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ABSTRACT
Advances in Geometric Semantic Genetic Programming (GSGP)
have shown that this variant of Genetic Programming (GP) reaches
be�er results than its predecessor for supervised machine learning
problems, particularly in the task of symbolic regression. How-
ever, by construction, the geometric semantic crossover operator
generates individuals that grow exponentially with the number
of generations, resulting in solutions with limited use. �is paper
presents a new method for individual simpli�cation named GSGP
with Reduced trees (GSGP-Red). GSGP-Red works by expanding
the functions generated by the geometric semantic operators. �e
resulting expanded function is guaranteed to be a linear combina-
tion that, in a second step, has its repeated structures and respec-
tive coe�cients aggregated. Experiments in 12 real-world datasets
show that it is not only possible to create smaller and completely
equivalent individuals in competitive computational time, but also
to reduce the number of nodes composing them by 58 orders of
magnitude, on average.
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1 INTRODUCTION
�e Geometric Semantic Genetic Programming (GSGP) [15] frame-
work introduces geometric semantic operators to Genetic Program-
ming (GP). �ese operators are capable of inducing a semantic e�ect
through syntactic operations, and allow GSGP to explore a conic
semantic �tness landscape, which can be e�ciently optimized using
evolutionary search [13]. GSGP has shown to outperform GP in
di�erent scenarios, specially in symbolic regression [8, 9, 26].

However, GSGP su�ers from a problem that limits its use in real-
world applications. By de�nition, the geometric semantic operators
generate o�spring composed by the complete representation of
their parents, plus some additional structures, leading to an expo-
nential growth of the solution size in the number of generations
[24]. �is extreme growth leads to excessive usage of memory
and computational power, and also results in non-interpretable
solutions [24].

Two di�erent approaches have been followed in the literature to
deal with the problem of exponential growth of GSGP individuals,
although they were not able to e�ectively solve the problem. �e
�rst approach simply focuses on making the algorithm more e�-
cient in terms of memory and computational resources [14, 25]. �e
second proposes new versions of the semantic crossover operators
since they are the ones responsible for the excessive growth of the
solutions [16, 22].

Most works based on GSGP follow the �rst approach, using
an implementation presented by Vanneschi et al. [25] that stores
pointers to the trees representing the individuals, instead of keeping
the whole individual in memory. �is implementation computes the
semantics—and �tness—of new individuals from the values of their
parents [6]. Although the implementation is very fast and reduces
the memory needed during the evolution, the individuals are not
explicitly built during the search. �us, if we want to access the
�nal individual or if new data is presented a�er the training stage,
an assembling step is needed to generate the complete individual
from the pointers, which still presents an exponential size.

�is work presents a new method, called Geometric Semantic
Genetic Programming with Reduced trees (GSGP-Red), to solve
the problem of excessive growth of GSGP solutions for symbolic
regression. GSGP-Red works by expanding the functions generated
by the geometric semantic operators. �e resulting expanded func-
tion is guaranteed to be a linear combination that, in a second step,
has its repeated structures and respective coe�cients aggregated.
�ese expansion and aggregation operations ensure that only one
copy of each function composing the solution is kept in the sim-
pli�ed individual, leading to a massive reduction of the size of the
resulting solutions while guaranteeing the exact same results of
GSGP.

ar
X

iv
:1

80
4.

06
80

8v
1 

 [
cs

.N
E

] 
 1

8 
A

pr
 2

01
8



GECCO ’18, July 15–19, 2018, Kyoto, Japan Martins et al.

An experimental analysis comparing the proposed method with
GSGP and GP in 12 real-world datasets showed that GSGP-Red is
capable of �nding solutions equivalent to the ones generated by
GSGP while resulting in individuals up to 64 orders of magnitude
smaller than those generated by previous GSGP versions, with a
practicable additional overhead in computational time.

�e remainder of this paper is organized as follows. Section 2
introduces the main concepts of GSGP. Section 3 reviews related
work, while Section 4 introduces the proposed method. Section 5
reports computational results, and Section 6 draws conclusions and
points out direction of future work.

