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Domino Convergence: Why One Should Hill-Climb on Linear
Functions
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ABSTRACT
In the theory community of evolutionary computation, linear pseudo-

boolean functions are often regarded as easy problems since all

of them can be optimized in expected time O(n logn) by simple

unbiased algorithms. However, results from genetic algorithms and

estimation-of-distribution algorithms indicate that these algorithms

treat different linear functions differently. More precisely, an effect

called "domino convergence" is described in the literature, which

means that bits of large weight in the linear function are optimized

earlier than bits of low weight. Hence, different linear functions

may lead to rather different expected optimization times.

The present paper conducts a study of domino convergence. By

rigorous runtime analyses, it is shown that domino convergence

is mostly a consequence of the crossover underlying genetic al-

gorithms and EDAs. Here a performance gap of order Ω(n/logn)
between different linear functions is proved. In simple mutation-

only EAs the effect of domino convergence is much less pronounced,

with the typical performance gap being logarithmic in the popula-

tion size. The effect disappears when population size 1 is used and

the algorithm is reduced to hillclimbing. Different selection mecha-

nisms, including cut and tournament selection are investigated and

their impact on domino convergence is analyzed.
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1 INTRODUCTION
The optimization of linear pseudo-Boolean functions f : {0, 1}n →
R, i. e., functions that can be written as f (x1, . . . ,xn ) = w1x1+ · · ·+
wnxn for coefficients (weights) wi ∈ R, is an intensively studied

problem in the research community dealing with runtime analy-

sis of evolutionary algorithms (e. g. [17] and references therein).

This class of functions includes famous benchmark functions like

OneMax(x1, . . . ,xn ) = x1 + · · ·+ xn that are very well understood

due to their simple structure but also somewhat more involved ex-

amples like BinVal(x1, . . . ,xn ) =
∑n
i=1 2

n−ixi where the weights
differ heavily and the weight at position i even outweighs all smaller

weights together. Despite these structural differences within the

class of linear functions, all of them are usually considered easy

problems in the runtime analysis community. It has been known

since 2002 [5] that a simple (1+1) EA, a mutation-based hillclimber,

optimizes any linear function in expected time Θ(n logn). More

recently [17], it was proven that the (1+1) EA optimizes any linear

function in expected time en lnn ±O(n), i. e., the runtime behavior

is essentially the same on all linear functions, up to lower-order

terms. Hence, one can have the impression that the optimization of

BinVal proceeds in a very similar way to the one of OneMax.

This impression is correct with respect to the (1+1) EA, although

a proof of the time bound en lnn ±O(n) cited above is highly chal-

lenging for linear functions whose weights differ heavily (like in

BinVal). A hillclimber like the (1+1) EAmay exchangemany correct

light-weight bits for a heavy-weight bit and even a step mutating

the string (0, 1, . . . , 1) into (1, 0, . . . , 0) would be accepted while

maximizing BinVal since it leads to an increase in fitness despite

the huge increase in Hamming distance to the optimum. Runtime

analysis reveals that such extreme steps are rare enough in order

not to impede the progress to the optimum too frequently. For One-

Max, which is a function of unitation, the proof idea is simpler.

The number of one-bits in the current search point is monotone

increasing over time. The general runtime bound en lnn ± O(n)
intuitively means that steps trading low-weight for heavy-weight

bits do not influence the optimization behavior significantly such

that the optimization process behaves similar to OneMax on all

linear functions. In fact, only steps flipping more than one bit may

lead to different behavior than on OneMax. The randomized local

search heuristic (RLS), an even simpler hillclimber that flips only

one uniformly selected bit per iteration, only selects new search

points based on that their Hamming distance to the optimum has

increased or decreased – since this is equivalent to an increase or

decrease of fitness if only one bit is flipped. Hence, RLS does not

really see the weights of the linear function and treats all of them

in the same way. In fact, linear functions can be optimized in time

O(n) by local search without replacement, but we exclude such local
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search operators from this study since we do not consider them

typical for the basic evolutionary algorithms investigated here.

Researchers stemming from the community of genetic algo-

rithms (GAs) may dispute the claim that all linear functions are

equally difficult to optimize. Already in 1992, Rudnick [12] pointed

out that GAs where crossover is the only search operator exhibit

a widely different behavior on different linear functions. He also

coined the term domino convergence to describe that heavy-weight

bits (called more salient bits) are earlier optimized by the GA in the

sense that the fraction of individuals having the correct bit entry

raises fastest for the heavy bits and more slowly for the light bits. In

fact, in extreme cases it is necessary for all heavier bits to converge

before the light bits can converge, in analogy to a falling row of

domino stones.

Domino convergence was also considered from a theoretical

angle by Thierens et al. [15] and Lobo et al. [10]. Increasingly re-

fined models of the convergence behavior of GAs without mutation

on both BinVal (at that time called BinInt) and OneMax were

proposed and predictions about the runtime of the GAs were given

based on the model. Roughly speaking and adapting notation to

standards in runtime analysis, a runtime behavior of O(µn), with
µ being the population size, was predicted w. r. t. BinVal, whereas

O(µ
√
n) was obtained w. r. t. OneMax. Both bounds require a mini-

mum feasible value for µ to counteract so-called genetic drift. If µ
is too small, the fraction of individuals having the correct value

at some bit position may approach 0 and optimization becomes

impossible. Also this minimum value depends on the problem since

genetic drift should never occur within the whole optimization pro-

cess, which takes longer for BinVal. For OneMax, the minimum

population size predicted by the model is roughly

√
n, whereas for

BinVal is Ω(n). Altogether, the best possible runtime is Θ(n) for
OneMax and Θ(n2) for BinVal. Hence, domino convergence is re-

sponsible for a factor of Θ(n) in the predicted runtime. Essentially,

we will see that these claims can be proven rigorously for specific

algorithms, except for logn-factors that the models did not capture.

