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ABSTRACT

The geometry and properties of the fitness landscapes of Compu-
tational Protein Design (CPD) are not well understood, due to the
difficulty for sampling methods to access the NP-hard optima and
explore their neighborhoods. In this paper, we use a state-of-the-
art Al complete algorithm to enumerate all solutions within a 2
kcal/mol energy interval of the optimum of two CPD problems.
We compute the number of local minima, the size of the attraction
basins, and the local optima network. We provide various features
in order to characterize the fitness landscapes, in particular the
multimodality, and the ruggedness of the fitness landscape. Results
show some key differences in the fitness landscapes and help to
understand the successes and failures of metaheuristics on CPD
problems. Our analysis gives some previously inaccessible and valu-
able information on the problem structure related to the optima of
the CPD instances (multi-funnel structure), and could lead to the
development of more efficient metaheuristic methods.

1 INTRODUCTION

Present in all living organisms, proteins are polymeric chains of
amino acids that play a central role in cellular processes such as
gene expression, catalysis, communication, regulation, transport
and signaling. The succession of amino acids in a protein sequence
defines how the protein folds into a given three-dimensional (3D)
structure, and thus its biological function. By changing the amino-
acid sequence, protein design seeks to produce proteins with new
structures and functions. Besides the ever-growing interest to pro-
duce tailor-made proteins for applications for the industry and
medicine, protein design is also motivated by the desire to under-
stand the relationships between the sequence, evolution, structure
and function of biomolecules.

Experimental protein design methods consists in synthesizing
various amino-acid sequences using genetic engineering and test-
ing them. However, with a choice among 20 natural amino acids
at each position, the size of the combinatorial sequence space (20"
sequences for a protein of length n) is out of reach of current ex-
perimental methods. Therefore, computational methods have been
proposed for rationalizing protein design process by focusing ex-
perimental tests on a computationally selected small library of se-
quences of particular relevance for the targeted structure/function.
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To achieve this, Computational Protein Design (CPD) tries to
identify, in this exponential amount of amino acid sequences, those
that are compatible with a targeted 3D structure, chosen for its
functional and/or structural properties. To achieve this, CPD relies
on an energy function to assess the stability of the amino-acid
sequence in the desired structure and a search algorithm to identify
a sequence that can organize itself in space in such a way that it
reaches optimal stability. An optimally organized sequence defines
a Global Minimum Energy Conformation or GMEC.

Any amino acid can be decomposed in a central invariable part
that participates in the formation of the relatively rigid polymeric
chain (or backbone) and a variable and highly flexible lateral chem-
ical component that defines the amino acid and that can be chosen
among the 20 possible natural variants. For these reasons, and fol-
lowing an approach introduced by Ponder and Richards [17], most
CPD approaches assume a rigid backbone structure while amino
acid side-chains are allowed to move among a finite set of composi-
tions and preferred organization conformations, called rotamers.
While CPD is still a young and rapidly evolving field, success stories
of computationally designed proteins highlight its ability to ade-
quately capture fundamental rudiments of molecular recognition
and interactions enabling the design of several kinds of proteins
for different purposes [8, 28, 29].

The CPD problem can be formulated as an optimization prob-
lem which consists in searching for combinations of rotamers at
designable positions that will lead to a stable 3D-fold. Despite its
apparent simplicity, the rigid backbone/discrete rotamer CPD prob-
lem has been proven NP-hard [16] and hard to approximate [3].
Consequently, most CPD approaches rely on metaheuristic search
methods based on simulated annealing [9, 30] (implemented into
the Rosetta modeling software [13]), genetic algorithms [18] or
other local search algorithms [5, 11]. Although metaheuristics have
the advantage of providing a solution at any time, they neither
guarantee finding the global optimal solution (or GMEC) in finite
time nor a bounded energetic distance to the optimal solution. To
try to circumvent this limitation, multiple independent runs are
performed (each with a predefined number of steps) in order to
cover, as well as possible, a rugged energy landscape. However, the
accuracy of metaheuristic methods drastically degrades as problem
size increases [22, 30] and the probability of finding the GMEC
drops very quickly close to 0 as problems get more difficult. Ad-
ditionally, the average energy gap to optimality tends to increase



with the number of designable positions, putting a limit on the size
of systems for which a reasonably good solution can be found with
confidence. The lack of knowledge on the features of the energy
landscape of CPD problems makes it difficult to understand why
metaheuristics methods fail on given instances.

