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ABSTRACT

The recently introduced Gene-pool Optimal Mixing Evolutionary

Algorithm for Genetic Programming (GP-GOMEA) has been shown

to find much smaller solutions of equally high quality compared

to other state-of-the-art GP approaches. This is an interesting as-

pect as small solutions better enable human interpretation. In this

paper, an adaptation of GP-GOMEA to tackle real-world symbolic

regression is proposed, in order to find small yet accurate mathe-

matical expressions, and with an application to a problem of clinical

interest. For radiotherapy dose reconstruction, a model is sought

that captures anatomical patient similarity. This problem is partic-

ularly interesting because while features are patient-specific, the

variable to regress is a distance, and is defined over patient pairs.

We show that on benchmark problems as well as on the application,

GP-GOMEA outperforms variants of standard GP. To find even

more accurate models, we further consider an evolutionary meta

learning approach, where GP-GOMEA is used to construct small,

yet effective features for a different machine learning algorithm. Ex-

perimental results show how this approach significantly improves

the performance of linear regression, support vector machines,

and random forest, while providing meaningful and interpretable

features.
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• Computing methodologies → Machine learning; Genetic

programming; • Applied computing→ Life and medical sci-

ences;
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1 INTRODUCTION

Genetic Programming (GP) is a particularly interesting Machine

Learning (ML) algorithm when dealing with regression, because

it directly evolves mathematical expressions [10, 15]. While GP is

in principle capable of generating white-box models, i.e., human-

interpretable expressions, the evolved models are often overly com-

plicated and far from being interpretable [11]. This aspect makes the

use of GP questionable: why should GP be preferred over faster and

similarly accurate ML algorithms like, e.g., support vector machines

and random forest [1, 7], if both result in black-box models?

The Gene-pool Optimal Mixing Evolutionary Algorithm for GP

(GP-GOMEA) is a recent, model-based algorithm which has been

shown to achieve excellent scalability on synthetic Boolean bench-

mark problems [19], while evolving much smaller solutions than

various competing algorithms. GP-GOMEA prevents bloat by con-

struction, and performs variation based on a linkage model, i.e., a

model that captures genotypic interdependencies. It is interesting

to assess whether the fact that GP-GOMEA typically finds smaller

solutions extends from Boolean functions to the domain of symbolic

regression, and what accuracy can be reached.

As additional motivation, a regression problem in the medical

domain is considered, where obtaining small, interpretable models

can be of added value for clinicians. The problem is the regres-

sion of a notion of distance related to anatomical similarity among

pediatric cancer patients, to ultimately enable studies on the late

adverse effects of radiotherapy. A peculiarity of this problem is that

features are relative to each individual patient, while the distance

is measured on patient pairs. To succeed, an ML algorithm needs

to learn how to combine individual features to model the distance.

We tackle this problem directly with GP-GOMEA, and compare

the results with variants of standard GP and with well-known

ML algorithms. Furthermore, to learn even more accurate models,
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we propose an evolutionary meta learning approach where GP-

GOMEA is used as a powerful non-linear feature constructor for

an external ML algorithm (see [5] for a survey of feature construc-

tion by GP). We constrain the evolved features to be particularly

small to make them very easy to interpret, and show their effec-

tiveness in increasing the performance of the ML algorithm. Two

additional benchmark regression problems are considered for a

wider comparison of the algorithms.

2 GP-GOMEA

The Gene-pool Optimal Mixing Evolutionary Algorithm for GP (GP-

GOMEA), recently introduced in [19], was shown capable of finding

much smaller solutions than Standard GP (SGP) and other EAs for

well-known synthetic benchmarks and Binary circuit regression,

while achieving similar, or superior, scalability.

GP-GOMEA has the same general outline of the GOMEA frame-

work, where, until the termination condition is met (e.g., a number

of generations), a linkage model is learned and used by the vari-

ation operator Gene-pool Optimal Mixing (GOM) to generate an

offspring for every solution in the population. The offspring is by

construction at least as fit as the parent, thus a separate selection

step is not needed. The model that GOM uses is a collection of

linkage sets, called the Family Of Subsets (FOS). Each linkage set

represents genotypic positions with strong interdependency, and

specifies which genes are to be mixed during variation. The idea is

that mixing interdependent genes en bloc prevents the disruption

of their joint effect.

