITHM
AND ITS SEARCH DYNAMICS

The cGA, defined in Algorithm 1, uses marginal probabilities pi,t
that correspond to the probability of setting bit i to 1 in iteration t .
In each iteration two solutions x and y are being created inde-
pendently using the sampling distribution p1,t , . . . ,pn,t . Then the
fitter offspring amongst x and y is determined, and the marginal
probabilities are adjusted by a step size of ±1/K in the direction
of the better offspring for bits where both offspring differ. Here K
determines the strength of the update of the probabilistic model.

The marginal probabilities are always restricted to the interval
[1/n, 1 − 1/n] to avoid fixation at 0 or 1. This ensures that there is al-
ways a positive probability of reaching a global optimum. Through-
out the paper, we refer to 1/n and 1 − 1/n as (lower and upper)
borders. We call bits off-border if their marginal probabilities are
outside of {1/n, 1 − 1/n}.

Algorithm 1: Compact Genetic Algorithm (cGA)
t ← 0 and p1,t ← p2,t ← · · · ← pn,t ← 1/2
while termination criterion not met do

for i ∈ {1, . . . ,n} do
xi ← 1 with prob. pi,t , xi ← 0 with prob. 1 − pi,t

for i ∈ {1, . . . ,n} do
yi ← 1 with prob. pi,t , yi ← 0 with prob. 1 − pi,t

if f (x) < f (y) then swap x and y;
for i ∈ {1, . . . ,n} do

if xi > yi then p′i,t+1 ← pi,t + 1/K ;
if xi < yi then p′i,t+1 ← pi,t − 1/K ;
if xi = yi then p′i,t+1 ← pi,t ;
pi,t+1 ← min{max{1/n,p′i,t+1}, 1 − 1/n}

t ← t + 1

Overall, we are interested in the cGA’s number of function evalu-
ations until the optimum is sampled; this number is typically called
runtime or optimisation time. Note that the runtime is twice the
number of iterations until the optimum is sampled.

The behaviour of the cGA is governed byVt B
∑n
i=1 pi,t (1−pi,t ),

the sampling variance at time t . We know from previous work
[11, 13] that Vt plays a crucial role in the drift of the marginal
probabilities. The following lemma makes this precise by stating
transition probabilities and showing that the expected drift towards
higher pi,t values is proportional to 1/

√
Vt .

1500



Medium Step Sizes are Harmful for the Compact Genetic Algorithm GECCO ’18, July 15–19, 2018, Kyoto, Japan

Lemma 2.1. Consider the cGA on OneMax such that 1/K divides

1/2 − 1/n. Then pi,t+1 = min{max{1/n,p′i,t+1}, 1 − 1/n} where

p′i,t+1=


pi,t , w. prob. 1 − 2pi,t (1 − pi,1)
pi,t +

1
K , w. prob.

(
1
2 + Θ

(
1/
√
Vt

) )
2pi,t (1 − pi,1)

pi,t −
1
K , w. prob.

(
1
2 − Θ

(
1/
√
Vt

) )
2pi,t (1 − pi,1)

(1)

This implies

E[pi,t+1 − pi,t | pi,t ] = Θ(1) ·
pi,t (1 − pi,t )

K
√
Vt

where the lower bound requires pi,t < 1 − 1/n and the upper bound

requires pi,t > 1/n.

If 1/K divides 1/2 − 1/n then the state space is always restricted
to pi,t ∈ {1/n, 1/n + 1/K , . . . , 1/2, . . . , 1 − 1/n − 1/K , 1 − 1/n}. In
the following we tacitly assume this condition in all results.

Proof Sketch for Lemma 2.1. Note that p′i,t+1 , pi,t only if
the offspring are sampled differently on bit i , which happens with
probability 2pi,t (1−pi,t ), thus Pr

(
pi,t+1 = pi,t

)
= 1−2pi,t (1−pi,t ).

If there was no selection in the cGA, the remaining probability
2pi,t (1 − pi,t ) would be split evenly amongst changes of +1/K and
−1/K . This is the case in most steps, namely in steps where all
bits other than i show a clear majority of ones in one offspring,
such that bit i has no effect on the decision whether to update with
respect to x or y. Such steps are called random walk steps (rw-steps)

in [13]. However, if the remaining bits have equal numbers of ones,
and if xi , yi , then bit i does determine the decision whether to
update with respect to x or y, so that always p′i,t = pi,t + 1/K . Such
steps are called biased steps (b-steps) in [13]. The probability of a
biased step is Θ(1/

√
Vt ), inversely proportional to the root of the

sampling variance. The lower bound was shown in [11, proof of
Lemma 1] and the upper bound follows from a general probability
bound for Poisson-Binomial distributions [1].

The expectation follows from the probability bounds. �

Remark 1. A statement very similar to Lemma 2.1 also holds

for the UMDA on OneMax, even though the latter algorithm uses

a sampling and update procedure that is rather different from the

cGA as it can in principle lead to large changes in a single iteration.

However, the expected change of a marginal probability follows the

same principle as for the cGA. Roughly speaking, the results from

[8] and [14] together show that the UMDA’s marginal probabilities

evolve according to

E[pi,t+1 − pi,t | pi,t ] = Θ(1) · pi,t (1 − pi,t )/
√
Vt

Note that this drift is by a factor of K larger than in the cGA. However,

since each iteration of the UMDA entails λ fitness evaluations, where

λ is a parameter that can be compared to K in the cGA, the overall

runtime is the same for both algorithms.

The progression of the cGA can be measured by considering
a natural potential function: the function φt :=

∑n
i=1(1 − pi,t )

measures the distance to the “ideal” distribution where all pi,t are 1.
While the drift on individual bits is inversely proportional to the
root of the sampling variance

√
Vt , the following lemma shows that

the drift of the potential is proportional to
√
Vt . It also provides a

tail bound for the change of the potential.