Alternative CPD approaches rely on exact deterministic algo-
rithms guaranteeing that the solution returned at the completion
of the algorithm is the GMEC. Unfortunately, these methods, his-
torically based on the Dead-End Elimination theorem combined
with the A* algorithm [12] are often rapidly outstripped by the
complexity of the search space and do not provide any solution in
reasonable time. Recent artificial intelligence methods have allowed
to push back these limitations [1, 22, 24, 25]. Based on graphical
models and more specifically Cost Function Networks (CFN) [4]
methods, they can handle complex search spaces that were previ-
ously unsolvable by state-of-the-art provable CPD methods. The
CFN-based approaches speed-up search by several orders of mag-
nitude and can usually provide a guaranteed GMEC in reasonable
time. In addition to the optimal solution, these methods can pro-
vide an exhaustive list of sub-optimal solutions in a given energy
threshold around the optimum. This new ability opens new oppor-
tunities, notably to exhaustively explore the energy landscape in
the neighborhood of global optima. In this paper, we use CFN-based
methods to access the guaranteed NP-hard optima of CPD problems
and exhaustively explore their neighborhoods. This study provides
previously inaccessible and highly valuable data on the CPD energy
landscape. Analysis highlights some key characteristics of the two
CPD problems explaining the distinct behaviors of a metaheuristic,
the simulated annealing algorithm implemented in Rosetta.

2 RESULTS

For each of two CPD instances, 2ckx and 2gkt, using the Toulbar2
CFN solver, the optimal solution (GMEC), was identified and an
exhaustive enumeration of sub-optimal solutions within an energy
interval of 2 kcal.mol™! above the GMEC energy was performed.
The number of solutions within this energy interval is 497, 282
for 2gkt and 6, 209, 729 for 2ckx. These two CPD instances were
selected because of the difference of performance achieved with
simulated annealing. In a previous study, a simulated annealing
algorithm was able to reach the GMEC 250 times out of 1000 tra-
jectories on the instance 2gkt and failed to reach the GMEC on
2ckx, even after 1 million trajectories [22]. These results were ob-
tained using the Rosetta software with talaris14 energy function.
In order to confirm this difference in performance, we ran 1, 000
trajectories of simulated annealing on both instances using Rosetta
software with the recent beta_nov16 energy function (see details
in Section 3). Our result confirms that 2gkt has several features
indicating that it is easier than 2ckx. For 2gkt, the simulated an-
nealing was able to find the GMEC 24 times, and found 98 distinct
sequences in the enumerated landscape (269 trajectories found a
solution within 2kcal/mol of the GMEC, several trajectories finding
the same sequence). In the case of 2ckx, the simulated annealing
never found the GMEC and only 13 sequences (out of the 6, 209, 729
possibilities) appeared in the enumerated landscape. In this section,
we present a fitness landscape analysis of the two CPD problems.

For a given solution, its fitness is the difference of energy of the
optimal solution and this solution (maximum at zero).

2.1 Fitness distance correlation

The density of states according to the fitness value decreases ex-
ponentially for both instances, with a value of R? of the regression
over 0.98 (Figure 1). The density of states decreases faster for 2ckx,
which means fewer solutions near the optimum and suggests that
this instance is more difficult.
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Figure 1: Density of states over fitness.

The distributions of the Hamming distances to the optimal se-
quence have different profiles (Figure 2). The distribution is uni-
modal for 2gkt, with a mean distance to the optimal sequence of
6. The distribution is bimodal for 2ckx, with one mode at distance
6 and the other one at distance 13 of the optimal sequence. This
profile is more problematic for sampling methods because of the
risk of being trapped far away from the attraction basin of the
global optimum.
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Figure 2: Distribution of distance to the optimum sequence.

The fitness of the solutions is better correlated to their distance
to the global minimum for 2gkt (Figure 3). The linear correlation of
0.2 for 2gkt puts this instance in a class of easy problems according
to the scale of Jones [7]. With a linear correlation of 0.14, 2ckx is a
more difficult instance according to this measure. The distance to
the optimum decreases with the fitness for both instances, which
explains the performance of simulated annealing to find good ap-
proximations of the optimal solution on both instances. However,
the figure shows a recess at distance 8 of the optimum for 2ckx:
this shape suggests that solutions have to break through an energy
barrier in order to get closer to the optimal sequence. For 2gkt, the
slope is smoother and it seems easier to reach the optimal sequence
without having to cross high energy valleys.
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Figure 3: Correlation between fitness and distance to the op-
timum sequence (FDC) with color in log scale. 2ckx (left),
and 2gkt (right).

2.2 Evolvability

The distribution of the number of improving neighbors (i.e., the
number of sequences in the neighborhood with a lower energy) is
unimodal for both instances (Figure 4). The distribution is narrower
for 2ckx, and has a longer tail for 2gkt, which indicates that a
solution of the instance 2gkt is easier to improve.
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Figure 4: Distribution of the # of improving neighbors.
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Near-optimal solutions are easier to improve for 2gkt. Figure 5
shows the 2D density between fitness values and the number of im-
proving neighbors. The number of improving neighbors decreases
with the fitness for both instances. Although there is no linear rela-
tion, the correlation is higher for 2gkt: 0.28, whereas it is 0.23 for
2ckx. Figure 5 shows differences in the bottom left quarter: here
the number of improving neighbors decreases faster for 2ckx.

Figure 5: Correlation between fitness and the number of im-
proving neighbors with color in log scale. 2ckx (left), and
2gkt (right).

2.3 Local optima and basins of attraction

The number of local optima is higher for 2ckx (459) than for 2gkt
(151). The number of local optima is generally directly linked to
the difficulty of the problems. However, in this study, the number
of solutions is different for both instances and a direct comparison
is difficult. If we only look at the best 497, 282 solutions for 2ckx,
a number that fits the sample size of 2gkt, the number of local
minima is 220, which is still higher than for 2gkt.