To conveniently perform model learning and variation, GP-

GOMEA uses a tree representation of solutions different from the

one of SGP in that trees have a fixed shape, i.e., they are always com-

plete and full. All nodes which are above a predefined maximum

depth d have exactly r child nodes, with r the maximum number

of input arguments among function nodes. When computing the

output of the tree, if a function node uses only r ′ < r child nodes

as inputs, then the rightmost r − r ′ child nodes are not executed.

Similarly, all child nodes of a terminal node are not executed. The

nodes that are not executed are called introns. All trees thus have

a height h = d , and exactly l =
∑h
i=0 r

i nodes, with some being

introns. This means that the syntactic size of a solution is always

l , but the size that has a semantic impact is at most l . By setting

a small d , bloat is prevented by construction, and GP-GOMEA is

forced to perform competent variation using the FOS model to find

a good solution of limited size.

The FOS is learned every generation before applying GOM. The

Linkage Tree (LT) FOS is often used in GOMEA because it has been

shown to achieve solid performance on different problems [16, 19].

The LT captures hierarchical degrees of interdependency among

nodes. This model is learned by measuring the mutual information

between all possible pairs of locations in the genotype of the popu-

lation, and performing hierarchical clustering. The computational

effort to learn the LT isO (population-size× l2). This is often a neg-

ligible overhead in GP, where computing the output of solutions

is typically the performance bottleneck. Further details on the LT

can be found in [16, 19]. In this work, GP-GOMEA was always run

with the LT FOS.

Lastly, the GOM operator handles both variation and selection.

Pseudocode illustrating GOM is shown in Algorithm 1. Given a

solution, a copy representing the offspring and a copy for backup,

are made. For each linkage set LTi in the LT FOS (parsed in a

random order to allow different mixing combinations), a random

donor from the population is chosen, and the nodes at the position

specified by LTi are cloned from the donor into the offspring. If

this cannot alter the behavior of the offspring, i.e., no node changed

value or only intron nodes did, the iteration is concluded. Otherwise,

the fitness of the offspring is immediately evaluated. If the fitness of

the offspring is not worse than the one of the backup, then the latter

becomes a copy of the former. Otherwise, the change is discarded,

by reverting the offspring to the backup. This mixing behavior,

so-called optimal mixing, is guaranteed to always perform the best

local step in terms of fitness improvement [17]. After all the linkage

sets were considered, the offspring is returned. We remark that

the mixing performed by GOM is very different from the classic

subtree-swapping crossover (or mutation), as the mixed nodes in

GP-GOMEA are not necessarily connected, and it never generates

an offspring less fit than the parent.

When all parent solutions underwent GOM, the offspring replace

the population of parents, and the generation terminates.

Algorithm 1 Gene-pool Optimal Mixing

1 function GOM(solution, sol_fit, LT)
2 offspring← solution; off_fit← sol_fit
3 backup← solution; back_fit← sol_fit
4 RandomlyShuffle(LT)
5 for LTi ∈ LT do
6 donor← RandomlyPickDonorFromPopulation()
7 ReplaceNodesAtPositions(offspring, donor, LTi )
8 if MeaningfulChangeExists(offspring, backup) then
9 off_fit← ComputeFitness(offspring)
10 if IsEqalOrBetter(off_fit, back_fit) then
11 backup← offspring; back_fit← off_fit
12 else
13 offspring← backup; off_fit← back_fit
14 else
15 backup← offspring
16 Return(offspring)

2.1 Adapting GP-GOMEA for real-world
symbolic regression

To tackle real-world symbolic regression problems, we performed

the following changes/additions to the core of GP-GOMEA.

Linear scaling. Since GP generates solutions by composing the

nodes provided in the terminal and function set, a big enough so-

lution size is needed to craft a specific function. Such solutions

may become exorbitantly large if the right constants are not avail-

able, e.g., when trying to evolve the function x100.0 using solely

+,×,x , 1.0 as nodes. To alleviate this issue, we adopt linear scal-

ing [8]. Linear scaling is a computationally fast way to scale a

solution f (x ) as α f (x ) + β during error evaluation, so that the evo-

lutionary search can focus on the shape of the dynamically scaled

function. Given n examples of features-target (x , z) in the dataset,

the slope α and the intercept β can be efficiently calculated inO (n)
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as:

α = f̄ (x ) − βz̄,

β =

∑n
i=1 ( f (xi ) − f̄ (x )) (zi − z̄)

∑n
i=1 (zi − z̄)

2
,

with the overbar ·̄ representing the mean.

