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On the Robustness of Evolutionary Algorithms to Noise:
Refined Results and an Example Where Noise Helps

Dirk Sudholt
Department of Computer Science, University of Sheffield

Sheffield, United Kingdom

ABSTRACT

We present refined results for the expected optimisation time of

the (1+1) EA and the (1+λ) EA on LeadingOnes in the prior noise

model, where in each fitness evaluation the search point is altered

before evaluation with probabilityp. Previous work showed that the

(1+1) EA runs in polynomial time if p = O((logn)/n2) and needs

superpolynomial time if p = Ω((logn)/n), leaving a huge gap for

which no results were known. We close this gap by showing that

the expected optimisation time is Θ(n2) · exp(Θ(pn2)), allowing

for the first time to locate the threshold between polynomial and

superpolynomial expected times at p = Θ((logn)/n2). Hence the

(1+1) EA on LeadingOnes is much more sensitive to noise than

previously thought. We also show that offspring populations of size

λ ≥ 3.42 logn can effectively deal with much higher noise than

known before.

Finally, we present an example of a rugged landscape where

prior noise can help to escape from local optima by blurring the

landscape and allowing a hill climber to see the underlying gradient.

KEYWORDS

Evolutionary algorithms, noisy optimisation, runtime analysis, the-

ory.

1 INTRODUCTION

Many real-world problems suffer from sources of uncertainty, such

as noise in the fitness evaluation, changing constraints, or dynamic

changes to the fitness function [18]. Evolutionary algorithms are

well suited for dealing with these challenges, and have proven to

work well in many applications to combinatorial problems [5].

However, our theoretical understanding of how evolutionary

algorithms deal with noise is limited. It is often not clear how

noise affects the performance of evolutionary algorithms, and how

much noise an evolutionary algorithm can cope with. For evolution

strategies in continuous optimisation there exists a rich body of

work (see, e. g. [4, 17, 20] and the references therein), but there are

only few rigorous theoretical analyses on the performance of noisy

evolutionary optimisation in discrete spaces.

The first runtime analysis for discrete evolutionary algorithms

in a noisy setting was given by Droste [10]. He considered a set-

ting now known as one-bit prior noise, where with probability p

a uniform random bit is flipped before evaluation. Hence, instead

of returning the fitness of the evaluated search point, the fitness

function may return the fitness of a random Hamming neighbour.

He proved that, when p = O((logn)/n) the (1+1) EA can still opti-

mise OneMax efficiently. But when p = ω((logn)/n) the expected

optimisation time becomes superpolynomial.

Gießen and Kötzing [15] studied a more general class of algo-

rithms, including the (1+1) EA, (1+λ) EA, and (µ+1) EA on prior

noise and posterior noise, where posterior noise means that noise is

added to the fitness value. They presented an elegant approach

that gives results in both noise models. They showed that the

(1+1) EA onOneMax runs in expected timeO(n logn) ifp = O(1/n),

polynomial time if p = O((logn)/n), and superpolynomial time if

p = ω((logn)/n) ∩ 1 − ω((logn)/n). The same results hold in the

bit-wise noise model, where each bit is flipped independently be-

fore evaluation with probability p/n. For LeadingOnes they show

a time bound of O(n2) if p ≤ 1/(6en2) and an exponential lower

bound if p = 1/2.

The authors also found that using parent populations in a (µ+1) EA

can drastically improve robustness as survival selection removes

one of the worst individuals, and a population increases the chances

that a low-fitness individual will be correctly identified as having

low fitness. Offspring populations also increase robustness as they

amplify the probability that a clone of the current search point

will be evaluated truthfully, thus lowering the chance of losing the

best fitness. For LeadingOnes they showed a time bound for the

(1+λ) EA of O(λn + n2) if p ≤ 0.028/n and 72 logn ≤ λ = o(n).

Dang and Lehre [6] gave general results for prior and posterior

noise in non-elitist EAs. The same authors [7] also considered noise

resulting from only partially evaluating search points.

In terms of posterior noise, Sudholt and Thyssen [33] considered

the performance of a simple ant colony optimiser (ACO) for com-

puting shortest paths when path lengths are obscured by positive

posterior noise modelling traffic delays. They showed that noise

can make the ants risk-seeking, tricking them onto a suboptimal

path and leading to exponential optimisation times. Doerr, Hota,

and Kötzing [8] showed that this problem can be avoided if the

parent is reevaluated in each iteration. Feldmann and Kötzing [12]

further analysed the performance of fitness-proportional updates.

Friedrich, Kötzing, Krejca, and Sutton [14] showed that the compact

Genetic Algorithm and ACO [13] are both efficient under extreme

Gaussian posterior noise, while a simple (µ+1) EA is not.

Prugel-Bennett, Rowe, and Shapiro [25] considered a population-

based algorithm using only selection and crossover, and showed

that the algorithm can optimise OneMax with a large amount of

noise. Qian, Yu, and Zhou [27] showed that noise can be handled

efficiently by combining reevaluation and threshold selection. Aki-

moto, Astete-Morales, and Teytaud [1] as well as Qian, Yu, Tang,

Jin, Yao, and Zhou [26] showed that resampling can essentially

eliminate the effect of noise.