Domino convergence was also observed empirically in a wide

range of algorithms [13] but rarely considered in a rigorous runtime

analysis. An exception is the work by Droste [4] who studies the

Compact Genetic Algorithm (cGA) and explains a very different

runtime behavior on BinVal and OneMax. Roughly speaking, with

the presumed best possible setting of its main parameterK , the cGA
optimizes BinVal in timeO(nK) = O(n2+ϵ ) for small constant ϵ > 0

and OneMax in time O(
√
nK) = O(n1+ϵ ). Also, a lower bound

Ω(nK) for BinVal is shown in [4]. Although strong indications are

given, this lower bound neither shows that the bound O(n2+ϵ ) is
tight nor that the performance difference in the upper bounds w. r. t.

OneMax and BinVal is real. Droste’s paper (the conference version

of which was called "Not all linear functions are equally difficult

for the compact genetic algorithm") also gives bounds for all linear

functions and bases the analysis on the fact that the cGA optimizes

heavier weighted positions before lighter ones, in accordance with

the behavior predicted by domino convergence.

Jägersküpper [8] proved that also the (1+1) EA will optimize

the heavy positions of a given linear function no later than the

light ones (in a stochastic sense); however, as mentioned above,

the degree to which heavy positions are favored is so minor that

the expected optimization time is at most by a lower-order term

larger than on OneMax. We are only aware of one further runtime

analysis paper that observes effects similar to domino convergence

on linear functions: the analysis of a (1+λ) EA on linear functions

[3]; however, the expected runtime on the two functions OneMax

and BinVal differs only by a factor o(log λ), so also here domino

convergence is much less pronounced than in the models of GAs

mentioned above. Altogether, we do not have a clear character-

ization of algorithms and effects leading to pronounced domino

convergence and different optimization times on linear functions.

The aim of this paper is to give a rigorous view on domino

convergence and the reasons for its appearance, using runtime

analyses as our main tool. We consider the cGA and two algorithms

derived from it to understandwhich of the underlying operators and

working principles is responsible for domino convergence. In this

sequence of algorithms, we move from crossover-based algorithms

to mutation-only EAs using tournament selection and discover that

domino convergence almost disappears when removing crossover.

Finally, the (µ+1) EA, which uses cut selection, is studied and it is

shown that the effect of domino convergence is also very limited

here, if present at all. Along the way, existing runtime results are

revisited and partly improved, including a proof that Droste’s upper

bound for BinVal is almost tight. Moreover, important techniques

for the analysis of EDAs, GAs and EAs are presented, including

tools to bound the effect of genetic drift in a rigorous way.

After having studied the four algorithms, our conclusion is that

domino convergence is likely to occur in algorithms that maintain

very diverse populations. Then a comparison of two individuals

with respect to their BinVal-value can lead to large changes in

Hamming distance to the optimum, such that only the most sig-

nificant different bit tends to stabilize first. This large Hamming

distance is mostly due to the high variance of the crossover operator.

In mutation-based EAs, individuals are often similar such that also

progress in bits of low weight is likely to be maintained to some

extent. To optimize BinVal in expected time O(n logn), it seems

best to compare two search points of Hamming distance 1, which

is exactly the behavior observed in RLS and most of the time in the

(1+1) EA. Stating it in a different way, on BinVal the simple EAs

behave efficiently since they have properties of hillclimbers and

mostly select on Hamming distance and not on fitness. From this

perspective, it is not longer natural to claim that all linear functions

are optimized in expected time O(n logn): this property heavily

depends on the philosophy behind the algorithm used.

This paper is structured as follows: in Section 2, we introduce

the algorithms we are going to analyze and provide elementary

definitions. In Section 3, we give detailed analyses of the different al-

gorithms and establish on the one hand cases of heavy domino con-

vergence and on the other hand cases where domino convergence

is very limited, if it exists at all. We finish with some conclusions.

2 PRELIMINARIES
We consider different algorithms, the first three of which are the

cGA and modifications thereof, while the last is a classical (µ+1) EA.
The cGA, introduced by [7] and described in Algorithm 1 evolves

a so-called frequency vector (p1,t , . . . ,pn,t ) over time to find the

maximum of a pseudo-Boolean function f : {0, 1}n → R. At it-
eration t , two bit strings, so-called individuals, are sampled by
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letting frequency pi,t be the marginal probability of setting bit i
to 1. Afterwards, the two individuals are ranked by fitness and a

frequency is changed if the two individuals differ in the bit; more

specifically, if the bit is 1 in the better offspring, the frequency is in-

creased by 1/K , otherwise decreased by 1/K . Here K , the so-called
population size, is a parameter to the algorithm that determines

the strength of updates of frequencies and crucially determines its

runtime [4, 6, 14].

Algorithm 1: Compact Genetic Algorithm (cGA)

t ← 0; p1,t ← p2,t ← · · · ← pn,t ← 1/2;

while termination criterion not met do
for i ∈ {1, . . . ,n} do

xi ← 1 with prob. pi,t , xi ← 0 with prob. 1 − pi,t ;

for i ∈ {1, . . . ,n} do
yi ← 1 with prob. pi,t , yi ← 0 with prob. 1 − pi,t ;

if f (x) < f (y) then swap x and y;

for i ∈ {1, . . . ,n} do
if xi > yi then pi,t+1 ← pi,t + 1/K ;

if xi < yi then pi,t+1 ← pi,t − 1/K ;

if xi = yi then pi,t+1 ← pi,t ;

t ← t + 1;

The cGA was called “compact genetic algorithm” since it models

the behavior of a specific GA without using an explicit population.