2 GEOMETRIC SEMANTIC GENETIC
PROGRAMMING

Genetic Programming (GP) [11] manipulates individuals during the
evolution by applying operators that modify the structure of their
trees, i.e., their syntax. Although some restrictions are respected
by GP operators—e.g., the arity of the function nodes—they do
not consider the behaviour—i.e., the semantics—of the individuals.
GSGP [13], on the other hand, employs operators that act on the
syntax of the population with a de�ned semantic outcome.

In the context of symbolic regression, the semantics of a given
individual p, representing a symbolic expression—usually stored as
a tree—can be represented as the output vector it generates when
applied to the training setT = {(xi ,yi )}ni=1—with (xi ,yi ) ∈ Rd ×R
for i = 1, 2, . . . ,n—given by s(p) = [p(x1),p(x2), . . . ,p(xn )]. �is
representation allows us to describe the semantics of any individual
in an n-dimensional semantic space [19].

GSGP de�nes geometric semantic operators that generate o�-
spring with a given behaviour in the semantic space w.r.t. a given
metric. Given a parent individual p, the Geometric Semantic Mu-
tation (GSM) operator applies a semantic perturbation to the in-
dividual, generating an o�spring placed inside a ball centred on
the parent individual in the semantic space, with radius ε ∈ R
proportional to the mutation step. �e operator is de�ned as

GSM(p(x),δ ) = p(x) + δ × (rm (x) − rn (x)) , (1)
where the parameter δ is the mutation step and rm and rn are
functions randomly built.

�e Geometric Semantic Crossover (GSX ) operator, on the other
hand, combines two individuals p1 and p2, resulting in a single
o�spring placed in the metric segment connecting the parents in
the semantic space. �e GSX operator de�ned w.r.t. the Euclidean
distance is given by

GSXE (p1(x),p2(x)) = k × p1(x) + (1 − k) × p2(x) , (2)
where k ∈ R is a constant uniformly sampled from [0, 1]. Similarly,
the GSX operator de�ned w.r.t. the Manha�an distance is given by

GSXM (p1(x),p2(x)) = rf (x) × p1(x) + (1 − rf (x)) × p2(x) , (3)

where rf is a function randomly generated with codomain [0, 1].
By construction, the geometric semantic mutation and crossover

operators induce, respectively, linear and exponential growth of
the individuals with the number of generations. Equations 4, 5
and 6 present the expected number of nodes of an individual of

the generation д > 0, generated by GSGP using only one of the
geometric semantic operators—GSM, GSXE or GSXM , respectively
[18, 20]. E[P0] is the expected number of nodes in the individuals
of the initial population, E[r ] is the expected number of nodes in
the random functions generated by the operators and a,b and c are
the number of additional nodes (constant) used by GSM, GSXE and
GSXM , respectively.

E[GSM,д] = E[P0] + д × (2 × E[r ] + a) (4)

E[GSXE ,д] = 2д × E[P0] + (2д − 1) × b (5)

E[GSXM ,д] = 2д × E[P0] + (2д − 1) × (E[r ] + c) (6)
�is characteristic is pointed out as the main drawback of GSGP—

a�er a few generations the population becomes unmanageable in
terms of memory and computational time spent to compute the
�tness [24]. In addition, the excessive size of the individuals makes
the functions they represent very hard to understand and interpret
[7]. Since one of the main advantages of GP over other black box
learning approaches is the ability to �nd solutions in the form of
comprehensible structures, the exponential size of GSGP solutions
limits its usage in practice [16].

3 RELATEDWORK
�e exponential growth of GSGP individuals was identi�ed by
Moraglio et al. [15] in their seminal work. �e authors propose
to simplify the o�spring during the evolution in order to keep
the size of the individuals manageable. However, given the com-
plexity of the process, they suggest simplifying the functions only
su�ciently—i.e., partially instead of optimally—using, for exam-
ple, a computer algebra system in order to avoid increasing the
computational cost of GSGP excessively.

�ere are a few works in the literature that try to deal with the
problem of tree exponential growth, but none of them actually solve
it. �ese methods follow two main directions. �e �rst focuses on
more e�cient implementations of GSGP, while the second proposes
di�erent modi�cations to the genetic operators aiming to reduce
the size of the produced o�spring—resulting in operators that are
only approximately geometric.