Qian, Bian, Jiang, and Tang [28] studied the performance of the

(1+1) EA on OneMax and LeadingOnes for a more general prior

noise model with parameters (p,q): with probability p the search

point is altered by flipping each bit with probability q. They studied

two special cases: (p, 1/n) meaning that with probability p a stan-

dard bit mutation is performed before evaluation and (1,q), which



Table 1: Overview of results on the expected optimisation time on LeadingOnes with prior noise. Results in this work also

hold for the general model (p′,q/n)with p = p′q and q ≤ 1, which has not been studied before in this generality. Results for the

(1+1) EA also hold for asymmetric one-bit noise p.

Setting Gießen and Kötzing [15] Qian, Bian, Jiang, and Tang [28] This work

(1+1) EA,

one-bit noise p

O(n2) if p ≤ 1/(6en2)

2Ω(n) if p = 1/2

polynomial if p = O((logn)/n2) 


O
(
n2 · eO (pn2)

)
if p ≤ 1 − Ω(1)

Ω
(
n2 · eΩ(pn

2)
)
if p = O(1/n)

superpolynomial if p = ω((logn)/n) ∩ o(1)

exponential if p = Ω(1)

(1+1) EA,

bit-wise noise (p, 1/n)

polynomial if p = O((logn)/n2)

superpolynomial if p = ω((logn)/n) ∩ o(1)

exponential if p = Ω(1)

(1+1) EA,

bit-wise noise (1,p/n)

polynomial if p = O((logn)/n2)

superpolynomial if p = ω((logn)/n) ∩ o(1)

exponential if p = Ω(1)

(1+λ) EA, O(λn + n2) if p ≤ 0.028/n O
(
n2 · eO (pn/λ)

)
if p ≤ 1/2

one-bit noise p and 72 logn ≤ λ = o(n) and 3.42 logn ≤ λ = O(n)

is bit-wise noise with parameter q. For LeadingOnes they improve

results from [15], showing that the (1+1) EA runs in polynomial ex-

pected time ifp = O((logn)/n2) and that it runs in superpolynomial

time if p = ω((logn)/n). This holds for one-bit noise with proba-

bility p, the (p, 1/n) model and bit-wise noise with probability p/n

(see Table 1). For bit-wise noise (1,q) with parameter q = Ω(1/n)

the expected time is exponential.

In this work we improve previous results for prior noise on the

function LeadingOnes(x) :=
∑n
i=1

∏i
j=1 x j , counting the number

of leading ones in the bit string. This function is of particular inter-

est as it represents a problem where decisions have to be made in

sequence in order to reach the optimum, building up the compo-

nents of a global optimum step by step. In the case of LeadingOnes,

this is a prefix of ones that is being built up. Problems with similar

features are found in combinatorial optimisation, for instances as

worst-case examples for finding shortest paths [32].

Disruptive mutations can destroy a partial solution, leading to

a large fitness loss, such that the algorithm is thrown back and

may need a long time to recover. As such, LeadingOnes is a prime

example of a problem that is very susceptible to noise.

We provide upper and lower bounds on the expected optimisa-

tion time of the (1+1) EA on LeadingOnes, showing that the ex-

pected time is in Θ(n2) · exp(Θ(pn2)), which is tight up to constant

factors in the exponent of the term exp(Θ(pn2)) that reflects the

slowdown resulting from noise. This shows that the time is Θ(n2) if

p = O(1/n2), polynomial if p = O((logn)/n2), and superpolynomial

if p = ω((logn)/n2). This improves previous negative results that

only showed superpolynomial times for p = ω((logn)/n), which is

by factor of n larger.

The upper bound (Section 3) is based on a very simple argument:

estimating the probability that no noise will occur during a period

of time long enough to allow the algorithm to find an optimum

without experiencing any noise. The lower bound (Section 4) fol-

lows arguments from Rowe and Sudholt [31] who analysed the

performance of the non-elitist algorithm (1,λ) EA on LeadingOnes.

In Section 5 we show an improved upper bound for the (1+λ) EA

on LeadingOnes. Finally, in Section 6 we show that on the class

of Hurdle problems [24], a class of rugged functions with many

local optima on an underlying slope, noise helps to overcome lo-

cal optima, allowing a simple hill climber to succeed that would

otherwise fail with overwhelming probability.

2 PRELIMINARIES

Algorithm 1 shows the (1+λ) EA in the context of prior noise, which

includes the (1+1) EA as a special case of λ = 1. Here noise(x) de-

notes a noisy version of a search point x , according to the given

noise model. We assume that all applications of noise are indepen-

dent. The (1+λ) EA creates λ independent offspring, evaluates their

noisy fitness, and then picks a best offspring. This offspring is then

compared against the parent, whose noisy fitness is evaluated in

each generation. This means in particular that an offspring can

replace a parent whose real fitness is higher if the parent is mise-

valuated to a lower noisy fitness, the offspring is misevaluated to a

higher noisy fitness, or both.

Algorithm 1: (1+λ) EA with prior noise

Choose x uniformly at random.

while termination criterion not met do

for i = 1, . . . , λ do
Create yi by copying x and flipping each bit

independently with probability 1/n.

Evaluate fi := f (noise(yi )).