More specifically, imagine a population consisting of K bitstrings

of length n. A generation chooses two slots of the population, i. e.,

indices in an arbitrary but fixed enumeration of the K individu-

als, uniformly at random, creates two offspring from the whole

population by applying gene pool crossover (see below) twice and

independently, and puts the better of the two offspring into both

slots. Essentially, the selection is a steady-state tournament selec-

tion with a tournament of size 2, but the two individuals chosen for

the tournament are obtained by recombining the whole population

through gene pool crossover. This operator sets each bit indepen-

dently by choosing an individual from the population uniformly

at random and taking its value at the considered bit. Hence, the

probability of setting a bit to 1 is exactly the fraction j/K , where
j is the number of individuals having a 1 at the bit, equivalent to

the sampling procedure of the cGA. Note also that the tournament

selection will update the frequencies in exactly the same way as the

cGA. If the two chosen individuals coincide at the considered bit,

the frequency does not change. If they differ, the frequency changes

by 1/K according to the value of the better individual. Note that a

frequency is allowed to reach the extremal values 0 or 1 to maintain

the analogy with the GA just described. Theoretical analyses often

limit the frequencies to a smaller interval like [1/n, 1 − 1/n] [14].
The formulation of the cGA as an equivalent GA is somewhat

artificial. Amore commonGA is obtained by keeping the population

and the steady-state tournament selection but replacing the gene

pool crossover by uniform crossover, see Algorithm 2. We call the

resulting algorithm StSt

(µ
2

)
GA as it chooses 2 individuals from

the population of size µ uniformly at random. We use the common

term µ from EAs for population sizes from now on.

Algorithm 2: StSt
(µ
2

)
GA

t ← 0; P0 consists of µ individuals chosen u. a. r.;

while termination criterion not met do
Choose x and y from Pt uniformly at random;

Apply uniform crossover to x and y, resulting in the two

offspring x ′ and y′;
if f (x ′) < f (y′) then swap x ′ and y′;
Create Pt+1 from Pt by replacing both x and y with x ′;
t ← t + 1;

It is interesting to study whether the StSt

(µ
2

)
GA behaves simi-

larly to the cGA, in particular w. r. t. domino convergence. To in-

vestigate whether domino convergence is caused by crossover, we

further modify the StSt

(µ
2

)
GA to usemutation, in this case standard

bit mutation with mutation probability 1/n, instead of crossover.

Steady-state tournament selection is maintained, however, we will

allow tournaments of general size λ ≥ 2. The resulting algorithm

is called StSt

(µ
λ
)
EA, see Algorithm 3. As it will turn out, the al-

gorithm for typical functions only works if λ = Ω(logn). This has
similar reasons as in (1,λ) EAs [11] since both algorithms tend to

drift away from the optimum if λ is too small; in fact the (1,λ) EA
is more or less a special case if λ = µ, as detailed in Section 3.3.

Basically, setting the parameter λ to c logn for some big enough

constant c makes it very likely that at least one offspring copies the

parent so that the algorithm usually behaves in an elitist way.

Algorithm 3: StSt
(µ
λ
)
EA

t ← 0; P0 consists of µ individuals chosen u. a. r.;

while termination criterion not met do
Choose x1, . . . ,xλ from Pt u. a. r. without replacement;

for i ∈ {1, . . . , λ} do
Create yi by flipping each bit in xi independently
with probability 1/n;

Choose y∗ from argmaxy∈{y1, ...,yλ } f (y) u. a. r.;
Create Pt+1 from Pt by replacing x1, . . . ,xλ all by y∗;
t ← t + 1;

Finally, to analyze whether domino convergence can occur with

other operators than tournament selection, we consider a mutation-

only, steady state EA that uses cut selection: the (µ+1) EA, see
Algorithm 4. This algorithm has been studied with methods from

runtime analysis before [16]. It is also of particular interest since it

includes the (1+1) EA as a special case, where domino convergence

on linear functions provably does not matter (more precisely, can

only influence the expected runtime by a lower-order term).

The runtime (synonymously, optimization time) is the number

of function evaluations of the algorithm until an optimal solution

is sampled. As the cGA, StSt

(µ
2

)
GA and (µ+1) EA only evaluate

1 or 2 new solutions per iteration, their runtime is asymptotically

identical to the number of iterations until sampling the optimum.

With respect to StSt

(µ
λ
)
EA, the runtime is by a factor of λ larger

than the number of iterations.

In our theorems, we often say that an event occurs with high

probability (w. h. p.). This means that the event occurs with proba-

bility at least 1 − n−c , where the reader may choose the constant c .
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Algorithm 4: (µ+1) EA
t ← 0; P0 consists of µ individuals chosen u. a. r.;

while termination criterion not met do
Choose x from Pt u. a. r.;
Create y by flipping each bit in x independently with

probability 1/n;
Add y to Pt , resulting in P∗ of size µ + 1;
Create Pt+1 by deleting from P∗ an individual of

smallest f -value, breaking ties u. a. r.;

t ← t + 1;

3 RESULTS
In this section, we consider the four algorithms introduced before

and investigate whether they are prone to domino convergence,

and, if so, to what extent.

3.1 Gene-Pool Crossover and Tournament
Selection: the cGA

As mentioned in the introduction, Droste [4] has proved that the

cGA may suffer from domino convergence resulting in a perfor-

mance gap between OneMax and BinVal. We now make Droste’s

results more precise, e. g., by stating a general dependency on K in

the upper bound, obtaining high-probability results, and improving

the bound on BinVal by a factor of nϵ . At the same time, we answer

an open question by Droste and give a shorter and more modern

proof. However, in this context it must be noted that Droste’s ana-

lysis is also more complex since he considers all linear functions.

Theorem 3.1. Let K ≥ cn logn for some sufficiently large con-

stant c > 0 and K = nO (1). Then the optimization time of the cGA on

BinVal is O(Kn) with high probability.

To show the theorem, we use the following structural result

dealing with genetic drift. Similar analyses were proposed in [14]

w. r. t. OneMax.

Lemma 3.2. Consider cGA on BinVal and pick an arbitrary but

fixed entryp of its frequency vector. The probability thatp ever reaches

a value of 1/3 or less within a phase of t steps is at most e−K
2/(36t )

.