Interval arithmetic. We further adopt interval arithmetic to

evolve correct expressions without the need of using protected

operators, as proposed in [8]. With interval arithmetic, any time

a solution is generated (or changed), its validity is assessed by re-

cursively propagating the interval of values that can be assumed

by the tree nodes. If at any point, an operation with possible unde-

fined values is encountered (e.g., division with second term having

values in the interval [−1,+1], which includes 0), then the solution

is discarded and a new, random one is generated (or, in the case of

variation, reverted to its valid state).

Ephemeral random constant sampling. Common practice

in GP-based symbolic regression is to use an Ephemeral Random

Constant terminal node (ERC), which value is sampled uniformly

from a pre-specified interval when the node is instantiated. This

interval is usually set by a rule of thumb, with [−1, 1] being a

typical choice for benchmarks. However, the dimensionality of the

problem is not taken into account, and sampled constants may not

help the search. Therefore, we initialize the interval dynamically

at the beginning of the run, based on the values of the problem-

specific features. Specifically, let m features and n examples be

present in the training set. Let xi, j be the ith feature value of the

jth entry of the training set, then we set the ERC sampling interval

to [minxi, j ,maxxi, j ], ∀i, j.

Convergence avoidance. Like in genetic algorithms, the pop-

ulation of GP-GOMEA ultimately converges to the same genotype.

This typically happens very quickly in GOMEA in general, because

GOM prevents the generation of unfit offspring, and solutions have

a fixed size. To avoid (premature) convergence, the worst third

of the population is discarded at the end of each generation, and

randomly generated anew.

3 MACHINE LEARNING ALGORITHMS FOR
REGRESSION

The regression problems considered in this paper are defined with

a dataset of examples. Each example contains values of the features

and of the variable to regress. An ML algorithm uses this data to

generate a model, i.e., a combination of the features, that estimates

the target variable as closely as possible. Recall that, to assess if the

model is capturing the correct feature combination, the original

dataset is split into two separate parts. The training set is used to

generate the model, and the test set to assess the model performance

on unseen examples.

We consider two types of ML algorithms: evolutionary and non-

evolutionary ones. The evolutionary ML algorithms considered

are GP-GOMEA, Standard tree-based GP (SGP), SGP in a multi-

objective formulation (SGPmo), with size as secondary objective

and implemented as NSGA-II [4], and a version of SGP forced to

evolve small solutions by using the same maximum tree height of

GP-GOMEA (SGPbounded).

Note that SGPmo returns a Pareto set of solutions that do not

dominate each other. To select a final solution from the Pareto set,

the training set is further split before beginning the evolution, into

so-called training-training set and training-test set (also known as

validation set). The training-training set is used by SGPmo to find

the Pareto set. In the end, the final solution is the one withminimum

error on the training-test set. In other words, the training-test set

is used to pick the solution that generalizes better.

Three non-evolutionary ML algorithms are considered: Linear

Regression (LR), Support Vector Machines (SVM) for regression [2,

3], and Random Forest (RF) [1]. These algorithms are easy to use and

are often effective on high-dimensional datasets, even with default

parameters. Furthermore, they are relatively much faster to run

than the evolutionary ML algorithms. LR is a deterministic method

and models only linear combination of the features to regress the

target variable. In this work we consider the most common form

of LR, based on the least square error. SVM is also deterministic,

but differently from LR uses the kernel trick method to express

non-linear feature combinations. Here, the standard radial basis

function kernel is used. RF is a stochastic, bagging ensemble algo-

rithm that models non-linear feature combinations by means of an

ensemble of regression trees. While LR-generated models are typi-

cally interpretable (mostly depending on the number of features),

SVM, and RF-generated ones are much harder to interpret.

In the following, both evolutionary and non-evolutionary ML

algorithms are used to directly perform regression. For the meta

learning approach (explained below), GP-GOMEA is used as a fea-

ture constructor for the non-evolutionary ML algorithms, i.e., LM,

SVM, and RF.