Choose z ∈ Pt uniformly at random from

argmax{ f1, . . . , fλ }.

if fz ≥ f (noise(x)) then x = z;

The optimisation time is defined as the number of fitness evalua-

tions until a global optimum is found for the first time. We consider

the following prior noise models from previous work; asymmetric

noise is inspired by an asymmetric mutation operator [16].

One-bit noise(p) [10, 15]: with probability 1 − p, noise(x) = x

and otherwise noise(x) = x ′ where in x ′, compared to x , one bit

chosen uniformly at random was flipped.

Bit-wise noise(p,q) [28]: with probability 1 − p, noise(x) = x

and otherwise noise(x) = x ′ where in x ′, compared to x , each bit

was flipped independently with probability q.
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Asymmetric one-bit noise(p) [27]: with probability 1 − p,

noise(x) = x and otherwise noise(x) = x ′ where in x ′, compared

to x , if x < {0n , 1n }, with probability 1/2 a uniform random 0-bit is

flipped, with probability 1/2 a uniform random 1-bit is flipped, and

if x ∈ {0n , 1n } a uniform random bit is flipped.

We often write (p,q/n) for bit-wise noise instead of (p,q) as then

q plays a similar role to p in one-bit prior noise p, which allows for

a more unified presentation of results.

Note that Pr(noise(x) , x) = p for one-bit noise and asym-

metric one-bit noise, and for the bit-wise noise model (p,q/n),

Pr(noise(x) , x) = p(1− (1−q/n)n ) ≤ pq by Bernoulli’s inequality.

3 A SIMPLE AND GENERAL UPPER BOUND
FOR DEALING WITH UNCERTAINTY

We first present a very simple result that applies in a general setting

of optimisation under uncertainty (noise/dynamic changes/etc.). It

is formulated for iterative algorithms that maintain a single search

point, called trajectory-based algorithms, however it is easy to extend

the definition to population-based algorithms as well.

Our approach is based on the worst-case median optimisation

time, defined as follows.

Definition 3.1. For any trajectory-based algorithm A optimising

a fitness function f let TA,f (x) be the random first hitting time of

a global optimum when starting in x . We assume hereinafter that

each initial search point x leads to a finite expectation.

We define the worst-case expected optimisation time EA,f as

EA,f := max
x

E(TA,f (x))

Further define the median optimisation timeMA,f

MA,f (x) := min{t | Pr(TA,f (x) ≤ t) ≥ 1/2}

and the worst-case median optimisation time

MA,f := max
x

MA,f (x).

We omit subscripts if the context is clear. Applying Markov’s

inequality for all x , the median worst-case optimisation time is not

much larger than the expected worst-case optimisation time.

Theorem 3.2. For every A and every f ,MA,f ≤ 2EA,f .

The following theorem gives an upper bound on the worst-case

expected optimisation time under uncertainty, assuming we do

know (an upper bound on) the median worst-case optimisation

time in a setting without uncertainty.

Theorem 3.3. Consider a setting where in each iteration a failure

event may occur independently with probability 0 ≤ p < 1. Consider

any function f on which an iterative algorithm A has worst-case

median optimisation timeM if p = 0. Then the worst-case expected

optimisation time of A with failure probability p is at most

2M(1 − p)−M ≤ 2M · epM/(1−p)
.

The statement also holds if p is an upper bound on the probability of

a failure and/orM is an upper bound on the described time.

Proof. By definition of the median worst-case optimisation

time, if the algorithm experiences M steps without a failure, it

will find an optimum with probability at least 1/2 regardless of the

initial search point. The probability that in a phase ofM steps there

will be no failure is at least (1 − p)M . Hence the expected waiting

time for a phase ofM steps without failures where the algorithm

finds an optimum is at most 2M(1 − p)−M for every initial search

point.

The inequality follows from 1
1−p = 1 +

p
1−p ≤ ep/(1−p). �

In the setting of prior noise, Theorem 3.3 implies the following.

Theorem 3.4. Consider an iterative algorithm A that evaluates

up to ν search points in each iteration. For every function f on which

A has worst-case median optimisation time M without prior noise,

its worst-case expected optimisation time is at most

2M(1 − νp)−M ≤ 2M · eνpM/(1−νp)

for each of the following settings:

(1) one-bit prior noise with probability p,

(2) bit-wise prior noise (p′,q/n) with q ≤ 1 and p := p′q, and

(3) asymmetric one-bit prior noise with probability p.

Proof. This follows immediately from Theorem 3.3 using the

occurrence of noise as a failure event and a union bound over ν

search points evaluated in each generation. �

For LeadingOnes Theorem 3.4 implies the following.

Theorem 3.5. The expected optimisation time of the (1+1) EA

with prior noise probability p ≤ 1 − Ω(1) for any of the settings from

Theorem 3.4, on LeadingOnes is

O
(
n2 · eO (pn2))

.

This is polynomial if p = O((logn)/n2) and O(n2) if p = O(1/n2).

Proof. Follows from Theorem 3.4 with ν = 2 (as the (1+1) EA

evaluates parent and offspring in each generation), 2p/(1 − 2p) =

O(p), and the fact that the worst-case expected optimisation time of

the (1+1) EA on LeadingOnes isO(n2) [11], hence by Theorem 3.2

the worst-case median optimisation time isM = O(n2). �

Despite the simplicity of the above proofs, Theorem 3.5 matches,

unifies and generalises the best known results [28, Theorems 4.1,

4.4, and 4.7] which only state that the expected optimisation time on

LeadingOnes is polynomial if the noise parameter isO((logn)/n2)

in the models (p, 1/n), (1,q/n) and one-bit noise (see Table 1).