Lemma 2.2. Let φt :=
∑n
i=1(1 − pi,t ), then E[φt − φt+1 | φt ] =

O(
√
Vt /K). Moreover, for all t such that Vt = O(K

2),

Pr
(
|φt − φt+1 | ≥

√
Vt logn | φt

)
≤ n−Ω(logn).

Proof Sketch. The expectation follows from
∑n
i=1

pi,t (1−pi,t )
K
√
Vt

=

Vt
K
√
Vt
=
√
Vt
K by definition of Vt and Lemma 2.1 and showing that

the contribution of bits at the lower border is of smaller order.
For the second statement, pi,t only changes by ±1/K with prob-

ability 2pi,t (1 − pi,t ). We then apply Chernoff-Hoeffding bounds
to bound the number of marginal probabilities that change. �

3 DYNAMICS WITH MEDIUM STEP SIZES
As described in the introduction, the cGA in the medium step size
regime, corresponding to K = o(

√
n logn) and K = Ω(logn), will

behave less stable than in the small step size regime. In particular,
many marginal probabilities will be reinforced in the wrong way
and will walk to the lower border before the optimum is found,
resulting in an expected optimisation time of Ω(n logn) [13]. With
respect to the UMDA it is known [14] that such wrong decisions can
be “unlearned” efficiently, more precisely the potential φt improves
by an expected value of Ω(1) per iteration. This implies the upper
bound O(λn) in the medium regime, which becomes minimal for
λ = Θ(logn). Even though formally we have no upper bounds
on the runtime of cGA on OneMax in the medium regime, we
conjecture strongly that it exhibits the same behaviour as UMDA
and has expected optimisation timeO(Kn). We finally recall that for
extremely large step sizes, corresponding to K = o(logn) (resp. λ =
o(logn)), exponential runtimes seem to occur since the system
contains too few states to build a reliable probabilistic model.

The following lemma shows that a linear number of bits tends
to reach the upper and lower borders in the initial phase of a run.

Lemma 3.1. Consider the cGA withK ≤
√
n. Then with probability

1 − 2−Ω(n) at least Ω(n) bits reach the lower border and at least Ω(n)
bits reach the upper border within the first O(K2) iterations.

A proof of Lemma 3.1 is essentially contained in the proof of
Theorem 5 in [12], where calculations can be simplified because of
the assumption on K . Details are omitted.

Bits at any lower border tend to remain there for a long time.
The following statement shows that in an epoch of length r = o(n)
the fraction of bits at a border only changes slightly.

Definition 3.2. Let γ (t) denote the fraction of bits at the lower
border at time t .

Lemma 3.3. For every r = o(n) and every t ≤ t ′ ≤ t + r with

probability 1−e−Ω(r ) we haveγ (t ′) ≥ γ (t)−O(r/n). With probability

1 − e−Ω(r ) there is a time t0 = O(K2) such that γ0 := γ (t0) = Ω(1).
Both statements also hold for the fraction of bits at the upper border.

The proof uses that a bit at a border has to sample the opposite
value in one offspring to leave the border, which has probability at
most 2/n, and applying Chernoff bounds. Details are omitted.

We now show that with high probability, every off-border bit will
hit one of the borders after a short number of iterations. The proof
of the following lemma uses that the probability of increasing a

1501



GECCO ’18, July 15–19, 2018, Kyoto, Japan Johannes Lengler, Dirk Sudholt, and Carsten Witt

marginal probability is always at least the probability of decreasing
it. Hence, if every iteration was actually changing the probability,
the time bound O(K2) would follow by standard arguments on the
fair random walk on K states. However, the probability of changing
the state is only pi,t (1−pi,t ) and the additional logK-factor covers
that the process has to travel through states with a low probability
of movement before hitting a border.

Lemma 3.4. Consider the marginal probability pi,t of a bit i of
the cGA with K = ω(1) on OneMax. Let T be the first time where

pi,t ∈ {1/n, 1 − 1/n}. Then for every initial value pi,0 and all r ≥ 8,
E[T | pi,0] ≤ 4K2 lnK and Pr(T ≥ rK2 lnK | pi,0) ≤ 2−⌊r/8⌋ .

4 STABILISATION OF THE SAMPLING
VARIANCE

Now that we have collected the basic properties of the cGA, we
can give a detailed road map of the proof. We want to use a drift
argument for the potential φt . After a short initial phase, most of
the bits are at the borders, but since a linear fraction is at the lower
border we start with φt = Ω(n). As we have seen, the drift of φt is
O(
√
Vt /K), so the heart of the proof is to study how Vt evolves.

However, the behaviour ofVt is complex. It is determined by the
number and position of the bits in the off-border region (the other
bits contribute only negligibly). By Lemma 2.1, each pi,t performs
a random walk with (state-dependent) drift proportional to 1/

√
Vt .

Therefore,Vt affects itself in a complex feedback loop. For example,
if Vt is large, then the drift of each pi,t is weak (not to be confused
with the drift of φt , which is strong for large Vt ). This has two
opposing effects. Consider a bit that leaves the lower border. On the
one hand, the bit has a large probability to be re-absorbed by this
border quickly. On the other hand, if it does gain some distance from
the lower border then it spends a long time in the off-border region,
due to the weak drift. For small Vt and large drift, the situation
is reversed. Bits that leave the lower border are less likely to be
re-absorbed, but also need less time to reach the upper border. Thus
the number and position of bits in the off-border region depends in
a rather complex way on Vt .

To complicate things even more, the feedback loop from Vt to
itself has a considerable lag. For example, imagine thatVt suddenly
decreases, i.e. the drift of the pi,t increases. Then bits close to the
lower border are less likely to return to the lower border, and this
also affects bits which have already left the border earlier. On the
other hand, the drift causes bits to cross the off-border region more
quickly, but this takes time: bits that are initially in the off-border
region will not jump to a border instantly. Thus the dynamics ofVt
plays a role. For instance, if a phase of smallVt (large drift of pi,t ) is
followed by a phase of large Vt (small drift of pi,t ), then in the first
phase many bits reach the off-border region, and they all may spend
a long time there in the second phase. This combination could not
be caused by any static value of Vt .