4 EVOLUTIONARY META LEARNING

Together with applying GP-GOMEA directly to symbolic regres-

sion, we consider an evolutionary meta learning approach where

GP-GOMEA performs feature construction for a non-evolutionary

ML algorithm. It works as follows. GP-GOMEA is run forG genera-

tions, during which the population of solutions competes to become

one new feature for the ML algorithm. Differently from the direct

symbolic regression, here the fitness of a solution is calculated by

running the ML algorithm on a training set where the feature repre-

sented by the solution is included. In an attempt to obtain a robust

fitness for the solution, the ML algorithm is trained and tested T

times, each time on a different random split of the feature-enriched

training set, and the maximum prediction error is considered. This

process is shown in Algorithm 2. Note that, differently from the

direct symbolic regression case, linear scaling is not applicable here,

as it requires error residuals of the predicting solution, while now

a feature is being evolved by considering the prediction error of an

external ML algorithm.

Because evaluating the fitness is expensive, line 8 of Algorithm 1

is particularly important in order to prevent useless evaluations. No

evaluation is performed if the mixing does not result in a syntactic

change, nor in a semantic change. The latter check is an addition

for the meta learning, done after a syntactic change is observed. A

syntactic change may still lead to no semantic change, e.g., the swap

of operands for + (commutativity). To check for semantic changes,

the output of the changed solution is calculated (as done in symbolic
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Table 1: Pediatric patient features used in this work.

Numerical features Mean St. dev. Min Max ID

Age (years) 3.90 1.05 2.21 5.56 x0
Anterior-posterior diameter measured at isocenter (cm) 13.36 1.31 11.30 16.00 x1
Distance iliac crest-spinal cord (cm) 5.58 0.56 4.34 6.75 x2
Hearth diameter (cm) 8.40 0.79 6.80 9.85 x3
Height (cm) 104.41 9.74 89.00 123.00 x4
Left-right diameter measured at 2nd lumbar vertebra (cm) 19.51 1.56 16.30 23.50 x5
Length right diaphragm (cm) 8.38 0.71 7.10 9.76 x6
Length spinal cord from 12th thoracic to 4th lumbar vertebra (cm) 9.33 0.91 7.00 10.90 x7
Weight (kg) 16.85 3.85 10.00 28.00 x8

Categorical features Values ID

Gender 2 categories: 19 females, 16 males x9
Diagnosis 6 categories: 21 Wilms’ tumor, 14 other x10
Partial nephrectomy 3 categories: 2 left, 1 right, 32 none x11
Radical nephrectomy 3 categories: 10 left, 10 right, 15 none x12
Tumor site 10 categories: 10 left kidney, 11 right kidney, 14 other x13

5.2 Distance based on abdomen overlap

Another notion of distance is based on the overlap of the abdomens

that were manually segmented from the CT scans. Two examples of

abdominal volumes are shown in Figure 1. This distance measure

is computed after alignment of the given volumes V 1, V 2 on the

center of mass, using the Dice Similarity Coefficient (DSC), which

is defined as:

DSC(V1,V2) =
|V1

⋂

V2 |

|V1 | + |V2 |
.

The distance is then simply 100(1 − DSC ).

5.3 Datasets of patient similarity

For both distances, a dataset was generated where each row repre-

sents a pairing of patients. The predictor variables contained in a

row are the features of the paired patients, listed one next to the

other (i.e., given patients x ,y, one feature is xage and another is

yage). Consecutive integer numbers are used for categorical features,

e.g., female = 0, male = 1 for gender, and left = -1, none = 0, right =

1 for radical nephrectomy. The task of combining these features is

left to the ML algorithm (feature relevance and selection is outside

the scope of this work). As to the target variable, in the dataset

DDeform the CT deformation-based distance is used, while in the

dataset DOverlap the target variable is the abdominal overlap-based

distance. The two datasets are thus each composed of 14 × 2 = 28

features, 1 target variable, and
(

35
2

)

= 595 examples.

6 EXPERIMENTAL SETUP

We ran all the ML algorithms directly on the datasets, and the

non-evolutionary ML algorithms embedded in the meta-learning

approach, with varying number of iterations K to construct new

features. Together with the two regression problems on patient

anatomical distance, two further well-known real-wold benchmark

datasets are considered1, namely Boston housing (13 features and

506 examples) and Servo (19 features and 167 examples).

1Boston housing and Servo are available on the UCI Machine Learning Repository
website: http://archive.ics.uci.edu/ml.

For both the direct regression and the evolutionary meta learn-

ing, all experiments consisted of 30 independent runs, each with

a random split of the dataset. A 70-30 split is used to partition the

examples into training set and test set.