Proof. The probability of increasing the frequency in an itera-

tion of the cGA is at least as large as the probability of decreasing it.

Namely, if the underlying bit value in the two sampled individuals

is different and decides which of them has higher fitness (since it is

the most significant different bit) then the individual having a 1will

have higher fitness. By ignoring the steps where the frequency does

not change at all, we only overestimate the probability of reaching

the minimum value within t steps. Moreover, we pessimistically as-

sume that the probability of increasing is the same as of decreasing,

resulting in a fair random walk.

The expected number of decreasing steps within t steps is t/2.
To reach 1/3 from the initial frequency 1/2, it is necessary to have

at least K/6 more decreasing than increasing steps within t steps.
By the Hoeffding bound with random variables Xi ∈ {−1, 1}, the

probability of this is at most e−2(K/6)
2/(2t ) = e−K

2/(36t )
. �

Proof of Theorem 3.1. We consider a phase of t∗ B c ′Kn iter-

ations for some sufficiently large constant c ′ > 0 and show that

the optimum is found in the phase with high probability. To ob-

tain a failure probability of n−γ for a given γ > 0, the constants c
and c ′ and further constants appearing later in this proof have to

be chosen appropriately.

The main idea of the proof is similar to [4]: we analyze the

stochastic process of the potential Φt =
∑n
i=1(1 − pi,t ), which

measures the accumulated distance of the frequencies from their

optimal setting. As soon as the potential function has reached the

value 0, the cGA will surely sample the optimum. In fact, this is

already likely when the potential has become O(1).
To show the claim, we work under the following assumption:

within t iterations, no frequency drops to a value of less than 1/3.

According to Lemma 3.2 and applying a union bound over all n bits,

this assumption holds with probability at least 1 − ne−K
2/36t = 1 −

ne−K
2/(36c ′Kn) = 1−ne−K/(36c

′n)
, which, by plugging in our lower

bound on K , is at least 1 − ne−cn logn/(36c ′n) = 1 − e−Ω((c/c
′) logn)

,

choosing c large enough.
Next we analyze the one-step change Φt − Φt+1 and prove that

its drift satisfies E(Φt −Φt+1 | Φt ) = Ω(1/K) as long as Φt is at least
a constant. Since the maximum Φ-value is n, this suggests the time

bound O(nK) in expectation by additive drift analysis. The details

of the drift argument, including a high-probability statement, will

be shown after deriving the drift.

Consider the two individuals x and y sampled in an iteration

t ≤ t∗ of the cGA based on the current frequency vector pt . With

probability 2pi,t (1 − pi,t ) ≥ (2/3)(1 − pi,t ) it happens that xi , yi .
Here we use the assumption that pi,t ≥ 1/3 within the phase. The

most significant bit sampled differently determines which indivi-

dual has higher BinVal-value and the frequency of the considered

bit will increase by 1/K . The frequencies of the more significant

bits will not change by definition, and the frequencies of the less

significant bits are expected to remain the same since they do not

influence the ranking of x and y. Hence, sampling x and y differ-

ently is sufficient for an expected decrease of the Φ-value by 1/K .
We obtain E(Φt − Φt+1 | Φt ) ≥ Pr(x , y)/K .

The probability Pr(x , y) that x and y differ in a least one bit is

1 −

n∏
i=1
(1 − 2pi,t (1 − pi,t )) ≥ 1 −

(
1 −

∑n
i=1 2pi,t (1 − pi,t )

n

)n
,

which is at least 1 −

(
1 −

(2/3)Φt
n

)n
, where the first inequality used

that the arithmetic mean is at least the geometric mean.

The last bound is Ω(1) if Φt ≥ 1, where the 1 has been chosen

for convenience and can be replaced by any other positive constant.

Hence, conditioned on Φt ≥ 1, we obtain the drift E(Φt − Φt+1 |
Φt ) = Ω(1/K). If Φt ≤ 1, the probability of sampling the opti-

mal all-ones string is at least (1/3)(2/3) = 2/9 since all frequen-

cies are at least 1/3 and the probability of sampling the all-ones

string is minimized if as many frequencies as possible take their

extremal values (1/3 and 1). The probability of not sampling the op-

timum within the next c2 logn, c2 an arbitrary constant, iterations

is e−Ω(c2 logn), observing that the potential can increase by at most

(n/K)c2 logn = O(1) in this number of iterations.

We still have to show concentration of the time T until the

potential is reduced from at most n to at most 1 under an additive

drift ofΩ(1/K). To apply tail bounds for additive drift [9], we have to
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bound the maximum change of Φ-value. By Hoeffding’s inequality,

for any c3 > 0 it holds that |Φt − Φt+1 | ≤ c3
√
n logn/K with

probability 1− e−Ω(c3 logn), pessimistically assuming the maximum

sampling variance according to pt,i = 1/2 for all i . By a union

bound, this holds throughout the phase of t∗ = c ′Kn = nO (1) steps
still with probability 1 − n−c4 for any given constant c4 > 0 if c3
is chosen large enough. Under this assumption, Theorem 2 in [9]

applied with (according to the notation of the theorem) ϵ = Θ(1/K)

and c = Θ(
√
n logn/K) yields that

Pr(T > t∗) ≤ e−t
∗ϵ 2/8c2 = e−(c

′Kn)Θ(1/K 2)/Θ((n logn)/K 2),

which is e−Ω(n) using our assumption K = Ω(n logn). Hence, the
total failure probability is clearly less than n−γ . �

Also the lower bound Ω(Kn) follows.

Theorem 3.3. LetK ≥ cn logn for a suffciently large constant c >

0 and K = nO (1). Then the optimization time of the cGA on BinVal

is Ω(Kn) with high probability and in expectation.

Proof. We again consider the potential Φt =
∑n
i=1(1 − pi,t ).