Among works in the �rst group are the implementation of geo-
metric semantic operators for symbolic regression proposed by Van-
neschi and colleagues [6, 25], conceived to reduce memory con-
sumption and computational time. �e trees representing the indi-
viduals in the initial population and the functions used by geometric
semantic operators are stored in memory, such that the subsequent
individuals are composed of pointers to these structures. �e se-
mantics of the individuals is also stored in memory and used to
compute the semantics of the o�spring, reducing computational
e�ort to calculate the �tness. However, the function represented
by the individual is never truly built during the evolution. In order
to obtain the symbolic function de�ned by the individual, we need
to reconstruct it from the pointers and trees stored in memory,
resulting in a function with size exponentially proportional to the
number of generations. Instead of using pointers and data struc-
tures, Moraglio [14] uses higher-order functions and memoization
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in his Python implementation, delegating the control to the com-
piler. �e functions evolved are represented directly as compiled
Python and still present exponential size when decompiled.

In the second group of works is the Subtree Semantic Geomet-
ric Crossover (SSGX) operator, an approximation for the GSXM
that generates smaller individuals proposed by Nguyen et al. [16].
Given two parent individuals, p1,p2, SSGX generates o�spring by
applying the GSXM operator to the subtrees of p1 and p2 with
semantics more similar to their respective parents, resulting in
smaller functions. In addition, the method intercalates SSGX with
the conventional subtree-swapping crossover [11] during crossover
operations, resulting in solutions around 29 orders of magnitude
smaller than those generated by GSXM . However, although SSGX
outperformed GSXM in terms of test error in their experimental
analysis, the con�guration of the experiments can make the results
inconclusive. �is is because SSGX and GSXM are tested using
di�erent mutation operators, which can be the responsible for the
di�erence in the performance. In addition, SSGX is around three
times more time consuming than GSXM .

Pawlak and Krawiec [22], in turn, analyse a wide range of mu-
tation and crossover operators under di�erent metrics, including
the ratio between the sizes of the o�spring and their parents. �e
experimental analysis conducted with populations initialized using
the ramped half-and-half method [11] showed that GSM generates
o�spring 5.16 times larger than their parents, on average, while
the Tree Mutation (TM) [11], Competent Mutation (CM) [20] and
Semantically Driven Mutation (SDM) [5] result in o�spring around
2.5 times larger than their parents. A similar experiment involving
crossover operators showed that, on average, the Subtree-Swapping
Crossover (SSX) [11] and Semantically Driven Crossover (SDX) [4]
generate o�spring of the same size of their parents, and the Com-
petent Crossover (CX) and GSXE operators generate o�spring 1.78
and 2.35 times larger than their parents, respectively. Notice, how-
ever, that TM and SSX are non-semantic operators, SDM and SDX
are semantic but not geometric and CM and CX are approximately
geometric semantic operators.

�e method proposed here does not �t in any of the approaches
listed before. It does not change the way GSM or GSX work and
is able to generate exactly the same results that GSGP generates.
It performs on-the-�y simpli�cation of trees just a�er crossover
and mutation operators are applied by taking advantage of the fact
that the individuals are always linear combinations of trees. At
the same time, its implementation does allow for e�cient use of
memory and computational time.

4 METHODOLOGY
By construction, GSGP operators keep the structure of the individ-
uals being manipulated untouched, only adding other subtrees to
them. Consequently, the structure of the individuals generated in
the initial population is perpetuated through the whole evolution
process, usually with multiple repetitions within the same indi-
vidual. For instance, Figure 1 presents the frequency of the 1,000
individuals from the initial population composing the GSGP popu-
lation throughout 250 generations.1 Notice that only 17 individuals

1�is experiment was carried out with the same parameters adopted in Section 5 on
the CCN dataset.
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Figure 1: Frequency of appearance of initial population
trees in the structure of individuals throughout generations.

generated in the initial population, represented asp(0)1 ,p
(0)
2 , . . . ,p

(0)
17

in the legend, compose individuals in the later generations and all
of them have a high frequency of appearance.