6.1 Direct regression

For the direct regression, non-evolutionary ML algorithms are run

with default parameters. As to the evolutionary algorithms, a time

limit of 1 hour is set. The parameter settings used for GP-GOMEA

and SGP are reported in Table 2. Both methods use interval arith-

metics and linear scaling. In the variation phase of SGP, whenever

crossover, mutation, and reproduction do not happen, a new so-

lution is generated, either with the full or grow method (50-50

chance) [10]. The node selected for subtree variation in crossover

and mutation is chosen with the uniform depth node selection

method [13], which better prevents bloat. In SGPmo, the initial

training test is split into training-training and training-test with a

70-30 split. SGPbounded uses the same maximum tree height of GP-

GOMEA, i.e., 5. Lastly, both GP-GOMEA and SGP use the caching

of node outputs (i.e., partial evaluations) to speed up solution eval-

uation time [13, 19].

6.2 Evolutionary meta learning

For the meta learning approach, the parameter settings are the

following. GP-GOMEA is run for 10 generations, with a population

size of 120 solutions and maximum tree height 2. From 1 to 10 meta

learning iterations are done. During the evaluation of a solution

(Algorithm 2), the number T of repetitions of the ML algorithm on

different train set splittings is set to 10 (and 100 trees are used for

RF), and 70-30 split of the feature-enriched training set is used to

generate the training-training and training-test set. To evaluate the

final performance, the ML algorithm is run on the test set, enriched

with the new features, and the test error is considered. For RF,

which is stochastic, 30 repetitions are done for the test, each using

2000 trees, and the average error is returned.
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Table 2: Parameter settings for GP-GOMEA and SGP

Parameter Value

Time limit 1 hour

Population size 2000

Terminal set features + ERC

Function set {+, −, ×, ÷, ·2, exp, log}

Tree initialization method half-n-half

Minimum tree height at initialization 2

GP-GOMEA fixed maximum tree height 5

SGP maximum tree height at initialization 5

SGP maximum tree height during evolution 17 (5 for SGPbounded)

SGP selection method tournament of size 7

SGP crossover/mutation/reproduction rate 0.9/0.1/0.1

SGP elitism 1 best of generation

SGP new solution sampling
if cross., mut., and repr.

do not happen

GP-GOMEA new solution sampling replace worst 3rd pop.

The code for GP-GOMEA and for the variants of SGP was imple-

mented in C++. The meta learning was made possible by interfacing

GP-GOMEAwith existing implementations of the non-evolutionary

ML algorithms for R [2, 14]. The ML algorithms have been used

with default parameter settings, as parameter tuning is outside the

scope of this work. Experiments were run on a machine with 2

Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz and 630 GB of RAM.

7 RESULTS

The results are presented separately for the direct regression, and

the evolutionary meta learning approach. The coefficient of deter-

mination R2 = 1 −
∑

(ẑ − z)2/var(z), with z the variable to regress

and ẑ the model prediction, is used to measure the performance.

7.1 Direct regression

The R2 obtained by the direct application of all ML algorithms on

the four datasets is reported in Table 3. It can be seen that, overall,

RF is the significantly best performing algorithm on both train and

test for 3 out of 4 datasets, according to the unpaired two-samples

Wilcoxon test (p-value < 0.05). SVM performs second best, however

both RF and SVM are black-boxes. The performance of LR is poor

in all cases. As to the evolutionary ML algorithms, GP-GOMEA

reaches lower R2 compared to SGP and SGPmo on the training,

however the latter algorithms tend to overfit, as some solutions

reach extremely large errors on the test set. In SGPmo, the use of

size as second objective and an intermediate validation step lowers

the chance of extremely bad performance on unseen data, yet does

not improve median performance. SGPbounded, which uses the same

maximum tree height of GP-GOMEA, performs significantly worse

than the latter on both training and testing. This last result shows

that the model-based variation performed by GOM with the LT is

more competent than the blind variation operators of SGP.