Although the situation appears hopelessly complex, we over-
come these obstacles using the following key idea: the sampling vari-

ance Vt of all bits at time t can be estimated accurately by analysing

the stochastic behaviour of one bit i over a period of time. More
specifically, we split the run of the algorithm into epochs of length
K2β(n) = o(n/log logn), with β(n) = C log2 n for a sufficiently large
constantC , long enough that the value ofVt may take effect on the

distribution of the bits. We assume that in one such epoch we know
bounds Vmin ≤ Vt ≤ Vmax, and we show that, by analysing the
dynamics of a single bit, (stronger) bounds V ′min ≤ Vt ≤ V

′
max hold

for the next epoch. The following key lemma makes this precise.

Lemma 4.1 (Stabilisation Lemma). Let r := K2β(n) with K ≥
C log3 n and with β(n) = C log2 n, for a sufficiently large constant

C > 0. Let further t1 > 0, t2 := t1 + r and t3 := t2 + r . Assume

γ (t1) = Ω(1). There is C ′ > 0 such that the following holds for all

Vmin ∈ [0,K2/3/C ′] and Vmax ∈ [C ′K4/3,∞]. Assume that Vmin ≤
Vt ≤ Vmax for all t ∈ [t1, t2]. Then with probability 1 − q we have

V ′min ≤ Vt ≤ V
′
max for the time [t2, t3], with the following parameters.

(a) If Vmin = 0, Vmax arbitrary, then V ′min = Ω(
√
K), V ′max = ∞, and

q = exp(−Ω(
√
K)).

(b) If Vmin = Ω(
√
K), Vmax arbitrary, then

• V ′min = Ω(
√
KV

1/4
min);

• V ′max = O(K min{K ,
√
Vmax}/

√
Vmin);

• q = exp(−Ω(min{
√
Vmin,

√
K/V

1/4
min})).

To understand where the values of V ′min and V ′max come from,
we recall that Vt =

∑n
i=1 pi,t (1 − pi,t ), and we regard the terms

pi,t (1 − pi,t ) from an orthogonal perspective. For a fixed bit i that
leaves the lower border at some time t1, we consider the total
lifetime contribution of this bit to all Vt until it hits a border again
at some time t2, so we consider Pi =

∑t2
t=t1 pi,t (1 − pi,t ). Note

that Vt and Pi are conceptually very different quantities, as the
first one adds up contributions of all bits for a fixed time, while the
second quantifies the total contribution of a fixed bit over its lifetime.
Nevertheless, we show in Section 4.1 that their expectations are
related, E[Vt ] ≈ 2γ (t)E[Pi ], where 2γ (t) is the expected number of
bits that leave the lower border in each round.3 Crucially, E[Pi ]
is much easier to analyse: we link E[Pi ] to the expected hitting
time E[T ] of a rescaled and loop-free version of the random walks
that the bits perform. In Section 4.2 we then derive upper and
lower bounds on E[T ] that hold for all random walks with given
bounds on the drift, which then lead to upper and lower bounds
V ′min ≤ E[Vt ] ≤ V ′max.

To prove Lemma 4.1, it is not sufficient to know E[Vt ], we also
need concentration for Vt . Naturally Vt is a sum of random vari-
ables pi,t (1 − pi,t ), so we would like to use the Chernoff bound.
Unfortunately, all the random walks of the bits are correlated, so
the pi,t are not independent. However, we show by an elegant argu-
ment in Section 4.3 that we may still apply the Chernoff bound. We
partition the set of bits intom batches, and show that the random
walks of the bits in each batch do not substantially influence each
other. This allows us to show that the contribution of each batch
is concentrated with exponentially small error probabilities. The
overall proof of Lemma 4.1 is then by induction. Given that we
know bounds Vmin and Vmax for one epoch, we show by induction
over all times t in the next epoch that Vt satisfies even stronger
bounds V ′min and V ′max.

In Section 5 we then apply Lemma 4.1 iteratively to show that
the bounds Vmin and Vmax become stronger with each new epoch,
until we reach Vmin = Ω(K2/3) and Vmax = O(K4/3). At this point

3The actual statement is a bit more subtle and involves lower and upper bounds on
Pi , see Lemma 4.3.

1502



Medium Step Sizes are Harmful for the Compact Genetic Algorithm GECCO ’18, July 15–19, 2018, Kyoto, Japan

the approach reaches its limit, since then the new bounds V ′min and
V ′max are no longer sharper thanVmin andVmax. Still, the argument
shows that Vt = O(K4/3) from this point onwards, which gives us
an upper bound of O(K−1/3) on the drift of φt and a lower bound
of Ω(K1/3n) on the runtime of the algorithm.

As the proof outline indicates, the key step is to prove Lemma 4.1,
and the rest of the section is devoted to it.

4.1 Connecting Vt to the Lifetime of a Bit
In this section we will lay the foundation to analyse E[Vt ]. We
consider the situation of Lemma 4.1, i.e., we assume that we know
bounds Vmin ≤ Vt ≤ Vmax that hold for an epoch [t1, t2] of length
t2 − t1 = r = K2β(n). We want to compute E[Vt ] for a fixed t ∈
[t2, t3]. SinceVt =

∑n
i=1 pi,t (1−pi,t ), we call the term pi,t (1−pi,t )

the contribution of the i-th bit to Vt . The main result of this section
(and one of the main insights of the paper) is that the contribution
of the off-border bit can be described by E[Vt ] = Θ(γ (t)E[T ]), where
T is the lifetime of a random variable that performs a rescaled and
loop-free version of the random walk that each pi,t performs.