4 A MATCHING LOWER BOUND FOR THE
(1+1) EA ON LEADINGONES

The arguments from Section 3 pessimistically assume that, once

noise occurs, the algorithmneeds to restart from scratch. For Leading-

Ones, and problems with a similar structure, this is not far from

the truth. An unlucky mutation can destroy a long prefix of leading

ones and the fitness of the current search point can decrease signifi-

cantly. We will see that then the algorithm comes close to having to

start from scratch. Such an effect was already observed and made

rigorous in the analysis of island models with migration [19], sep-

arable functions [9], and for the (1,λ) EA on LeadingOnes [31];

parts of this section closely follow [31, Proof of Theorem 12].

The main result of this section is the following.
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Theorem 4.1. For each of the settings described in Theorem 3.4

the expected optimisation time of the (1+1) EA on LeadingOnes is

Ω
(
n2 · eΩ(pn

2)
)
if p = O(1/n) and eΩ(n) if p = ω(1/n) and p ≤

1 − Ω(1). This is superpolynomial for p = ω((logn)/n2).

Along with Theorem 3.5, the case p = O(1/n) gives a bound of

Θ(n2) · exp(Θ(pn2)). The result is tight up constants in exponent of

the term exp(Θ(pn2)) that reflects the impact of noise.

Theorem 4.1 improves on the best known results, summarised

in Table 1. Note that there is a gap of order 1/n between the noise

parameter regime p = ω((logn)/n) where times are known to be

superpolynomial and the noise parameter regime p = O((logn)/n2)

that led to polynomial upper bounds in [28] and in Theorem 3.5.

Theorem 4.1 closes this gap by showing that superpolynomial

times already occur for noise parameters p = ω((logn)/n2). This

shows that the (1+1) EA on LeadingOnes is highly sensitive to

noise, especially since the corresponding threshold for OneMax

is at p = Θ((logn)/n) [10, 15]. Theorem 4.1 also unifies and gener-

alises the above results by giving a bound that holds for the whole

range of noise parameters p, and for different prior noise models.

In order to prove Theorem 4.1, we first analyse the probability of

the fitness dropping significantly.

Lemma 4.2. Consider the setting of Theorem 4.1 with a current

LeadingOnes value of i . Then the probability that the LeadingOnes

value decreases below i/2 in one generation is Ω(p(1 − p)i2/n2). This

is Ω(p) if i = Ω(n) and p ≤ 1 − Ω(1).

Proof. Consider the following events. E1: the offspring flips

exactly one of the first i/2 bits, which has probability Ω(i/n). E2:

the parent is evaluated with prior noise flipping exactly one of the

first i/2 bits, which happens with probability at least

(1) i/2 · p/n = Ω(pi/n) for one-bit prior noise,

(2) i/2 ·p′ ·q/n · (1−q/n)n−1 ≥ p′qi/(2en) = pi/(2en) = Ω(pi/n)

for bit-wise prior noise (p′,q/n) with p = p′q, and

(3) i/2 · p/(2n) = Ω(pi/n) for asymmetric one-bit noise, as with

probability p/2, one of at most n 1-bits is flipped.

E3: conditional on E1 and E2, the position of the bit flipped in the

offspring is no smaller than the position of the flipped bit in the

parent’s noise. This has probability at least 1/2 due to symmetry.

E4: the offspring is evaluated correctly (probability at least 1 − p).

If all these events happen, the offspring will appear to be no

worse than the parent. Hence the offspring will survive, and its

LeadingOnes value is at most i/2. Since all events are independent

(or conditionally independent in the case of E3), multiplying these

probabilities implies the claim. �

As argued in [31] for the (1,λ) EA, such a fallback is not too

detrimental per se as the (1+1) EA might recover from this easily.

If the bits between i/2 and i have not been flipped during the

mutation creating the accepted offspring, the previous leading ones

can be easily recovered, in the best case by simply flipping the

first 0-bit in the current search point. However, while waiting for

such a mutation to happen, all bits between i/2 + 1 and i do not

contribute to the fitness. So over time these bits are subjected to

random mutations, which are likely to destroy many of the former

leading ones. In other words, after a fallback previous leading ones

are forgotten quickly.

The last fact was formalised in [19, Lemma 3] stated below. The

lemma states that the probability distribution of a bit subjected to

random mutations rapidly approaches a uniform distribution.

Lemma 4.3 (Adapted from Lässig and Sudholt [19]). Let

x0,x1, . . . ,xt be a sequence of random bit values such that x j+1

results from x j by flipping the bit x j independently with probability

1/n. Then for every t ∈ N

Pr(xt = 1) ≤
1

2

(

1 +

(
1 −

2

n

)t )

.

We now say that the (1+1) EA falls back if, starting from a fitness

at least f ∗ := 2n/3, the algorithm drops below a fitness of n/2. We

speak of a lasting fallback if, additionally, the fitness remains below

n/2 for at least tmix := n/2 generations in which the offspring is

accepted. Additionally, the initial search point is deemed a lasting

fallback if its fitness is at most n/2.