By the initialization procedure of the cGA, we have Φ0 = n/2. We

note that as long as Φt ≥ n/4, the probability of sampling the all-

ones string is exponentially unlikely. Namely, if Φt ≥ n/4, there
must be at least n/8 bits of frequency of at most 7/8. Otherwise, if

there were more than 7n/8 bits of frequency larger than 7/8, the

potential would be less than n · (1/8)+n/8 ·1 = n/4. The probability
of sampling ones only at all the bits of frequency at most 7/8 is at

most (7/8)n/8 = 2
−Ω(n)

.

We claim that with high probability t∗ B c ′Kn steps are not

sufficient to lower the potential to less than n/4 if c ′ is a sufficiently

small constant and c is chosen large enough. The theorem then fol-

lows from the claim since the probability of sampling the optimum

within cKn steps is still 2
−Ω(K ) = n−Ω(c) by the union bound and

our assumptions on K .
To show the claim, we analyze the one-step change ∆t B Φt −

Φt+1 and derive that the drift satisfies E(∆t | Φt ) ≤ 1/K . More

precisely, we will prove that ∆t is the sum of k ≤ n − 1 indepen-
dent random variables with support [−1/K , 1/K] and zero mean,

and a random variable that is stochastically dominated by +1/K .
By applying Hoeffding’s inequality on t∗n random variables in

[−1/K , 1/K], we bound the quantity

∑t ∗−1
i=0 ∆i − t

∗/K and obtain

that Pr(Φ0 − Φt ∗ ≥ 2t∗/K) ≤ e−Ω(t
∗/n) = e−Ω(K ). Hence, the po-

tential is not reduced to less than n/4 in t∗ steps with probability

1 − e−Ω(K ).
To see the claim about the distribution of ∆t , consider the two

individuals x ,y ∈ {0, 1}n sampled at iteration t . Let i be the leftmost

(i. e., most signficant) bit where x and y differ; w. l. o. g., xi = 1 and

yi = 0 so that BinVal(x) > BinVal(y). Then pj,t+1 = pj,t for j < i
since the bits left of i coincide. Moreover,pi,t+1 ≤ pi,t +1/K . Finally,
for j > i , pi,t − pi,t+1 takes values in {−1/K , 0, 1/K} with equal

probability for the non-zero values since the outcome of these bits

is independent of the ranking BinVal(x) > BinVal(y). �

Theorem 3.1 demands that K ≥ cn lnn for a runtime of O(Kn)
to hold, whereas Theorem 3.3 only shows a lower bound Ω(Kn) on
the runtime. In principle, it could still be the case that the condition

on K from the upper bound is way too strong and that the runtime

bound Θ(Kn) could hold for values of K that are, e. g., Θ(logn). An
expected runtime of Θ(n logn) has not been excluded yet – and

would not contradict Droste’s [4] results either. Therefore, we now

show that the condition on K from Theorem 3.1 is almost tight

since lower values lead to genetic drift and will irreversibly fix

frequencies to 0. In fact, a statement in this vein is also demanded

in the conclusions of [4].

Theorem 3.4. The cGA will fail to optimize BinVal with proba-

bility Ω(1) if K ≤ ϵn for a sufficiently small constant ϵ > 0.

Proof. Consider a phase of t B γKn iterations for some small

enough constant γ > 0. Reusing the argument from the proof of

Theorem 3.3, we have Φs ≥ n/2 − ϵn for all s ≤ t with prob-

ability 1 − 2
−Ω(n)

. We consider the n′ B n − ϵn most signifi-

cant bits. By Lemma 3.2, every frequency from these bits stays

above 1/3 within t = γKn steps with probability 1 − e−K
2/(36t ) ≥

1−e−(ϵn)
2/(36γ ϵn2) = 1−e−ϵ/(36γ ). By choosingγ small enough, the

failure probability is at most ϵ . Applying Chernoff bounds (which

is possible since Lemma 3.2 estimates the processes belonging to

different frequencies by independent random walks), we have at

least n′ − 2ϵn′ bits of frequency at least 1/3 from the n′ considered

bits with probability 1− 2−Ω(n). The other bits contribute at most 1

to Φs , s ≤ t . Since Φs ≥ n/2 − ϵn, this implies at least n′/3 many

of these must have a frequency of at most 2/3 (for ϵ small enough).

We are in the situation that Ω(n) from the first n′ frequencies are
in the interval [1/3, 2/3]. Consider the two individuals sampled in

such a situation. The probability that they coincide in the firstn′ bits

is 2
−Ω(n)

, and also with probability 1−t2−Ω(n) = 1−2−Ω(n) it never

happens in t iterations that the two offspring coincide in all n′ bits.
Hence, then−n′ = ϵn least significant bits have never been relevant

for the selection in the cGA and perform therefore unbiased random

walks. These random walks have been analyzed in [14, Lemma 7].

Applying this lemma (with 0 so-called b-steps) twice, first to exclude

that 5/6 is exceeded and then, under this condition, to analyze the

event of hitting the lowest possible value 0), we obtain for each of

these random walks that it hits 0 within αK2 ≤ t iterations, where
α can be chosen as a constant, with probability Ω(1). �

We think that the assumption from Theorem 3.4 can be relaxed

to K ≤ ϵn logn. In any case, Theorems 3.3 and 3.4 together, we

obtain that a parametrization of K is necessary that leads to an

expected runtime of Ω(n2).

Corollary 3.5. The expected runtime of cGA on BinVal is Ω(n2).

For comparison, we present the runtime bound that holds for

the cGA on OneMax and is basically known from the literature:

Theorem 3.6 (cf. [14]). The expected optimization time of the

cGA on OneMax with K ≥ c
√
n logn for a sufficiently large c > 0

and K = nO (1) is O(
√
nK) with high probability.

The proof of this theorem is almost the same as in the paper [14].

However, as their variant imposes borders {1/n, 1 − 1/n} on the

frequencies, we cannot get finite expected time, in contrast to [14].

As their proof uses that no frequency hits the lower border with

high probability, it can also be used for our variant of the cGA.