While the maximum solution size (i.e., tree nodes) reachable

by GP-GOMEA is 63 (given by maximum tree height h = 5 and

maximum function arity 2), the solutions found are typically half

this size (by counting active nodes), making them effectively in-

spectable. Figure 3 shows models found by GP-GOMEA for the

regression of patient distance with median test performance. It can

be seen that the model for DDeform is a linearly-scaled logarithm of

the sum between the squared difference of left-right diameters, and

a ratio involving four types of features. This last term is not immedi-

ately readable, and could be overfitting the data. Pre-processing the

data with, e.g., feature selection, may improve the interpretability

and performance of the evolved models. Like for GP-GOMEA, the

models found by SGPbounded, and to some extent the ones found

by LR, can also be inspected; however they perform worse.

Additional experiments (not reported here) showed that increas-

ing the maximum height for GP-GOMEA trees and enriching the

function set (e.g., with the sin and cos functions) leads to improved

performance, however solutions become much harder to interpret.

7.2 Evolutionary meta learning

As to the evolutionary meta learning, Figure 2 shows boxplots rep-

resenting the change in R2 on the test set that is obtained by adding

up to 10 extra features to LM, SVM, and RF. The bottom and top of

a box are the lower and upper quartile (LQ,UQ), respectively. The

band near the middle of a box is the median. The lower and upper

whiskers are computed as max(min(R2),LQ + 1.5(UQ − LR)) and

min(max(R2),UQ+1.5(UQ−LR)), respectively. Circles are outliers.

Note that when no evolved features are added, the performance is

the same as reported in Table 3.

In almost all cases, it can be seen that iteratively adding evolved

features slightly, yet steadily improves performance, up to a point

where no further improvements are observed. Also, it is remarkable

to notice that mean performance never becomes worse, although

variation may increase. The most dramatic performance increase is

obtained for the evolutionary meta learning with LR (eLR), which

R2 on the test set can increase up to four times (DOverlap). For

the evolutionary meta learning with SVM (eSVM), performance

increase is more moderate than for eLR, but is present on all prob-

lems. The evolutionary meta learning with RF (eRF) is better than

RF on DOverlap and Servo, while is similar on DDeform and Boston.

RF seems alone capable of effectively combining the original fea-

tures, although it is very hard to interpret how RF combines them.

Table 4 summarizes statistical superiority on the test set of the ML

algorithms, as directly applied to the datasets, and with the addition

of 10 features in the meta learning. The best algorithm on DDeform

and DOverlap is eSVM, with a mean R2 of 0.81 (st. dev. 0.02) and of

0.94 (st. dev. 0.01), respectively. Boston is best solved by RF and eRF.

On Servo, surprisingly, eLR performs as good as eRF (mean test R2

0.84, st. dev. 0.09 for the first, mean test R2 0.87, st. dev. 0.07 for the

second), both methods being significantly superior to the others.

The first (median) features evolved by GP-GOMEA are shown

in Table 5 for the patient distance regression problems. Despite

their simplicity, these features are typically responsible for a large

performance improvement (particularly for eLR). It can be seen that

the features found by GP-GOMEA are pseudo-distances, consisting

of non-linear interaction between the anterior-posterior and left-

right abdominal diameters, and the weight of two patients. As an

example, the feature found for eLR on DDeform is (x5 − y5)
x8
y8
, i.e.,

the difference of left-right diameters times the ratio of the weights.

This simple feature allows LR to improve its R2 by almost a factor

of 4, while being extremely easy to interpret.
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Table 3: Mean R2 (and standard deviation) obtained by direct application of the ML algorithms on the datasets. Statistically

significant superior performances are reported in bold. For the test performance of SGP and SGPmo, the median is reported

(indicated by *), because of the large variations found. The size of LR models is estimated as the number of nodes for an

equivalent GP tree with all coefficient values different from 0. No size is reported for SVM and RF.