The following lemma estimates probabilities for fallbacks and

lasting fallbacks.

Lemma 4.4. Ifp ≤ 1−Ω(1) and the current fitness is at least f ∗, the

probability of one generation yielding a fallback is Ω(p). Additionally,

the probability of a fallback becoming a lasting fallback is Ω(1).

Proof. The first statement follows from Lemma 4.2 as halving

the current fitness results in a search point of fitness at most n/2.

A fallback becomes a lasting fallback if for tmix generations after

the fallbackwhere the offspring is accepted, the first 0-bit never flips.

Note that the offspring is accepted if and only if no leading ones are

flipped, which is independent from the decision on the first 0-bit.

The probability for the mentioned event is (1− 1/n)n/2 = Ω(1). �

After a lasting fallback has occurred, the (1+1) EA with over-

whelming probability needs some time in order to recover. Specifi-

cally, at least cn2 generations are needed to increase the best fitness

since the latest lasting fallback by at least n/6.

Lemma 4.5. Let t∗ be the latest generation where a fallback became

a lasting fallback or t∗ = 0 if no lasting fallback occurred. Let Bt be

the best fitness found since generation t∗. With probability 1−e−Ω(n),

for a small constant c > 0, Bt+cn2 < Bt + n/6.

Proof. A lasting fallback implies that at any generation from t∗,

all bits at positions {Bt + 1, . . . ,n} have been subjected to mutation

at least tmix = n/2 times. Every mutation flips each of these bits

independently with probability 1/n, leaving the bits in a random

state. We apply the principle of deferred decisions [21, page 9] and

determine the current bit value for these bits at the time these

bits first have a chance to become part of the leading ones in an

offspring. By Lemma 4.3 we know that then the probability such a

bit is set to 1 is at most

1

2

(

1 +

(
1 −

2

n

)n/2)

≤
1

2

(
1 +

1

e

)
=

e + 1

2e
.

A necessary condition for increasing the best fitness by at least n/6

in cn2 generations, c a positive constant chosen later, is that either

(1) among cn2 mutations at least 2cn mutations lead to an im-

provement in fitness or

4



(2) during at most 2cn fitness improvements the total fitness

gain is at least n/6.

The probability that a mutation leads to a fitness improvement is

always at most 1/n as the first 0-bit needs to be flipped. By standard

Chernoff bounds, the probability for the first event is at most e−Ω(n).

The total fitness gain is given by the number of improvementsÐat

most 2cnÐplus a sum of up to 2cn geometric random variables to

account for additional bits gained (łfree ridersž). By Theorem 5

in [3], we get that the probability of a fitness gain of n/6 is e−Ω(n),

provided that c is small enough. �

Lemma 4.6. Let c > 0 be any constant. Within cn2 generations

where the current fitness is larger than f ∗, a lasting fallback occurs

with probability at least 1 − e−Ω(pn
2).

Proof. The probability of a fallback occurring is Ω(p), and then

it becomes lasting with probability Ω(1). Note that the time until a

fallback potentially becomes a lasting fallback (whether it does or

not) is not counted towards the cn2 generations from the statement

as during this time the fitness is smaller than f ∗.

So the probability that no lasting fallback occurs is at most

(1 − Ω(p))cn
2

≤ e−Ω(pn
2)
. �

Now we prove Theorem 4.1.

Proof of Theorem 4.1. With probability 1 − 2−Ω(n) the initial

search point has fitness less than n/2, so the (1+1) EA starts with

a lasting fallback. As the fitness after initialisation and after every

lasting fallback is at most n/2, by Lemma 4.5, reaching a fitness of

at least f ∗ from there takes time at least cn2 with overwhelming

probability, for a suitably small constant c > 0. Applying Lemma 4.5

every time the fitness increases to at least f ∗, the (1+1) EA does not

find an optimum within the next cn2 generations where the fitness

is at least f ∗, with overwhelming probability. But by Lemma 4.6

during these cn2 generations another lasting fallback occurs, with

overwhelming probability. We iterate this argument until a failure

occurs. The largest failure probability is e−Ω(pn
2) if p = O(1/n),

hence in expectation we can iterate this argument at least eΩ(pn
2)

times, each iteration taking time at least cn2 (from the time it takes

to reach fitness f ∗ after a lasting fallback). If p = ω(1/n), the largest

failure probability is e−Ω(n) and in expectation we can iterate this

argument for eΩ(n) generations. Together, this proves the claim. �

5 IMPROVED RESULTS FOR OFFSPRING
POPULATIONS

The general Theorem 3.3 can also be used in the context of offspring

populations in the (1+λ) EA, in order to quantify the robustness

of evolutionary algorithms with offspring populations to noise.

Offspring populations can reduce the probability of the current

fitness decreasing. This can happen in two different ways:

(1) the current search point may be misevaluated as having a

poor fitness, and then be replaced by an offspring that is

worse than the parent in real fitness or

(2) the current search point may be replaced by an offspring

where mutation has led to poor real fitness, but noise hap-

pens to misevaluate the offspring as having a high fitness,

thus replacing its parent. Here noise essentially needs to

make the same bit-flips as the preceding mutation to cover

up the effect of mutation.

The first failure can be avoided if there is a clone of the current

search point where no prior noise has occurred. A large offspring

population can amplify this probability.