The runtime in Theorem 3.6 isO(n logn) for the smallest possible

choice of K . This is in sharp contrast to the Ω(n2) bound derived
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above and shows that domino convergence makes cGA lose a factor

Ω(n/logn) in runtime when optimizing BinVal instead of OneMax.

3.2 Uniform Crossover and Tournament
Selection

Wenow turn to the StSt

(µ
2

)
GA, which is a real GA and uses uniform

crossover instead of the gene-pool crossover implicit in the cGA.

As a consequence, even though we still can define frequency values

for every bit, corresponding to the fraction of individuals having

a one, the bit values of selected individuals are not obtained by

sampling independently according to the frequency vector. In fact,

the bit values are heavily dependent, at least in the early phases

of optimization. Despite these differences, we will see that the

StSt

(µ
2

)
GA behaves essentially in the same way as the cGA on

BinVal and OneMax. In particular, under the assumption that an

upper bound is tight, strong domino convergence occurs on BinVal.

As a preparation, we show a lemma about the effects of the uni-

form crossover on frequencies. Essentially, every frequency shows

the same stochastic process as in the cGA, but the processes are not

necessarily independent, not even for constant fitness functions.

Lemma 3.7. For the StSt

(µ
2

)
GA on BinVal, consider an arbitrary

but fixed bit and letXt , t ≥ 0, denote its frequency value at iteration t .
Then µXt stochastically dominates a walk on {0, 1, . . . , µ −1, µ} with
transition probabilities Pr(Xt+1 = i + 1 | Xt = i) = (i/µ)(1 − i/µ),
Pr(Xt+1 = i − 1 | Xt = i) = (i/µ)(1 − i/µ), Pr(Xt+1 = i | Xt =
i) = 1 − 2(i/µ)(1 − i/µ) for i ∈ {0, . . . , µ}. The random walks w. r. t.

different bits are not necessarily independent.

The probability that the Xt -value becomes 1/3 or less within s

steps is at most e−µ
2/(36s)

.

Proof. We denote the index of the considered bit by k . If there
are i individuals having a one at position k , then uniform selection

will select an individual with a one at bit k with probability p = i/µ.
Since the two individuals used for tournament selection (before

applying crossover) are chosen independently, the probability that

bitk coincides in the tournament equals 1−2p(1−p). Since crossover
will not have any effect in this case, this already proves the claimed

probability of the event Xt+1 = Xt .
The event that the first chosen individual has a one at bit k

and the second individual a zero has probability p(1 − p), as does
the opposite event of a zero in the first and a one in the second

individual. Note that with probability 1/2 the entries at position k
are swapped by crossover. Still, after crossover the two offspring

satisfy these two cases each with the same probability p(1 − p).
The crucial observation is that due to crossover, the value of the

two selected individuals are swapped with probability 1/2, and

swapping occurs independently of all other bit values.

Hence, if the ranking of the two offspring does not depend on

bit k then the selected offspring will have a one with probability

exactly p(1 − p). If it depends on bit k then the offspring with a

one at bit k has a higher probability of being selected due to the

structure of BinVal, so Pr(Xt+1 = i + 1 | Xt = i) ≥ p(1 − p) in any

case. This proves the first statement of the lemma.

Since a frequency value in the StSt

(µ
2

)
GA and cGA dominates

the same fair random walk, the proof of Lemma 3.2 carries over to

StSt

(µ
2

)
GA, which proves the second statement of the lemma. �

We now show an upper bound similar to Theorem 3.1.

Theorem 3.8. Let µ ≥ cn log2 n for some sufficiently large con-

stant c > 0 and µ = nO (1). Then the runtime of the StSt

(µ
2

)
GA on

BinVal is O(µn log µ) w. h. p.

Proof. In the same way as in the proof of Theorem 3.1, we show

that no frequency drops below 1/3 within a time span of c ′µn log µ
iterations for some sufficiently large constant c ′ > 0. Instead of

Lemma 3.2, Lemma 3.7 is used. The fact that the random walks are

not independent does not harm since a union bound is applied.

Next we consider the process in phases, where phase i ends
when the population has converged for bit i , i. e., the corresponding
frequency has reached 1. Note that some phases may be empty and

all search points in phase i must have the i − 1 most significant

bits set to i . We investigate the frequency pi and prove that the

expected time to reach its maximum 1 is bounded by O(µ log µ).
Then the lemma follows by summing over all phases.

The expected time until pi has reached is maximum can be

bounded as follows: if the two individuals chosen for tournament

selection differ in bit n − i , then pi increases and stays unchanged

otherwise. The probability of differing in bit i is at least pi (1−pi ) ≥
(1 − pi )/3. Since 1 − pi ≥ 1/µ, multiplicative drift analysis of the

processXi := (1−pi )/3 yields the expected timeO(µ log µ) to reach
Xi = 0, equivalent topi = 1. Using the tail bounds for multiplicative

drift analysis [2], the bound holds with high probability for a single

phase and by a union bound also for all phases together. �

The bound from Theorem 3.8 is by a factor of Θ(logn) weaker
than the one from Theorem 3.1. We think that the same bound also

holds for the StSt

(µ
2

)
GA; however, our techniques for the analyses

are weaker since independence of bit values cannot be exploited in

the proof of Theorem 3.8.

We also conjecture strongly that a lower bound of Ω(µn) holds
on BinVal. Similarly to the proof of Theorem 3.3, we can show that

with probability Ω(1), the potential Φt still is Ω(n) after cµn steps

for a small constant c > 0. However, since bits are not sampled

independently, this does not yet imply that it is unlikely to sample

the optimum. Additional arguments showing that frequencies are

quickly decoupled by crossover will be needed.

The proof of Theorem 3.8 essentially pessimistically assumes

that the bits are optimized in order of decreasing significance, i. e.,

according to domino convergence. We now show a much better

bound w. r. t. OneMax, resembling Theorem 3.6 up to a logn-factor.
In this proof, it is exploited that progress may come from all bits,

not only the most significant ones.