Given the large concentration of duplicated trees from the initial
population within an individual, the size of the solutions evolved
by GSGP can be drastically reduced by combining these repeated
structures. �e approach we propose, named Geometric Semantic
Genetic Programming with Reduced trees (GSGP-Red), takes ad-
vantage of the repetition of functions to reduce the computational
cost involved in the GSGP evolution. However, contrary to related
methods from the literature, our approach combines repeated trees,
e�ectively simplifying the individuals generated and reducing the
size of the solutions dramatically.

4.1 GSGP-Red
GSGP-Red works by exploring the linear combinations of individu-
als performed by the geometric semantic mutation and crossover
operators. Looking at Equation 1, observe that the GSM operator
generates a linear combination of the input parent and randomly
generated trees. �e GSXE operator, in turn, generates a convex
combination of the input parents. �us, the evolution process per-
formed by GSGP with these operators corresponds to recursively
applying linear combinations to linear combinations of trees. GSGP-
Red rewrites this recursion by expanding the terms and combining
repeated structures.

Let P0 = {p(0)1 ,p
(0)
2 , . . . ,p

(0)
|P0 |
} be the initial GSGP population,

R = {r1, r2, . . . , r |R |} be the set of functions (trees) randomly gen-
erated by the GSM operator during the evolutionary process. An
individual pi , from generation д, can be represented as a linear com-
bination, de�ned by the dot productCi · Fi , where the �rst operand,
Ci = [ci,1, ci,2, . . . , ci,si ] ∈ Rsi , is the set of coe�cients multiply-
ing the terms; the second operand, Fi = [fi,1, fi,2, . . . , fi,si ]T ∈
{P0 ∪ R}si , is the set of functions (trees) composing the individual,
perpetuated from the initial population or generated by the GSM
operator; and si is the number of distinct functions composing pi .
For д = 0, the individual pi from the GSGP initial population can be
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described as in Equation 7. Forд > 0, the individuals are recursively
combined, as described in Equations 8 and 9.

p
(0)
i = 1 × p(0)i
= ci,1 × fi,1
= Ci · Fi

(7)

GSGP-Red applies two new steps to every new o�spring gener-
ated by GSM or GSXE , namely expansion and aggregation. During
the expansion, GSGP-Red multiplies the coe�cients from the geo-
metric semantic operator by the randomly generated functions in
GSM o�spring and adds all the terms, as presented in Equation 82.
�e same is done for the GSXE o�spring, but, in this case, the coef-
�cients from the geometric semantic operator are multiplied by the
coe�cient vectors Ci and Cj from the parent individuals pi and pj ,
as presented in Equation 9. At the end of the expansion stage, the
o�spring resulting from the GSM and GSXE operators—denoted as
poM and poX , respectively—consist of linear combinations, which
can be rewri�en as the dot products CoM · FoM and CoX · FoX ,
respectively.

GSM(pi ,δ ) = pi + δ × (rm − rn )
= Ci · Fi + δ × rm − δ × rn
= ci,1 × fi,1 + . . . + ci,si × fi,si

+ δ × rm − δ × rn
= [ci,1, . . . , ci,si ,δ ,−δ ] · [fi,1, . . . , fi,si , rm , rn ]T

= CoM · FoM

(8)

GSXE (pi ,pj ) = k × pi + (1 − k) × pj
= k × (Ci · Fi ) + (1 − k) × (Cj · Fj )
= k × ci,1 × fi,1 + . . . + k × ci,si × fi,si

+ (1 − k) × c j,1 × fj,1 + . . .

+ (1 − k) × c j,sj × fj,sj

= [k × ci,1, . . . ,k × ci,si ,
(1 − k) × c j,1, . . . , (1 − k) × c j,sj ]

· [fi,1, . . . , fi,si , fj,1, . . . , fj,sj ]T

= CoX · FoX

(9)