Lemma 5.1. Consider the (1+λ) EA in a prior noise model where

Pr(noise(y) , y) ≤ p for all search points y. Then for all current

search points x the probability that all copies of x among parent and

offspring are affected by noise is at most

p

(
1 −

(
1 −

1

n

)n
(1 − p)

)λ
= p

(
e − (1 − p)

e

)λ
· exp(O(λ/n)).

Proof. Let q := (1− 1/n)n abbreviate the probability of creating

a clone of the parent for an offspring. The probability of creating

exactly i clones is
(λ
i

)
qi (1 − q)λ−i , and then the probability that all

i + 1 copies of x (including the parent) are affected by noise is pi+1.

Hence the sought probability is

λ∑

i=0

(
λ

i

)
qi (1 − q)λ−ipi+1 = p

λ∑

i=0

(
λ

i

)
(pq)i (1 − q)λ−i

= p(1 − q + pq)λ

= p(1 − q(1 − p))λ

where we have used the binomial theorem in the penultimate equal-

ity. Plugging in (1−1/n)n for q yields the claimed result. The second

bound follows from (1−1/n)n = (1−1/n)(1−1/n)n−1 ≥ (1−1/n)·1/e

and straightforward calculations turning the 1 − 1/n term into a

exp(O(λ/n)) factor. Details are omitted due to space restrictions. �

Theorem 5.2. Consider any of the settings from Theorem 3.4, ex-

cept for asymmetric bit-wise noise1. The expected number of function

evaluations for the (1+λ) EA with prior noise parameter p ≤ 1/2 on

LeadingOnes with log e

e−1/2
(n) ≤ λ = O(n) is

O
(
n2 · eO (pn/λ)

)
.

This is polynomial if p = O((λ logn)/n) and O(n2) if p = O(λ/n).

The exponent is smaller compared to the upper bound for the

(1+1) EA by a factor of order λn, and thus the threshold for p for

which polynomial times are guaranteed increases by the same factor.

The threshold between polynomial and superpolynomial times

could be higher as we do not have a corresponding lower bound.

Theorem 5.2 improves and generalises the best known result

for the (1+λ) EA [15, Corollary 24] which requires p = O(1/n) and

λ ≥ 72 logn and gives a time bound of O(λn + n2). This is O(n2)

as the authors also assume λ = o(n). Our result covers the whole

parameter range for p up to 1/2 and also identifies a functional

relationship between p and λ that guarantees robustness to noise.

Proof of Theorem 5.2. We estimate the probability of the fol-

lowing failure events in order to apply a union bound later on.

1We exclude asymmetric bit-wise noise as the probability of flipping a 1-bit may be
ω(1/n) in case there are o(n) leading ones, and only o(n) 1-bits in total. We cannot
exclude that this happens, though it seems highly unlikely in the light of Lemma 4.3.

5



Failure event E1: all copies of the current search point are affected

by noise. By Lemma 5.1, this probability is at most

p1 := O

(

p

(
e − (1 − p)

e

)λ )

≤ O

(

p

(
e − 1/2

e

)λ )

= O
(p
n

)
.

Failure event E2: the best offspring is evaluated as having the

parent’s fitness, and the offspring y chosen to replace the par-

ent carries disruptive mutations that were undone by noise, i. e.

LeadingOnes(y) < LeadingOnes(noise(y)) = LeadingOnes(x).

The probability for this to happen is at most

p2 :=
p

n

as noise has to flip at least one specific bit.

Failure event E3: there is an offspring y that carries disruptive

mutations, but is being evaluated as being better than the parent, i. e.

LeadingOnes(y) < LeadingOnes(x) and LeadingOnes(noise(y)) >

LeadingOnes(x). For each offspring where mutation flips one of

the leading ones, two events may occur: if mutation flips the first

0-bit, noise in an offspring has to undo all mutations of the leading

ones. This has probability at most p/n2. Otherwise, noise has to

undo all mutations of the leading ones and flip the first 0-bit at the

same time. This is impossible under one-bit noise, and has proba-

bility at most p/n2 under bit-wise noise. Along with a union bound

over these two events and λ offspring,

p3 ≤
2pλ

n2
= O

(p
n

)
.

As long as no failure occurs, the current fitness of the (1+λ) EA

cannot decrease. We now show that, conditional on no failure

occurring, the expected worst-case number of generations of the

(1+λ) EA is bounded by O(n + n2/λ) = O(n2/λ).

The probability of one offspring increasing the current fitness

is at least (1 − p)/(en) as it suffices to flip the first 0-bit and not to

flip any of the other bits, and to have the offspring being evaluated

correctly. The probability that this happens in at least one of the λ

offspring and the parent is evaluated correctly is at least

(1 − p)

(

1 −

(
1 −

1 − p

en

)λ )

≥
(1 − p)2λ/(en)

1 + (1 − p)λ/(en)
= Ω

(
λ

n

)

where the inequality follows from [2, Lemma 6]. The expected time

to increase the best fitness is thusO(n/λ), and since the fitness only

has to be increased at most n times, an upper bound ofO(n2/λ) gen-

erations follows, for every initial search point. The same bound also

holds for the worst-case median optimisation time by Theorem 3.2.