First we introduce the rescaled and loop-free random walk. It
can be described as the random walk that pi,t performs for an
individual bit if we ignore self-loops, i.e., if we assume that in each
step pi,t either increases or decreases by 1/K . Moreover, it will
be convenient to scale the random walk by roughly a factor of K
so that the borders are 0 and K instead of 1/n and 1 − 1/n. The
exact scaling is given by the formula Xi,t = (pi,t − 1/n)/(K − 2/n).
Formally, assume that Xt is a random walk on {0, . . . ,K} where
the following bounds hold whenever Xt ∈ {1, . . . ,K − 1}.

Xt+1 =

{
Xt + 1, w. prob. 12 + d(t),
Xt − 1, w. prob. 12 − d(t),

(2)

where d(t) = Ω
(
1/
√
Vmax

)
and d(t) = O

(
1/
√
Vmin

)
.

Note that by Lemma 2.1, if we condition on pi,t+1 , pi,t then
pi,t follows a random walk that increases with probability 1/2 +
Θ(1/
√
Vt ). Hence, if Vmin ≤ Vt ≤ Vmax then this loop-free random

walk ofpi,t follows the description in (2) after scaling. Therefore, we
will refer to the random walk defined by (2) as the loop-free random
walk of a bit. We remark that it is slight abuse of terminology to
speak of the loop-free random walk, since (2) actually describes a
class of random walks. Formally, when we prove upper and lower
bounds on the hitting time of “the” loop-free randomwalk, we prove
bounds on the hitting time of any random walk that follows (2).

To link E[Vt ] and E[T ], we need one more seemingly unrelated
concept. Consider a bit i that leaves the lower border at some time
t0, i.e., pi,t0−1 = 1/n and pi,t0 = 1/n+1/K , and let t ′ > 0 be the first
point in time whenpi,t hits a border, sopi,t ′ = 1/n orpi,t ′ = 1−1/n.
Then we call

Pi :=
∑t ′−1

t=t0
pi,t (1 − pi,t ), where pi,t0 = 1/n + 1/K (3)

the lifetime contribution of the i-th bit. Analogously, we denote by
P ′i the lifetime contribution if bit i leaves the upper border,

P ′i :=
∑t ′−1

t=t0
pi,t (1 − pi,t ), where pi,t0 = 1 − 1/n − 1/K . (4)

Note that Vt and Pi are both sums over terms of the form
pi,t (1 − pi,t ). But while Vt sums over all i for fixed t , Pi sums over

some values of t for a fixed i . Nevertheless, as announced in the
proof outline, we will show that the expectations E[Vt ] and E[Pi ]
are closely related, and this will be the link between E[Vt ] and E[T ].
More precisely, we show the following lemma.

Lemma 4.2. Consider the situation of Lemma 4.1. Let t ∈ [t2, t3],
and assumeVmin ≤ Vt ′ ≤ Vmax for all t ′ ∈ [t1, t − 1]. Let Slow be the

set of all bits i with pi,t < {1/n, 1−1/n}, and such that their last visit
of a border was in [t1, t], and it was at the lower border. Formally, we

require that t0 := max{τ ∈ [t1, t] | pi,τ ∈ {1/n, 1 − 1/n}} exists and
that pi,t0 = 1/n. Let Supp be the analogous set, where the last visit

was at the upper border. Then

(a) E[
∑
i ∈Slow pi,t (1 − pi,t )] = Θ(E[Pi ]).

(b) E[
∑
i ∈Supp pi,t (1 − pi,t )] = Θ(E[P ′i ]).

(c) E[
∑
i ∈{1, ...,n }\(Slow∪Supp) pi,t (1 − pi,t )] = O(1).

Proof. (a) Recall that we assume γ (t1) = Ω(1). Since γ (t) is
slowly changing by Lemma 3.3, there is a constant c > 0 such that
c ≤ γ (t) ≤ 1 for all t ∈ [t1, t3]. In particular, for every t ′ ∈ [t1, t3],
the expected number of bits s(t) which leave the lower border at
time t is E[s(t)] = γ (t)n · 2n (1 −

1
n ) = (2 − o(1))γ (t) = Θ(1).

Consider a bit that leaves the lower border at time 0, and let
ρt := pi,t (1 − pi,t ) if i has not hit a border in the interval [1, t],
and ρt := 0 otherwise. Let Et := E[ρt ]. Then E[Pi ] =

∑∞
t=0 Et .

On the other hand, for a fixed t ∈ [t2, t3] let us estimate Vt, low :=∑
i ∈Slow pi,t (1 − pi,t ). Assume that bit i leaves the border at some

time t − τ ∈ [t1, t]. If it does not hit a border until time t , then it
contributes ρτ toVt, low. The same is true if it does hit a border, and
doesn’t leave the lower border again in the remainder of the epoch,
since then i < Slow and ρτ = 0. For the remaining case, assume
that i leaves the lower border several times t − τ1, t − τ2, . . . , t − τk ,
with τ1 < τ2 < . . . < τk . Then ρτ2 = . . . = ρτk = 0, and by
the same argument as before, the contribution of i to Vt, low is
ρτ1 =

∑k
i=1 ρτk , where ρτ1 may or may not be zero. Therefore, we

can compute E[Vt, low] by summing up a term Eτ for every bit that
leaves the lower border at time t −τ , counting bits multiple times if
they leave the lower border multiple times. Recall that the number
of bits s(t) that leave the lower border at time t − τ has expectation
E[s(t)] = Θ(1). Therefore,

E[Vt, low] = E
[∑t−t1

τ=0 st−τ · Eτ
]
= Θ(1)

∑t−t1
τ=0 Eτ . (5)

The sum on the right hand side is almost E[Pi ], except that the
sum only goes to t − t1 instead of∞. Thus we need to argue that∑∞
τ=t−t1+1 Eτ is not too large. By Lemma 3.4 the probability that a

bit does not hit a border state in τ > t − t1 ≥ r = K2β(n) rounds
is e−Ω(τ /(K 2 logK )). Hence, we may split the range [t − t1 + 1,∞)
into subintervals of the form [i · K2 logK , (i + 1) · K2 logK), then
the i-th subinterval contributesO((K2 logK)e−i ). Therefore, setting
i0 := β(n)/logK , the missing part of the sum is at most∑∞

τ=r
e−Ω(τ /(K

2 logK )) = O
(
K2 logK

∑∞

i=i0
e−i

)
= o(1/K)

since β = C log2 n for a sufficiently large constant C . This is clearly
smaller than the rest of the sum, since already E1 ≥ 1/K · (1− 1/K).
Hence E[Vt, low] = Θ(E[Pi ]), as required.