Theorem 3.9. Let µ ≥ c
√
n logn for some sufficiently large con-

stant c > 0 and µ = nO (1). Then the runtime of the StSt

(µ
2

)
GA on

OneMax is O(µ
√
n logn) w. h. p..

Proof. We consider a phase of t B c ′µ
√
n iterations for a suf-

ficiently large constant c ′ > 0. Applying the second statement of

Lemma 3.7, we obtain that no frequency drops below 1/3 with high

probability if c is chosen as a sufficiently large constant.

The remainder of the proof carries out a drift analysis on the

potential Φt =
∑n
i=1(1 − pi,t ), which was already used in the proof

of Theorem 3.1. The overall approach resembles mathematically

the proof of Theorem 3.6; however, many mathematically similar
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relations are obtained for different reasons compared to the cGA.

We will show a drift E(Φt − Φt+1 | Φt ) = Ω(Vt /(µ
√
n)), where

Vt B
∑n
i=1 pi (1 − pi,t ). Note that the latter quantity would be the

sampling variance of the distribution of the cGA, however, here we

do not sample bit values independently.

An iteration of StSt

(µ
2

)
GA draws two individuals x and y uni-

formly at random. Each of these has an expected OneMax-value of∑n
i=1 pi,t using linearity of expectation. Also by linearity of expec-

tation, the expected value of the Hamming distance D of x and y is

E(D) B
∑n
i=1 2pi (1 − pi ), which we will use below.

Crossing x and y over creates the two offspring x ′ and y′. The
bits where x and y coincide also coincide in the offspring, so selec-

tion will not change their frequencies. The bits where they differ

contain together D ones and contribute D/µ to the Φt -value. We

therefore consider an experiment where D independent trials with

success probability 1/2 are executed on the bits different in x and y,
identifying a success with crossover putting the one-bit from the

considered position into offspring x ′. By the properties of the bi-

nomial distribution, the number of successes is D/2 + Ω(
√
D) with

constant probability. Hence, the probability that x ′ has Ω(
√
D)more

ones than the average D/2 w. r. t. the different bits is Ω(1).
To determine the drift of Φt , we are interested in the expected

value of

√
D, knowing E(D). To this end, we use the following

converse of Jensen’s inequality (Ineq. (2) in [1]): for convex f
and a discrete random variable X with support ⊆ [0,n] it holds

that E(f (X )) ≤ E(X )
f (n)
n . Using this with f (x) = −

√
x , we ob-

tain E(
√
D) ≥ E(D)

√
n
. Altogether, we obtain an expected surplus of

one-bits in x ′ over the average D/2 that is bounded from below by

Ω(E(
√
D)) = Ω

( n∑
i=1

2pi (1 − pi )/
√
n

)
= Ω

( n∑
i=1
(2/3)(1 − pi )/

√
n

)
,

using that pi,t ≥ 1/3. Every one-bit in the better offspring con-

tributes 2/µ to Φt+1. Hence, replacing both x andy by the better off-

spring decreases theΦt -value in expectation by (c2/(µ
√
n))

∑n
i=1(1−

pi ) = (c2/(µ
√
n))Φt for some constant c2 > 0. Using the multi-

plicative drift theorem [2], the expected number of iterations until

the potential is reduced to at most xmin B (n − 1)/µ is at most

log(xmin)+1

c2/(µ
√
n)
= O(µ

√
n log µ) = O(µ

√
n logn), and, using tail bounds

for multiplicative drift, the time isO(µ
√
n logn) with high probabil-

ity. The theorem now follows by observing that at potential (n−1)/µ
the optimum must be in the population. �

3.3 Tournament Selection and Mutation Only
We now look into the StSt

(µ
λ
)
EA, which is obtained from the

StSt

(µ
2

)
GA by replacing the crossover by standard bit mutation

and using a possibly larger tournament of size λ. In fact, if µ = λ, the
algorithm after one iteration collapses to the (1,λ) EA which needs

population size Ω(logn) on all functions with a unique optimum

[11]. Intuitively, this minimum size is required to add a sufficient

degree of elitism to the algorithm, making it resemble the well-

known (1+λ) EA [3]. Hence, we assume throughout this section

that λ ≥ c logn for a sufficiently large constant c > 0.

Interestingly, also the StSt

(µ
λ
)
EA can suffer from domino con-

vergence but to a much lower extent than the algorithms discussed

before.We show this by establishing a relation to the just-mentioned

(1+λ) EA, which from 1 parent creates λ offspring by standard bit

mutation and replaces the parent by the fittest offspring.

Lemma 3.10. Given a phase of length t = nc1 and a given failure

probability 1/nc2 for constants c1, c2 > 0, there is a choice λ = c logn
for a sufficiently large constant c > 0, depending on c1 and c2, such
that the following two properties hold: (1) in all tournaments chosen

within the phase there is at least one mutation that does not flip any

bit; (2) in addition, if µ = λ, the algorithm after the first iteration and

until iteration t is identical to the (1+λ) EA with λ reduced by 1.

Proof. The probability of a mutation not flipping any bit is at

least (1−1/n)n = (1−o(1))e−1. The probability that such a mutation

does not occur at least one in λ trials it at most (1−(1−o(1))e−1)λ ≤
e−λ ≤ n−c if n is large enough. We choose c large enough such that

a union bound over nc1 iterations still yields a failure probability
of at most n−c2 . This proves the first statement.

For the second statement, observe that the best offspring from

the tournament overtakes the whole population. Hence, starting

after the first tournament all populations will contain µ identical

individuals, so it makes sense to speak of “the” parent in all subse-

quent iterations. Moreover, note that the condition of reproducing

at least once the parent can bemodelled equivalently as that the first

offspring from the tournament equals the parent while the remain-

ing offspring still are obtained by applying standard bit mutation

to the parent. Hence, we obtain the (1 + (λ − 1)) EA. �

The equivalence established in Lemma 3.10 allows us to transfer

known results about domino convergence from [3] to the StSt

(µ
λ
)
EA.