Now the result follows from applying Theorem 3.3 with a time

bound of O(n2/λ) and a failure probability bound of p1 + p2 + p3 =

O(p/n), and multiplying the number of generations by λ for the

number of function evaluations. �

6 AN EXAMPLE WHERE NOISE HELPS

The final contribution of this paper is to show that noise can be

beneficial for escaping from local optima. To this end, we consider

a known class of functions that lead to a highly rugged fitness

landscape with an underlying gradient pointing towards the lo-

cation of the global optimum. Such landscapes are known as łbig

valleyž structures, which is an important characteristic of many

hard problems from combinatorial optimisation [23, 30].

Prügel-Bennett defined such a class of problems known as Hur-

dle problems [24] as an example function where genetic algorithms

with crossover outperform hill climbers.Hurdle functions are func-

tions of unitation, that is, they only depend on the number of 1-bits.

The fitness is given as

Hurdle(x) = −

⌈
|x |0

w

⌉
−

|x |0 mod w

w

where |x |0 denotes the number of 0-bits in x andw is a parameter

called hurdle width that defines the distance between subsequent

peaks. A sketch of the function is shown in Figure 1.

0 4 8 12 16 20

−5

−4

−3

−2

−1

0

|x |0

H
ur

dl
e(
x)

Figure 1: Sketch of a Hurdle function with hurdle

widthw = 4 and problem size n = 20.

Here all search points with i mod w = 0 zeros are local optima,

and all search points with j zeros, i −w < j < i , have worse fitness.

Hence an evolutionary algorithm needs to flip at leastw bits in order

to find a search point of better fitness. Nguyen and Sudholt [22]

proved that the (1+1) EA has expected time Θ(nw ) if 2 ≤ w ≤ n/2.

In the following, we consider the well-known algorithm Ran-

domised Local Search (RLS), which works like the (1+1) EA, but only

flips exactly one bit in each mutation. It is obvious that RLS has

infinite expected time on any Hurdle function with non-trivial

hurdle width w ≥ 2, and Nguyen and Sudholt [22] showed via

Chernoff bounds that local searchers get stuck in a non-optimal

local optimum with probability 1 − 2−Ω(n) ifw ≤ (1 − Ω(1))n/2.

However, prior noise can help to escape from such a local op-

timum: RLS with one-bit prior noise can misevaluate either the

parent or the offspring, which allows the algorithm to accept a

search point with i mod w = w − 1 ones. Then it can climb to the

next local optimum from there, until the global optimum is found.

This is made precise in the following theorem.

Theorem 6.1. The expected optimisation time of RLS with one-bit

prior noise p ≤ 1/(6n) on Hurdle with hurdle widthw ≥ 2 log(n) is

O(n2/(pw2) + n logn).

Note that in particular for p = Θ(1/n) andw = Ω(n/
√
logn) this

isO(n logn). Then RLS is as efficient as on the underlying function

OneMax without any hurdles.
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Proof of Theorem 6.1. The algorithm can escape from a local

optimum with i zeros, i mod w = 0, if the offspring has i − 1 zeros

(probability i/n) and additionally

(1) the offspring is misevaluated as having i zeros (probability

p · (n − i + 1)/n) or

(2) the parent is misevaluated as having i − 1 zeros (probability

pi/n).

The probability of the union of these events is p(n−i+1)/n+pi/n−

p2i(n − i + 1)/n2 = p(1 + 1/n − pi(n − i + 1)/n2) ≥ p(1 − p) as the

event of both offspring and parent being misevaluated as described

is counted twice in the enumeration. Together, the probability of

escaping from a local optimum with i zeros is at least p(1 − p)i/n.

We now define a potential function д such that д(i) estimates or

overestimates the expected optimisation time from a state with i

zeros, bar constant factors. Let ai := 2(i mod w )−w+1, then

д(i) :=




0 if i = 0,

д(i − 1) + n
ip(1−p)

if i > 0, i mod w = 0,

д(i − 1) + n
i + ai

n2

i2p(1−p)3
otherwise.

Note that д(i) ≤ д(n), with д(n) being composed of the following

sums. The additive terms n
i for all i > 0, i mod w > 0 sum up to at

most
∑n
i=1

n
i = O(n logn). For each hurdle with a peak at i zeros,

д(n) contains an additive term n
ip(1−p)

as well as terms

w−1∑

j=1

2j−w+1
n2

(i −w + j)2p(1 − p)3
≤ O(1) ·

n2

i2p(1 − p)3

as
∑i−1
d=0

2−d i2/(i−d)2 = O(1). Adding up the terms for each hurdle

withw, 2w, 3w, . . . , (n/w)w zeros yields

д(i) ≤ д(n) = O

(
n logn +

n/w∑

j=1

(
n

jwp(1 − p)
+

n2

(jw)2p(1 − p)3

))

= O

(
n logn +

n

wp(1 − p)

n/w∑

j=1

1

j
+

n2

w2p(1 − p)3

n/w∑

j=1

1

j2

)

= O

(
n logn +

n log(n/w)

wp
+

n2

w2p

)

= O

(
n logn +

n2

w2p

)

where the penultimate line follows from
∑n/w
j=1 1/j2 ≤

∑∞
j=1 1/j

2
=

π 2/6 = O(1) and in the last line we used log(n/w) = O(n/w) to

absorb the middle term. We show in the following that the potential

decreases in expectation by Ω(1).