The proof of (b) is analogous to (a). Finally, (c) follows from
Lemma 3.4. We omit the details. �

1503



GECCO ’18, July 15–19, 2018, Kyoto, Japan Johannes Lengler, Dirk Sudholt, and Carsten Witt

The next lemma links the lifetime contribution Pi and P ′i to the
hitting time T of the loop-free random walk.

Lemma 4.3. Consider the situation of Lemma 4.1. Assume for i = 1
or i = K − 1 that Ti,min and Ti,max are a lower and upper bound,

respectively, on the expected hitting time of {0,K} of every random
walk as in (2) with X0 = i . Then the lifetime contributions Pi and P

′
i

defined in (3) and (4) satisfy
2T1,min ≤ E[Pi ] ≤ 2T1,max.

2TK−1,min ≤ E[P ′i ] ≤ 2TK−1,max.

We say that E[Pi ] = Θ(E[T ]), where T is the hitting time of the

loop-free random walk starting at 1, and similarly for E[P ′i ].

Proof Sketch. Bit i contributes pi,t (1 − pi,t ) to Pi , and the ex-
pected time until bit i makes a non-loop step is 1/(2pi,t (1−pi,t )) by
Lemma 2.1. Thus the total contribution to Pi per non-loop step is in
expectation exactly 1/2. The claims then follow because T counts
the number of non-loop steps of pi,t . �

Lemmas 4.2 and 4.3 together yield the following corollary.

Corollary 4.4. Consider the situation of Lemma 4.1, and let

Ti,min and Ti,max be lower and upper bounds, respectively, on the

expected hitting time of {0,K} of every random walk as in (2) with
X0 = i . Assume T1,min = ω(1). Then for all t ∈ [t2, t3],

Ω(T1,min +TK−1,min) ∋ E[Vt ] ∈ O(T1,max +TK−1,max)

By Corollary 4.4, in order to understand E[Vt ] it suffices to anal-
yse the expected hitting time E[T ] of the loop-free random walk.

4.2 Bounds on the Lifetime of a Bit
We now give upper and lower bounds on the expected lifetime of
every loop-free random walk, assuming that we only have lower
and upper bounds ∆min and ∆max on the drift that hold the whole
time. We start with the upper bound.

Lemma 4.5. Consider a stochastic process {Xt }t ≥0 on {0, 1, . . . ,K},
variables ∆t that may depend on X0, . . . ,Xt and ∆min > 0, ∆max ≥
1/(2K) such that Pr(Xt+1 = Xt + 1 | Xt < K) = 1/2 + ∆t and

Pr(Xt+1 = Xt − 1 | Xt > 0) = 1/2 − ∆t for ∆min ≤ ∆t ≤ ∆max.
LetT be the hitting time of states 0 or K , then regardless of the choice

of the ∆t ,

E[T | X0 = 1] = O(min{K2∆max,K∆max/∆min}) and

E[T | X0 = K − 1] = O(min{K , 1/∆min}).

Remark 2. The most important term for us is E[T | X0 = 1] =
O(K∆max/∆min). This is tight, i.e., there is a scheme for choosing ∆t
that yields a time of Ω(K∆max/∆min) if ∆min = Ω(1/K).

Proof Sketch. The proof for X0 = 1 fixes an intermediate state
k0 = Θ(1/∆max) and shows, using martingale theory and the upper
bound ∆max on the drift, that (1) the time to reach either state 0 or
state k0 is O(1/∆max), and (2) the probability that k0 is reached is
O(∆max). In that case, using the lower bound ∆min on the drift, the
remaining time to hit state 0 or state K is O(K/∆min) by additive
drift. The time from k0 is also bounded byO(K2) as it is dominated
by the expected time a fair random walk would take if state 0 was
made reflecting. The statement for X0 = K − 1 is proved using
similar arguments, starting from K − 1 instead of k0. �

The following lemma gives a lower bound on the lifetime of
every loop-free random walk.

Lemma 4.6. Consider a stochastic process {Xt }t ≥0 on {0, 1, . . . ,K},
variables ∆t that may depend on X0, . . . ,Xt and ∆min > 0, ∆max ≥
(4 lnK)/K such that Pr(Xt+1 = Xt + 1 | Xt < K) = 1/2 + ∆t and

Pr(Xt+1 = Xt − 1 | Xt > 0) = 1/2 − ∆t for ∆min ≤ ∆t ≤ ∆max. Let
T be the hitting time of states 0 or K , then regardless of the choice of

the ∆t ,

Pr
(
T > 1

2K/∆max | X0 = 1
)
= Ω(

√
∆max/K + ∆min)

and

E[T | X0 = 1] = Ω(
√
K/∆max + K∆min/∆max).

Remark 3. There is a scheme for choosing ∆t such that the bound

on the expectation from Lemma 4.6 is asymptotically tight.