During the aggregation stage, GSGP-Red combines functions
appearing more than once in the list of functions from the resulting
individual. Let pnew = Cnew · Fnew be an o�spring resulting from
the expansion step and fr ep be a function appearing l times in
Fnew , i.e., fr ep1 , fr ep2 , . . . , fr epl , with the respective coe�cients
cr ep1 , cr ep2 , . . . , cr epl inCnew . �e aggregation step keeps the �rst
appearance of fr ep (fr ep1 ) in Fnew and its respective coe�cient
(cr ep1 ) in Cnew , removing all the other function occurrences and
their respective coe�cients—fr ep2 , . . . , fr epl and cr ep2 , . . . , cr epl .
For each coe�cient removed, its value is added to the coe�cient of
the instance kept by the method, i.e., the value of cr ep1 is updated
to

∑l
i=1 cr epi , as they all come from a linear combination. �e size

of the individual—snew—is also updated to re�ect the removal of

2For the sake of simplicity, we omit the input parameters of the functions.

the repeated functions and their respective coe�cients from the
tree representation.

Note that here we work with the GSX de�ned w.r.t. the Euclidean
distance. �e motivation for choosing GSXE over GSXM for GSGP-
Red comes from the fact that GSXM multiplies the parents by a
randomly generated function—contrary to the linear combination
performed by GSXE—which would imply in additional complexity
in time and space to store and manipulate a function instead of
a constant. Notice that the usage of the GSXE over the GSXM
or vice versa is an open discussion in the literature, with some
works defending the usage of GSXM , given empirical analysis [16],
and others defending the usage of GSXE , given its progression
properties [21].

Next, we illustrate the expansion and aggregation operators.
Consider a initial population with individuals P = {p(0)1 ,p

(0)
2 ,p

(0)
3 },

where

p
(0)
1 = x1/x2 = 1 × (x1/x2) = c1,1 × f1,1 , (10)

p
(0)
2 = x2 + 0.4 = 1 × (x2 + 0.4) = c2,1 × f2,1 , (11)

p
(0)
3 = x1 − 0.6 = 1 × (x1 − 0.6) = c3,1 × f3,1 . (12)

Crossing over p(0)2 with p
(0)
3 (Equation 13) and mutating p

(0)
1 (Equa-

tion 14) andp(0)3 (Equation 15), with a mutation step arbitrarily set to
0.1, results in three new individuals, p(1)1 ,p

(1)
2 and p

(1)
3 , respectively,

composing the population of the next generation.

p
(1)
1 = 0.3 × p(0)2 + (1 − 0.3) × p(0)3
= 0.3 · [1 × (x2 + 0.4)] + (1 − 0.3) × [1 × (x1 − 0.6)]
= [0.3 × (x2 + 0.4)] + [0.7 × (x1 − 0.6)]
= c1,1 × f1,1 + c1,2 × f1,2

(13)

p
(1)
2 = p

(0)
1 + 0.1 × [(x1) − (2 × x2)]

= (x1/x2) + 0.1 × [(x1) − (2 × x2)]
= [1 × (x1/x2)] + [0.1 × (x1)] + [−0.1 × (2 × x2)]
= c2,1 × f2,1 + c2,2 × f2,2 + c2,3 × f2,3

(14)

p
(1)
3 = p

(0)
3 + 0.1 × [(x1 − 0.6) − (x1 × x2)]

= x1 − 0.6 + 0.1 × [(x1 − 0.6) − (x1 × x2)]
= [1 × (x1 − 0.6)] + [0.1 × (x1 − 0.6)]

+ [−0.1 × (x1 × x2)]
= [(1 + 0.1) × (x1 − 0.6)] + [−0.1 × (x1 × x2)]
= c3,1 × f3,1 + c3,2 × f3,2

(15)

In this example, the random constant used by crossover in Eq.
13 is equal to 0.3 and the two functions randomly generated by
the mutation operator are x1 and 2 × x2 in Eq. 14 and x1 − 0.6
and x1 × x2 in Eq. 15. Notice that one of the random functions
generated in Eq. 15 is equal to the function represented by the
parent individual—both presented in bold. �ese functions are then
combined in a single function and the coe�cients are summed up,
generating a smaller individual.
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Figure 2: Expansion and aggregation a�er applying the
GSXE operator.