The following two results are given in somewhat simplified and

unified form; the paper considers also different settings of λ.

Theorem 3.11 (cf. [3], Th. 8 and 19). For the (1+λ) EA with

λ = O(n), the expected number of iterations to optimize BinVal is

Θ(n + (n logn)/λ). The upper bound holds with high probability if

λ = O(n1−ϵ ) for some ϵ > 0.

Theorem 3.12 (cf. [3], Th. 24). Let ϵ > 0 be constant and λ =
O(n1−ϵ ). Then for the (1+λ) EA the number of iterations to optimize

OneMax is upper bounded by O(n log log λ/log λ + (n logn)/λ) in
expectation and with high probability.

Hence, the performance gap of the (1+λ) EA between OneMax

and BinVal is Ω(log λ/log log λ). Roughly speaking, it stems from

the fact that one out of λ offspring in expectation flips this number

of bits. This progress is immediately exploited on OneMax but on

BinVal only the most significant flipping bit is relevant for selection

so that the offspring with many flipping bits does not necessarily

have best fitness. This is again a scenario that can be considered as

domino convergence.

The same performance gap applies with high probability also

to the StSt

(µ
λ
)
EA with µ = λ = c logn for a sufficiently large

constant c > 0. Here we use Lemma 3.10 and exploit that the

runtime bounds cited before apply with high probability.

Finally, we should investigate the case µ > λ in the StSt

(µ
λ
)
EA.

It is tempting to conjecture by setting µ = sλ, where still λ = c logn
for large enough c , results in an algorithm that is at most by a factor

of s slower than the setting of µ = λ. In general, however, this

does not seem to be true. There are constructed example functions

where increasing µ in an (µ+1) EA by a polynomial factor makes
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the expected optimization time grow by an exponential factor [16].

It is very likely that similar examples exist for the StSt

(µ
λ
)
EA.

Nevertheless, on the simple monotone functions OneMax and

BinVal we conjecture that increasing µ by a factor of s changes the
expected optimization time also by a factor of O(s). Intuitively, this
holds since the next tournament shares an expected 1/s-fraction of

the previous tournament and that neglecting inferior solutions does

not harm. So if s = o(log λ/log log λ), we still expect the StSt
(µ
λ
)
EA

with µ = sλ to be more efficient on OneMax than on BinVal.

3.4 Cut Selection and Mutation Only: the
(µ+1) EA

We finally turn to the (µ+1) EA whose runtime on pseudo-Boolean

functions, in particular OneMax, is relatively well understood. We

therefore start with a presentation of a classical result.

Theorem 3.13 ([16]). The expected optimization time of the

(µ+1) EA on OneMax is Θ(µn + n logn).

The lower bound from Theorem 3.13 applies to all functions with

a unique optimum. For BinVal, we obtain a larger upper bound.

Theorem 3.14. The expected optimization time of the (µ+1) EA
on BinVal is O(µn log µ + n2).

Sketch of proof. We can basically re-use the analysis of the

(µ+1) EA on LeadingOnes(x1, . . . ,xn ) B
∑n
i=1

∏i
j=1 x j from [16],

which represents a pessimistic model for the optimization process.

For the population at iteration t , we define the potential Φt as

the number of leading one-bits in the individual having maximal

BinVal-value. By the structure of BinVal and the elitist selection

of (µ+1) EA, Φt is monotone increasing in t . The following event is

sufficient to increase the potential: after the first point in time t ′ ≥ t
where the whole population consists of individuals with Φt leading
ones, the zero-bit at position Φt + 1 flips. For space reasons, the

analysis of the corresponding waiting times is omitted. �

Comparing Theorem 3.13 and 3.14 for µ = Ω(n logn), the lower
bound for OneMax and the upper bound for BinVal are only by a

factor O(log µ) apart. Hence, if the (µ+1) EA exhibits domino con-

vergence (in this range of µ), it is much less pronounced than in

the cGA and StSt

(µ
2

)
GA. We know in the special case of µ = 1,

that the expected optimization time of the (µ+1) EA, in this case the

(1+1) EA, is (1 ± o(1))en lnn on all linear functions. This is due to

the fact that the simple (1+1) EA usually compares search points of

small Hamming distance. In the (µ+1) EA, an individual is selected

uniformly at random and accepted for the next iteration if is is

at least as good as the worst from the population, which may be

very different. Hence, we conjecture that the upper bound of Theo-

rem 3.14 is tight for large µ, more precisely we think that a lower

bound of Ω(µn log µ + n logn) holds and that domino convergence

in fact occurs to the extent of a performance gap of Θ(log µ).

CONCLUSIONS
We have presented a rigorous study of so-called domino conver-

gence in EDAs, genetic algorithms using crossover, and mutation-

only evolutionary algorithms. For the first two algorithms we ob-

serve a performance gap of almost linear order between the two

linear functions OneMax and BinVal, answering an open problem

formulated by Droste [4]. Intuitively, this performance gap is due

to the effect of crossover, which on BinVal makes the algorithm

compare individuals of typically large Hamming distance. Then

frequencies belonging to bits of high weight tend to stabilize much

earlier than bits of low weight, as predicted by earlier models of

domino convergence and observed in experimental studies.

We have also investigated two algorithms that use mutation as

only variation operator. In a variant using tournament selection,

also a performance gap between BinVal and OneMax stemming

from domino convergence is observed, but this gap is only logarith-

mic in the population size. In the (µ+1) EA, the performance gap is

also at most logarithmic in the population size µ, but in fact it may

even be smaller. Altogether, our results show that the optimization

of linear functions by randomized search heuristics leads to a much

richer behavior than the Θ(n logn) bound for the (1+1) EA suggests.

It is an open problem to study more complex and common GAs

involving both mutation and crossover in this context.
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