Proof Sketch. The lower bound on the expectation follows
immediately from the lower bounds on the probabilities. To show
the latter, we couple the process with two processes Xmin

t and
Xmax
t that always use the minimum and maximum drift ∆min and

∆max, respectively. The coupling ensures that Xmin
t ≤ Xt ≤ Xmax

t ,
hence as long as Xmin

t > 0 and Xmax
t < K , the process cannot have

reached a border state. We show for both coupled processes that the
probability of reaching their respective borders in time 1

2K/∆max
is small, and then apply a union bound. For the Xmax

t process a
negligibly small failure probability follows from additive drift with
tail bounds [7] and the condition ∆max ≥ (4 lnK)/K . For the Xmin

t
process we show that the fair random walk on the integers, starting
in state 1, does not reach state 0 in time 1

2K/∆max with probability
Ω(

√
∆max/K). In addition, the Xmin

t process on the integers never
reaches state 0 with probability Ω(∆min) [4, page 351], which yields
the second term in the claimed probability. �

4.3 Establishing Concentration
Ourmajor tool for showing concentrationwill be using the Chernoff
bound [3] and the Chernoff-Hoeffding bound [3].

The basic idea is that for fixed t , we define for each bit i a random
variableXi := pi,t (1−pi,t ) to capture the contribution of the i-th bit
to Vt =

∑n
i=1 Xi . In the previous sections we have computed E[Vt ]

by studying the expected lifetime E[T ]. Concentration of Vt would
follow immediately by the Chernoff bound if the random walks of
the different bits were independent of each other. Unfortunately,
this is not the case. However, for the initial case of the stabilisation
lemma, Lemma 4.1 (a), we show that the random walks behave
almost independent, which allows us to show the following lemma.

Lemma 4.7. Assume the situation of Lemma 4.1 (a). Then Vt =

Ω(
√
K) holds with probability 1 − e−Ω(

√
K )

for all t ∈ [t2, t3].

Proof Sketch. We use an inductive argument over t ∈ [t2, t3].
Note that if we choose the constant C ′ in Lemma 4.1 large enough,
then we have V ′min ≥ Vmin and V ′max ≤ Vmax. Therefore, by induc-
tion hypothesis we may assume that Vmin ≤ V ′min ≤ Vt ′ ≤ Vmax ≤
Vmax also holds for t ′ ∈ [t2, t − 1].

As mentioned above, we know that E[Vt ] = E[T ] = Ω(
√
K) by

Lemma 4.6 with trivial drift bounds ∆min = 0 and ∆max = 1/2, so
it remains to show concentration. Fix i ∈ {1, . . . ,n}, and consider

1504



Medium Step Sizes are Harmful for the Compact Genetic Algorithm GECCO ’18, July 15–19, 2018, Kyoto, Japan

the random walk that pi,t performs over time. More precisely, we
consider one step of this randomwalk, from t to t+1. If the offspring
x and y have the same i-th bit, then pi,t+1 = pi,t , so assume that x
and y differ in the i-th bit. We want to understand how the drift of
pi,t changes if we condition on what the other bits do.

So assume that we have already drawn all bits of the two off-
spring x and y at time t + 1 except for the i-th bit. Assume also
that someone tells us which of x ,y is the selected offspring. Then
conditioning on all this information does influence (and sometimes
determine) the behaviour of pi,t , However, one can show that even
after conditioning, pi,t still has non-negative drift. This allows us
to couple the pi,t to independent random walks, and to apply the
Chernoff bound. We omit the details. �

We would like to use a similar argument also in the cases with
non-trivial ∆min and ∆max. Unfortunately, it is no longer true that
the drift remains lower bounded by ∆min > 0 if we uncover the ran-
dom walk steps of the other bits. However, the bound still remains
true if we condition on only a few of the other bits. More precisely, if
we consider a batch of r bits b1, . . . ,br for a suitably chosen r ∈ N,
then even if we condition on the values that the two offspring have
in the bits b1, . . . ,br−1 then bit br will still perform a random walk
where the drift in each round is in Θ(1/(K

√
Vt )). Hence, we can

couple the random walks of b1, . . . ,br−1 to r independent random
walks, and apply the Chernoff bound to show that the contribution
of this batch is concentrated. Afterwards we use a union bound
over all batches.

Formally, we show the following pseudo-independence lemma.
Note that there are two types of error events in the lemma. One is
the explicit event E, the other is the event that B < B, i.e., that the
other bits in the batch display an atypical distribution. However,
both events are very unlikely if Vt is large, which we may assume
after one application of Lemma 4.7.

Lemma 4.8. Consider a vector of probabilities pt with potential

Vt =
∑n
i=1 pi,t (1 − pi,t ).

Let m = m(n) ≥ 3. Let S ⊆ {1, . . . ,n} be a random set which

contains each bit independently with probability 1/m. Then there is

an error event E of probability Pr(E) = e−Ω(Vt /m) such that, con-

ditioned on ¬E, the following holds for all i0 ∈ S . Let b1i and b2i
be the i-th bit in the first and second offspring, respectively, and let

B := (b ji )i ∈S\{i0 }, j ∈{1,2} . There is a set B ⊆ {0, 1}2(m−1) such that

Pr(B ∈ B) = 1 − e−Ω(min{m,Vt /m })
and such that for all ®B ∈ B,

E[pi0,t+1 − pi0,t | pt ,B = ®B,¬E] ∈ Ω
(
pi0,t (1 − pi0,t )

K
√
Vt

)
, and

E[pi0,t+1 − pi0,t | pt ,B = ®B,¬E] ∈ O
(
pi0,t (1 − pi0,t )

K
√
Vt

)
. (6)

Proof Sketch. The error event E is that the contribution
of S to Vt deviates from its expectation Vt /m by more than a fac-
tor of 2, which is unlikely by Chernoff bounds. For a set A ⊆
{1, . . . ,n}, let dA be the difference of the fitnesses between the
two offspring caused by the bits in A. Then the set B is defined
by B := { ®B ∈ {0, 1}2(m−1) | |dS\{i } | ≤ η