4.2 Implementation Details
�e implementation employed in the experimental analysis of Sec-
tion 5 iterates through the functions composing the new individual,
performing the expansion and aggregation steps sequentially. In
addition, it keeps a hash table for each individual to store the trees
and their respective coe�cients uniquely—indexed by the symbolic
expression represented by the tree—speeding up the process of
aggregating the functions composing an individual. �is is the only
form of representation that is necessary for each individual, with no
direct pointers to its parents, who are implicitly stored amongst the
expanded and then aggregated set of functions and their respective
coe�cients, unlike previous implementations [6, 25]. �e code is
available for download3 or can also be directly executed from the
Lemonade4 data analysis platform.

Figures 2 and 3 depict the functioning of GSGP-Red with the
hash tables used in our implementation. �e hash function maps
the functions composing the individual to a hash key, used to in-
dex the table. Figure 2 presents a GSXE o�spring transformed by
GSGP-Red—the hash tables of the parents are omi�ed in the �g-
ure. �e expansion step results in two repeated trees—represented
3h�ps://github.com/laic-ufmg/GSGP-Red
4h�ps://demo.ctweb.inweb.org.br
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Hash
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Σ
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Σ

Σ

Σ

Figure 3: Expansion and aggregation a�er applying theGSM
operator.

by fi,2 and fj,2, in blue in the �gure—which are combined in the
aggregation step—notice the sum of the coe�cients r × ci,2 and
(1− r ) ×c j,2 and the hash function resulting in only one blue arrow.

Fig. 3, on the other hand, presents the GSGP-Red procedure
applied to a GSM o�spring. In our example, the mutation operator
generates a tree—r2—equivalent to a function composing the parent
individual—fi,2—resulting in the same hash index—presented in
blue. During the aggregation, the coe�cients of these functions are
combined—ci,2+ (−δ )—when the hash table is updated. Notice that,
although infrequent, it is possible for the GSM to generate a tree
already generated somewhere else during the evolution, given the
�nite number of possible combinations of functions and terminals.

5 EXPERIMENTAL ANALYSIS
In this section we present an experimental analysis of the per-
formance of GSGP-Red when applied to 12 real-world datasets.
�e datasets are described in Table 1, which shows their number
of a�ributes (# of a�rs) and number of instances (# of instances).
GSGP-Red results are compared to the results obtained by GSGP
and the canonical GP [3] in terms of training and test Root Mean
Square Error (RMSE), size of the functions—given by the number
of tree nodes—and computational time expended by the methods.

Given the non-deterministic nature of the methods, each ex-
periment was repeated 30 times—6 times for each fold in a 5-fold
cross-validation procedure. In order to validate the results, we per-
formed Wilcoxon signed-rank tests [10, 23] with a con�dence level
of 95%, under the null hypothesis that GSGP-Red performance—in
terms of test RMSE, solution size and computational time—is equal
to the performance of the other methods for each dataset.

https://github.com/laic-ufmg/GSGP-Red
https://demo.ctweb.inweb.org.br
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Table 1: Datasets used in the experiments.

Abbr. Dataset # of attrs # of instances Source

air Airfoil 6 1503 [1, 12]
ccn CCN 123 1994 [12]
ccun CCUN 125 1994 [12]
con Concrete 9 1030 [1, 12]
eneC Energy Cooling 9 768 [1, 12]
eneH Energy Heating 9 768 [1, 12]
par Parkinsons 19 5875 [12]
ppb PPB 627 131 [1]
tow Tower 26 4999 [1]
wineR Wine Red 12 1599 [1, 12]
wineW Wine White 12 4898 [1, 12]
yac Yacht 7 308 [1, 12]

5.1 GP and GSGP settings
GP and GSGP were run with a population of 1,000 individuals
evolved for 250 generations with tournament selection of size 7
and 10, respectively. �e terminal set comprised the variables of
the problem and constant values uniformly picked from [−1, 1],
described by Koza [11] as ephemeral random constants (ERC). �e
function set included three binary arithmetic operators (+,−,×) and
the analytic quotient (AQ) [17], which has the general properties
of division but without discontinuity, given by:

AQ(a,b) = a
√

1 + b2
(16)

�e GP method employed the canonical crossover and mutation
operators [11] with probabilities 0.9 and 0.1, respectively. GSGP
employed GSXE and GSM operators, both with probability 0.5,
as presented in [6], but without the logistic function to bound the
outputs of the randomly generated functions. �e grow method [11]
was adopted to generate the random functions within the geometric
semantic crossover and mutation operators, and the ramped half-
and-half method [11] to generate the initial population, both with
a maximum individual depth equal to 6. Following the work from
Albinati et al. [2], the mutation step adopted by the geometric
semantic mutation operator was de�ned as 10% of the standard
deviation of the target output vector given by the training data.
Both methods used the RMSE calculated over the obtained and
expected output values for the training set. �e same parameters
adopted for GSGP were used in GSGP-Red experiments.