Training GP-GOMEA SGP SGPmo SGPbounded LR SVM RF

DDeform 0.67 0.05 0.79 0.08 0.69 0.14 0.60 0.06 0.24 0.09 0.89 0.01 0.95 0.00

DOverlap 0.80 0.07 0.91 0.03 0.83 0.11 0.71 0.04 0.27 0.10 0.96 0.00 0.97 0.00

Boston 0.80 0.05 0.93 0.02 0.89 0.07 0.78 0.04 0.75 0.04 0.88 0.02 0.97 0.00

Servo 0.94 0.04 0.99 0.01 0.94 0.07 0.89 0.06 0.78 0.06 0.90 0.03 0.93 0.02

Testing GP-GOMEA SGP SGPmo SGPbounded LR SVM RF

DDeform 0.63 0.05 0.58* Inf 0.55* 928.43 0.57 0.07 0.16 0.07 0.76 0.03 0.80 0.03

DOverlap 0.77 0.08 0.79* Inf 0.68* 0.41 0.69 0.05 0.19 0.09 0.90 0.02 0.89 0.01

Boston 0.76 0.05 0.74* 3e25 0.75* 52.49 0.73 0.06 0.71 0.03 0.82 0.04 0.87 0.03

Servo 0.79 0.12 0.09* Inf 0.74* 2126.12 0.75 0.11 0.70 0.07 0.78 0.07 0.81 0.07

Solution size GP-GOMEA SGP SGPmo SGPbounded LR SVM RF

DDeform 27.70 6.85 670.83 154.39 419.37 107.49 21.60 7.41 113.00 0.00

DOverlap 34.97 13.52 845.40 226.44 536.57 149.45 31.57 7.78 113.00 0.00

Boston 24.27 12.28 684.17 132.05 546.20 120.85 24.43 8.11 53.00 0.00

Servo 38.23 11.36 764.07 132.63 464.13 87.34 36.00 7.35 77.00 0.00
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Figure 2: Boxplots representing test R2 with different number of evolved features. The boxplots of LR (no extra features) are

too low to be displayed for DDeform and DOverlap (mean of 0.16 and 0.19, respectively).
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Table 4: Statistical significance results on the four datasets.

The ≻ (≺) symbol represents significant superiority (inferi-

ority) of the row element against the column element.

SDeform SOverlap Boston Servo
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eS
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M

R
F

eR
F

LR ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺

eLR ≻ ≺ ≺ ≺ ≻ ≺ ≺ ≺ ≺ ≻ ≺ ≺ ≺ ≻ ≻ ≻

SVM ≻ ≺ ≺ ≺ ≻ ≻ ≺ ≻ ≻ ≺ ≺ ≺ ≻ ≺ ≺ ≺

eSVM ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≺ ≺ ≻ ≻ ≺

RF ≻ ≻ ≻ ≺ ≻ ≻ ≺ ≺ ≺ ≻ ≻ ≻ ≻ ≻ ≺ ≺

eRF ≻ ≻ ≻ ≺ ≻ ≻ ≺ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻

DDeform

−0.608323 + 0.792302 log
(

(x5 − y5)
2
+ y2

y1 (1+x1 )−x8
x6 (y2+y8 )

)

DOverlap

11.515279 + 0.874599 *
,

(

log(y0) − log(x0) + y7
y8 + y1

x4

)2

+

log(y5)
2 −

(x5)
2

y5 + y1

)

Figure 3: Models with median test performance on DDeform

and DOverlap learned by GP-GOMEA. Features xi ,yi refer to

the first and second patient in the pair, respectively (see Ta-

ble 1 for the meaning of xi ).

Table 5: First feature learned by GP-GOMEA in the evolu-

tionary meta learning approach which lead to median test

performance on DDeform and DOverlap. Feature xi (yi ) repre-

sents the ith feature of the first (second) patient.

eLR eSVM eRF

DDeform
x5−y5
y8/x8

(x5 − y5) (x5 − y1) (x5/y5) (y0 − x5)

DOverlap
x1−y5
x5/y1

(y1 − x5) (y5 − x1) (y8 − x8) (y1 − x1)

8 CONCLUSION

The GP version of the Gene-pool Optimal Mixing Evolutionary

Algorithm (GP-GOMEA) generally evolves smaller solutions than

other GP algorithms without compromising on accuracy. We tested

this property on the domain of symbolic regression, in order to

obtain accurate and readable mathematical expressions. Our exper-

imental results confirm that GP-GOMEA finds similarly or more

accurate models than three variants of standard GP, and is less

prone to overfitting. On a clinical problem, where a model captur-

ing anatomical dissimilarity needs to be found, we showed that the

models found by GP-GOMEA are interpretable to some degree.

We furthermore explored the possibility to use GP-GOMEA in

a meta learning approach, making the EA evolve very small but

salient features to use by a machine learning algorithm for regres-

sion. Almost always, this approach resulted in statistically superior

prediction performance, and in no case performance deteriorated.

At the same time, the features found were extremely simple, and

easy to interpret. In conclusion, GP-GOMEA proves to be an excel-

lent EA for symbolic regression, and a powerful feature constructor.
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