√
Vt } for a small con-

stant η, and it is unlikely that B < B by a careful application of
the Chernoff-Hoeffding bounds. The drift of pi,t comes from the

cases in which d {1, ...,n }\{i } ∈ {−1, 0, 1}, in which it may influ-
ence selection. However, for ®B ∈ B we have dS\{i } = k for some
|k | ≤ η

√
Vt . For every such k , the probability that d {1, ...,n }\S = −k

(or = −k + 1 or = −k − 1) is Θ(1/
√
Vt ) [1, 14]. Thus the probability

that i influences selection is asymptotically the same as in the proof
of Lemma 2.1, and therefore the resulting drift is also asymptotically
the same. �

Lemma 4.8 allows us to partition the bits randomly intom batches,
such that in each batch the bits perform random walks that can be
coupled to independent random walks. In particular, we will be able
to apply the Chernoff-Hoeffding bounds to each batch. This gives
concentration of the Vt as follows.

Lemma 4.9. Assume the situation of Lemma 4.1 (b), in particular

V ′min = Ω(
√
KV

1/4
min) and V

′
max = O(K min{K ,

√
Vmax/Vmin}) where

we may choose the hidden constants suitably. Then with probability

1 − exp(−Ω(min{
√
Vmin,

√
K/V

1/4
min})), for all t ∈ [t2, t3], we have

V ′min ≤ Vt ≤ V
′
max.

Proof. Apart from the complication with the batches, the proof
is analogous to the proof of Lemma 4.7. We omit the details. �

Altogether, we have proven the Stabilisation Lemma 4.1: part (a)
is proven in Lemma 4.7, and part (b) is proven in Lemma 4.9.

5 PROOF OF THE MAIN RESULT
Lemma 5.1. With probability 1−exp(−Ω(K1/4)),Vmin = Ω(K2/3)

and Vmax = O(K4/3) after i∗ = O(log logK) epochs of length r =
K2β(n).

Moreover, for any fixed t ≥ i∗r , as long as γ (τ ) = Ω(1) for all
τ ∈ [i∗r , t − 1], Vmax and Vmin are bounded in the same way during

[i∗r , t], with a failure probability of at most t/r · exp(−Ω(K1/3)), and
with probability 1− tn exp(−Ω(β(n)/logn)) the number of off-border

bits at any time t ∈ [i∗r , t] is at most 4K2β(n). In particular, if t = n2,
β(n) = C log2 n, and K ≥ C log3 n for a sufficiently large constant

C > 0, then the error probability is o(1).

Proof Sketch. All subsequent statements hold with some error
probability, which we omit due to space restrictions. By Lemma 3.3,
we know that the initial fraction of marginal probabilities at the
lower border is Ω(1). We apply the first statement of the Stabilisa-
tion Lemma 4.1 (a) with respect to an initial epoch of length r

and obtain that Vt = Ω(K1/2) in an epoch [t2, t3] of length at
least r . Applying the statement again, now with respect to this
epoch and with the assumption Vmin = Ω(K1/2), we obtain Vmin =
Ω(K5/8) for the next epoch. Iterating this argument i times, we
have Vmin = Ω(K2/3−(2/3)(1/4)i+1 ) after i epochs of length r . Choos-
ing i∗ = c ln lnK for a sufficiently large constant c > 0, we get
Vmin = Ω(K2/3−1/logK ) = Ω(K2/3) after i∗/2 iterations.

Applying part (b) of the Stabilisation Lemma 4.1 with respect to
the i∗-th epoch, we obtain thatVmax = O(K2) for the next epoch.We
apply the statement again, and the next epoch will satisfy Vmax =

O(K
√
K2/K2/3) = O(K5/3). Iterating this argument using the new

value of Vmax and still Vmin = Ω(K2/3) for O(log logK) epochs
similarly as above, we arrive at Vmax = O(K4/3).

1505



GECCO ’18, July 15–19, 2018, Kyoto, Japan Johannes Lengler, Dirk Sudholt, and Carsten Witt

For t ≥ i∗r , we may apply the same argument again, and the
statement on Vmin and Vmax then follows from a union bound over
all epochs. For the number of off-border bits, by Lemma 3.4 every
bit hits a border after at most K2β(n) rounds. Since the probability
that a fixed bit leaves the border is 2 · 1/n · (1 − 1/n) in each round,
the expected number of bits that leave the border is at most 2 per
round. Thus the expected number of non-border bits at time t is at
most 2K2β(n), and concentration follows by a union bound.

Finally, the statement for t = n2 follows since n2e−Ω(logn) = o(1)
if the hidden constant is large enough. �

We are finally ready to prove our main result.

Proof of Theorem 1.1. A lower bound of Ω(
√
nK+n logn)was

shown in [13]. Hence it suffices to show a lower bound of Ω(K1/3n)
forK ≥ C log3 n, where we may choose the constantC to our liking.
In the following, we assume that all events that occur with high
probability do occur.

Recall that the potential φt :=
∑n
i=1(1−pi,t ) is the total distance

of all marginal probabilities to the optimal value of 1. By Lemma 3.3,
we have aγ0 = Ω(1) fraction of bits at the lower border at some time
within the first O(K2) iterations with probability 1 − e−Ω(K 2β (n)).
In particular, this implies φt ≥ γ0(n − 1).

We show that the expected time until either φt has decreased
to γ0/4 · (n − 1) or the global optimum is found is Ω(K1/3n) with
high probability. This implies the claim since in an iteration where
φt > γ0/4 · (n − 1) the probability of sampling the optimum is
exponentially small: for fixedφt , the best case scenario for sampling
the optimum is that all bits have equal values. Hence the probability
of sampling the optimum is at most (φt /n)n = 2−Ω(n), which still
holds when considering a union bound over O(K1/3n) steps.