5.2 Experimental Analysis
Table 2 presents the RMSE obtained by each method on the 12
datasets. �e symbol � indicates the null hypothesis (GSGP-Red
performance is equal to the performance of other methods) was not
discarded and the symbol N(H) indicates that the performance of
GSGP-Red was be�er (worse) than the performance of the GP. Recall
that the results of GSGP/GSGP-Red are the same (see Section 4 for
details), as the proposed method generates a solution equivalent
to the one produced by GSGP. According to the outcomes of the
statistical tests regarding the test RMSE, GP is be�er than GSGP in
the Yacht dataset, and the results have no statistical di�erence for
datasets CCUN and PPB. In the other 9 cases, GSGP/GSGP-Red is

Table 2: MedianRMSEof the best individual for training and
test sets for GP and GSGP/GSGP-Red. �e symbol N(H) indi-
cates that the performance of GSGP-Red was better (worse)
than the performance of GP.

Dataset RMSE GSGP/GSGP-Red GP

air Training 11.783 17.353
Test 11.280 17.612 N

Training 0.128 0.145ccn Test 0.138 0.149 N

ccun Training 377.616 386.203
Test 405.463 396.308 �

Training 8.510 9.352con Test 8.886 9.750 N

eneC Training 3.114 3.364
Test 3.129 3.455 N

Training 2.677 2.973eneH Test 2.739 3.101 N

par Training 9.812 9.955
Test 9.868 9.995 N

Training 14.870 27.644ppb Test 29.647 28.542 �

tow Training 46.634 50.050
Test 46.533 50.155 N

Training 0.632 0.657wineR Test 0.636 0.652 N

wineW Training 0.729 0.756
Test 0.735 0.766 N

Training 6.529 3.413yac Test 6.437 3.541 H

be�er than GP, which motivates the construction of methods such
as GSGP-Red.

�e previous results con�rm that the solutions generated by
GSGP-Red are equivalent to those generated by GSGP and, in most
cases, be�er than the solutions produced by the canonical GP. How-
ever, the results that show the main contribution of the proposed
method are listed in Table 3, where we show the median number
of nodes in the best individuals of GSGP-Red, GSGP and GP. Again,
the symbol � indicates the null hypothesis (GSGP-Red size is equal
to the size of other methods) was not discarded and the symbol N(H)
indicates that the performance of GSGP-Red was be�er (worse) than
the performance of the method indicated by the column (GSGP or
GP).

Note that GSGP-Red individuals are always much smaller than
those generated by GSGP. By calculating the reduction in size
when comparing GSGP to GSGP-Red, solutions from the la�er
are, on average, 58 orders of magnitude smaller. �e maximum
reduction in size occurred in CCUN (64 order of magnitude) and the
minimum reduction occurred in the Parkinsons dataset (45 orders
of magnitude). It is important to point out that the function sizes are
still substantially bigger than the ones generated by GP, but without
forge�ing that the RMSE results for GSGP are still, in general,
superior. As discussed later, we believe that the functions generated
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Table 3: Median size of the best individual (in number of
nodes) for GSGP-Red, GSGP and GP. �e symbol N(H) indi-
cates that the performance of GSGP-Red was better (worse)
than the performance of the method indicated in the col-
umn.

Dataset GSGP-Red GSGP GP

air 33,353 1.72e+50 N 86 H
ccn 22,819 7.25e+58 N 40 H
ccun 3,373 2.33e+67 N 45 H
con 6,007 1.23e+65 N 43 H
eneC 6,584 1.08e+65 N 64 H
eneH 6,881 1.19e+65 N 67 H
par 34,386 1.88e+49 N 81 H
ppb 12,185 2.29e+64 N 61 H
tow 4,843 7.34e+66 N 49 H
wineR 9,220 3.53e+64 N 49 H
wineW 9,983 2.20e+64 N 45 H
yac 13,706 1.23e+61 N 62 H

by GSGP-Red can be further reduced using other techniques, such
as algebraic simpli�cation.