For 0 < i mod w < w−1, the potential decreases byд(i) − д(i − 1)

if mutation creates a search point with i − 1 zeros and the mutant is

evaluated correctly (probability at least i/n · (1 − p)). It is increased

by д(i + 1) − д(i) only if mutation creates a search point with i + 1

zeros (probability (n − i)/n ≤ 1) and either the parent or the off-

spring is misevaluated (probability at most 2p), as otherwise the

offspring will be rejected. Thus for all i with i mod w < {0,w − 1},

using ai+1 = 2ai ,

E(д(Xt ) − д(Xt+1) | Xt = i, i mod w < {0,w − 1})

≥
i

n
(1 − p)(д(i) − д(i − 1)) − 2p(д(i + 1) − д(i))

=

i

n
(1 − p)

(
n

i
+ ai

n2

i2p(1 − p)3

)
− 2p

(
n

i + 1
+ ai+1

n2

(i + 1)2p(1 − p)3

)

≥ 1 − p + (1 − p)ai
n

ip(1 − p)3
− 2p

(
n

i
+ 2ai

n2

i2p(1 − p)3

)

= 1 − p −
2pn

i
+

ain

ip(1 − p)3

(
1 − p −

4pn

i

)
.

As p ≤ 1/(6n), the bracket is at least 1 − 1/(6n) − 2/3 ≥ 0, hence

the drift is at least

E(д(Xt ) − д(Xt+1) | Xt = i, i mod w < {0,w − 1})

≥ 1 − p −
2pn

i
≥ 1 −

1

6n
−
1

3
≥

1

2
.

For i mod w = 0, the potential is decreased by д(i) − д(i − 1) =
n

ip(1−p)
with probability at least p(1 − p)i/n, and it is increased by

д(i+1)−д(i) only if either the parent or the offspring is misevaluated

and the offspring increases the number of zeros. The probability of

an increase is bounded by 2p. Thus

E(д(Xt ) − д(Xt+1) | Xt = i, i mod w = 0)

≥
n

ip(1 − p)
·
ip(1 − p)

n
− 2p(д(i + 1) − д(i))

= 1 − 2p(д(i + 1) − д(i))

= 1 − 2p ·

(
n

i + 1
+ 2−w+2 ·

n2

(i + 1)2p(1 − p)3

)

≥ 1 − 2pn − 2−w+3 ·
n2

i2(1 − p)3

and using p ≤ 1/(6n) andw ≥ 2 logn this is at least

≥
2

3
−

8

w2(1 − p)3
≥

2

3
− o(1).

For i mod w = w − 1 the potential is decreased by д(i) − д(i − 1)

if mutation decreases the number of zeros and both parent and

offspring are evaluated truthfully. The potential is increased by

д(i + 1) − д(i) only if mutation creates a search point with i + 1

zeros (probability at most 1). Thus

E(д(Xt ) − д(Xt+1) | Xt = i, i mod w = w − 1)

≥
i(1 − p)2

n
· (д(i) − д(i − 1)) − (д(i + 1) − д(i))

=

i(1 − p)2

n
·

(
n

i
+

n2

i2p(1 − p)3

)
−

n

(i + 1)p(1 − p)

= (1 − p)2 +
n

ip(1 − p)
−

n

(i + 1)p(1 − p)

≥ (1 − p)2 = 1 −O(1/n).

Now standard additive drift arguments yield a O(д(n)) bound. �

The reason why prior noise is helpful is that, intuitively speaking,

it can łsmooth outž the fitness landscape, blurring rugged peaks

and allowing the algorithm to see the underlying gradient. Hence

noise can be useful for problems with a big valley structure. This
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effect has been observed in continuous spaces before [29] where it

was termed łannealing of peaksž. In discrete spaces the only other

examples the author is aware of showing a positive effect of noise

are deceptive functions and needle-in-a-haystack functions [27].

7 CONCLUSIONS

Wehave presented a simplemethod for proving upper bounds under

several prior noise models, based on estimating the probability that

during the median worst-case optimisation time no noise occurs.

Despite its simplicity, it matches and generalises the best known

results [28] and provides a unified approach for one-bit noise, bit-

wise noise, and asymmetric bit-wise noise. Along with our negative

result for LeadingOnes, the expected optimisation time of the

(1+1) EA on LeadingOnes isΘ(n2)·exp(Θ(pn2)) for one-bit noisep,

asymmetric one-bit noisep, and bit-wise noise (p′,q/n)whereq ≤ 1

and p = p′q. This confirms that the threshold between polynomial

and superpolynomial times is p = Θ((logn)/n2).

Offspring populations can cope with noise up to p ≤ 1/2 if the

population size is at least λ ≥ log e

e−1/2
(n) ≈ 3.42 logn. We obtained

an upper bound of O
(
n2 · eO (pn/λ)

)
, guaranteeing polynomial ex-

pected times for p = O((λ logn)/n). An open problem is whether

the upper bound is tight in the same sense as for the (1+1) EA.

Finally, we showed that on the Hurdle problem class, a highly

rugged problem with a clear łbig valleyž structure, prior noise is

helpful as it allows RLS to escape from local optima and to follow

the underlying gradient.
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