By Lemma 5.1, with probability exp(−Ω(K1/4)) = o(1) we will
have Vt = O(K4/3) after T = O(r log logK) = o(n) steps. By
Lemma 3.3, with high probability we will still have at least γ0/2 ·
(n − 1) bits at the lower border.

Moreover, also by Lemma 5.1, if we can show γ (t) = Ω(1) then
the bound Vt = O(K4/3) remains true for the next K1/3n rounds,
with probability 1 − o(1). So it remains to show γ (t) = Ω(1) for
t ∈ [T ,Ω(K1/3n)]. Note that the prerequisites of Lemma 5.1 only
concern times strictly before t , so we can use the statement of the
lemma inductively to show that γ (t) = Ω(1). By Lemma 5.1, the
number of off-border bits in each epoch is O(K2β(n)), hence while
φt > γ0/4 · (n − 1), we have γ (t) ≥ γ0/4 − O(K2β(n)/n) = Ω(1)
as off-border bits (and bits at the upper border) only contribute
O(K2β(n)) = o(n) to φt . Hence Lemma 5.1 implies that with prob-
ability 1 − o(1), Vt = O(K4/3) holds for all t ∈ [T ,n2] such that
φt > γ0/4 · (n − 1).

By Lemma 2.2, the drift of φt is at most O
(√
Vt /K

)
= O(K−1/3)

and the change of φt is bounded by
√
Vt logn = O(K2/3 logn) with

probability 1 − n−Ω(logn), even when taking a union bound over
O(K1/3n) steps. Applying Theorem 1 in [7] with a maximum step
size of O(K2/3 logn), distance γ0/4 · (n − 1) and drift O(K−1/3),
the time until φt ≤ γ0/4 · (n − 1) is at least Ω(γ0/4 · (n − 1) ·
K1/3) = Ω(K1/3n) with probability 1 − e−Ω

(
n ·K−1/3/(K 4/3 log2 n)

)
=

1 − e−Ω(n1/6/log2 n), where the last step uses K = O(n1/2). Adding
up failure probabilities completes the proof. �

6 CONCLUSIONS
We have shown a lower bound of Ω(K1/3n + n logn) for the cGA
on OneMax that at its core has a very careful analysis of the dy-
namic behaviour of the sampling variance and how it stabilises in a
complex feedback loop that exhibits a considerable lag. A key idea
to handle this complexity was to show that the sampling variance
Vt of all bits at time t can be estimated accurately by analysing the
stochastic behaviour of one bit i over a period of time.

Assuming that cGA has the same upper bound as UMDA for
step sizes K = Θ(logn), the expected optimisation time of cGA is a
bimodal function in K with worse performance in between its two
minima.

We believe that our analysis can be extended towards an upper
bound ofO(K2/3n+n logn), using that typicallyVt = Ω(K2/3) after
an initial phase, which implies a drift of Ω(

√
Vt /K) = Ω(K−2/3)

for φt . This would require additional arguments to deal with γ (t)
decreasing to sub-constant values where showing concentration
becomes more difficult. Another avenue for future work would be
to investigate whether the results and techniques carry over to the
UMDA, where the marginal probabilities can make larger steps.

ACKNOWLEDGMENTS
This paper was initiated at Dagstuhl seminar 17101 “Theory of
Randomized Optimization Heuristics” and is based upon work from
COST Action CA15140 ‘Improving Applicability of Nature-Inspired
Optimisation by Joining Theory and Practice (ImAppNIO)’ sup-
ported by COST (European Cooperation in Science & Technology).

REFERENCES
[1] J.-B. Baillon, R. Cominetti, and J. Vaisman. A sharp uniform bound for the

distribution of sums of bernoulli trials. Combinatorics, Probability and Computing,
25:352–361, 2016.

[2] S. Droste. A rigorous analysis of the compact genetic algorithm for linear func-
tions. Natural Computing, 5(3):257–283, 2006.

[3] D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of

randomized algorithms. Cambridge University Press, 2009.
[4] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.

Wiley, 1968.
[5] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton. The benefit of recombina-

tion in noisy evolutionary search. In Proc. of ISAAC ’15, pages 140–150. Springer,
2015.

[6] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation, 3(4):287–297, 1999.

[7] T. Kötzing. Concentration of first hitting times under additive drift. Algorithmica,
75:490–506, 2016.

[8] M. S. Krejca and C.Witt. Lower bounds on the run time of the univariate marginal
distribution algorithm on OneMax. In Proc. of FOGA ’17, pages 65–79. ACM Press,
2017.

[9] P. K. Lehre and P. T. H. Nguyen. Tight bounds on runtime of the univariate
marginal distribution algorithm via anti-concentration. In Proc. of GECCO ’17,
pages 1383–1390. ACM Press, 2017.

[10] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University
Press, 2005.

[11] F. Neumann, D. Sudholt, and C. Witt. A few ants are enough: ACO with iteration-
best update. In Proc. of GECCO ’10, pages 63–70. ACM Press, 2010.

[12] D. Sudholt and C. Witt. Full version of [13] at http://arxiv.org/abs/1607.04063.
[13] D. Sudholt and C. Witt. Update strength in EDAs and ACO: How to avoid genetic

drift. In Proc. of GECCO ’16, pages 61–68. ACM Press, 2016.
[14] C. Witt. Upper bounds on the runtime of the Univariate Marginal Distribution

Algorithm on OneMax. In Proc. of GECCO ’17, pages 1415–1422. ACM Press,
2017.

1506

http://arxiv.org/abs/1607.04063

	Abstract
	1 Introduction
	2 The Compact Genetic Algorithm and Its Search Dynamics
	3 Dynamics with Medium Step Sizes
	4 Stabilisation of the Sampling Variance
	4.1 Connecting normalnormalVt to the Lifetime of a Bit
	4.2 Bounds on the Lifetime of a Bit
	4.3 Establishing Concentration

	5 Proof of the Main Result
	6 Conclusions
	Acknowledgments
	References