5.3 Run-time Analysis
In order to analyse to what extent the application of the expansion
and aggregation processes increase GSGP computational cost, we
compare the median time spent by GSGP-Red and the canonical
versions of GP and GSGP to generate regression models for our
testbed, including both training and test stages. �e results of this
analysis, shown in Table 4, indicate that the running times for GSGP-
Red are, in general, higher than those presented by GSGP, but there
are exceptions. For some datasets, GSGP-Red was not only faster
than GP but also faster than GSGP itself. �is can be explained by
the fact that, when running GSGP-Red, we do not need to calculate
the test �tness for every created individual. �is was mandatory in
the GSGP implementation proposed by Vanneschi [25], for example,
as the best individual could not be easily reconstructed at the end
of the evolution process, and values of RMSE for training and test
were computed during evolution. �is is not the case for GSGP-Red,
which can easily store the solution generated for later use in new
data. Hence, GSGP-Red only evaluates the test �tness of the best
overall individual. For some datasets, removing these operations
make the total runtime decrease considerably, making GSGP-Red
adoption even more appealing.

GSGP-Red was faster than GSGP in three datasets: CCUN, Tower
and Wine White, being statistically worse in all the remaining. How-
ever, the fact that GSGP-Red takes longer to run does not indicate a
lack of e�ciency or some fundamental problem compromising its
application since, in absolute terms, the di�erence between the two
methods is still small. On the other hand, when compared to GP,
GSGP-Red is faster in 10 out of 12 datasets, with execution times,
on average, 35% faster. In conclusion, GSGP-Red is overall slower

Table 4: Median of the execution time (in seconds) of GSGP-
Red, GSGP and GP. �e symbol N(H) indicates that the per-
formance of GSGP-Red was better (worse) than the perfor-
mance of the method indicated in the column.

Dataset GSGP-Red GSGP GP

air 113.28 48.32 H 202.13 N
ccn 96.10 63.35 H 154.75 N
ccun 53.15 63.62 N 148.98 N
con 39.19 35.17 H 77.85 N
eneC 36.24 28.99 H 78.65 N
eneH 37.85 27.92 H 86.57 N
par 191.93 165.36 H 767.46 N
ppb 37.58 10.74 H 15.57 H
tow 110.60 136.90 N 486.54 N
wineR 55.03 48.32 H 128.04 N
wineW 127.24 140.66 N 378.36 N
yac 39.19 15.03 H 32.35 H

than GSGP but is still e�cient and yet be�er than GP in terms of
RMSE and execution time.

6 CONCLUSIONS AND FUTUREWORK
�is paper presented Geometric Semantic Genetic Programming
with Reduced trees (GSGP-Red), a new method that solves the expo-
nential growth of GSGP solutions with the number of generations
for symbolic regression problems. �e method expands the func-
tions representing the individuals into linear combinations, and
then aggregates the repeated structures. �is process results in
functions many times smaller than those generated by GSGP.

An experimental analysis was performed in a testbed composed
of 12 real-world datasets in order to compare GSGP-Red with its
predecessor and with GP. Results showed that the new method is
capable of generating solutions equivalent to those generated by
GSGP in terms of error, but 58 orders of magnitude smaller, on
average., in terms of size (number of tree nodes). In addition, an
analysis of the execution time revealed that GSGP-red, although
slower than GSGP on average, can also perform the search faster
than GSGP, depending on the dataset.

Potential future developments include simplifying the solutions
using computer algebra systems [15] and integrating approximated
geometric semantic operators—e.g., the competent mutation and
crossover operators from Pawlak [20]—to GSGP-Red, in order to
reduce even further the size of the solutions generated.

Compiling all these ideas into a single framework seems a promis-
ing direction to make the readability and degree of understanding
of the GSGP solutions closer to those of models generated by GP.
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