The fitness distribution of local optima has a larger tail for 2gkt
(Figure 6), and local optima are more evenly distributed. In contrast,
the number of local minima drops down quickly with the quality
of the fitness for 2ckx.
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Figure 6: Fitness distribution of local optima.

Figure 7 shows the scatter plot of the basin size normalized by
the number of solutions (in log scale) as a function of the fitness
value of the corresponding local optima. The logarithm of the basins
size is linearly correlated to the fitness of the local optima. The
correlation is lost for high energy levels, but this may be an effect
of the enumeration threshold: some parts of the attraction basins
may not belong to the enumerated ensemble of solutions. The
attraction basin sizes tend to be smaller for 2ckx away from the
global optimum. This trend is inverted for near-optimal basins. For
2ckx, the cumulative basin size of local optima with high fitness
values is larger than those of 2gkt: even taking into account the
basin sizes, the near-optimal solutions are more difficult to reach
for 2ckx.
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Figure 7: Scatter plot of the fitness of local optima and their
corresponding normalized basin of attraction size. Notice
the log scale for the basin size.



The length of an adaptive walk (number of steps to reach a local
optimum with a steepest-descent algorithm), is positively highly
correlated with the logarithm of the corresponding basin size and
its fitness value (Figure 8). This property could potentially be used
to design a restart strategy. According to the length of steepest-
descent, and the fitness value of the local optima found, a restart
distance could be estimated in order to maximize the probability to
escape from the local optimum, and to find a better local optimum in
anext steepest-descent. Moreover, notice that the length of adaptive
walks of 2ckx are shorter than the length of 2gkt, and indicates a
more difficult multi-modal landscape.
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Figure 8: Scatter plot between the basin size, and fitness of
local optima and the average length of steepest descents to
reach the local optima. Notice the log scale for the basin size.

2.4 Local optima network

Fig. 9 shows different views of the local optima networks. The graph
representing the network of 2gkt is more densely connected than
the one of 2ckx. Even though the set of local optima is split in two
clusters, the edges show that there is a probability to escape from
the basins of attraction of sub-optimal solutions and to reach the
cluster leading to the global optimum. For 2ckx, there are several
clusters of basins of attraction as well, but no escape edge is visible.
Furthermore, the basins of attraction are larger for 2ckx than for
2gkt which confirms that the probability to be trapped into a sub-
optimal local optimum basin is higher for 2ckx.

The nodes strength of 2gkt is higher than the nodes strength
of 2ckx (Figure 10-left): on average 0.142 for 2gkt, and 0.093 for
2ckx. The strength is the sum of out-going weights, and then the
opposite of self-loop weights which is the probability to remain
in the same basin of attraction. So, the probability to escape from
local optima is 1.5 times higher for 2gkt than for 2ckx: it is easier
to escape the basin of attraction of 2gkt, in particular for near-
optimal fitness values. This confirms the 2D/3D representation of
LON. The local density of the network measured by the weighted
clustering coefficients consolidates the picture. 2ckx is locally more
clustered (wCC = 0.103) than 2gkt (wCC = 0.034), and it should
be even more difficult to escape from a cluster of local optima for
2ckx. As a consequence of the local structure of LON, the average
path length from one random node to the global minimum node is
longer for 2ckx (349.0) than for 2gkt (110.0). The structure of the
LON indicates that 2ckx is a more difficult problem than 2gkt: the
network of 2ckx is more clustered, with few edges toward better
nodes, and a higher probability to stay in the basin of attraction.

2.5 Ruggedness

2ckx is slightly more rugged than 2gkt. Fig. 11 (top) shows the
number of improving neighbors during random walks computed
on the sample with the solution with lowest energy. The autocorre-
lation length of 2gkt (20) is a little bit longer than 2ckx (14). The
autocorrelation function of fitness computed from random walks
starting from random solution and with an energy bounded to the
energy of the initial solution (Figure 12) also confirms this trend.
2gkt seems to be slightly smoother than 2ckx. However, during the
random walks, the fitness value suddenly increases or decreases.
As a consequence, the sequence of fitness values does not fit an
autoregressive model, and another fitness landscape tool should be
created to analyze such landscapes. However, this first difference
of autocorrelation opens a way to infer the structural difference
between the two fitness landscapes from a random solutions, and
computationally not expensive sampling.

3 METHODS
3.1 Cost function networks.

Cost function networks (CFNs) are deterministic Graphical Models
derived from Constraint Satisfaction Problems [20]

Definition 3.1. A CFN (X, W, k) is defined by:

e aset X of discrete variables x; € X indexedby I = {1,...,n},
each variable x; takes its values in a finite domain D; of
maximum cardinality d.

e a set of cost functions ws € W each involving a subset
{x; € X |i € S} of all variables and taking non negative
values in [0, k].

e The value k is a finite or infinite cost representing an up-

per bound on costs: a cost of k or above is considered as
forbidden.

The set S I of a cost function wg is called the scope of the cost
function. We denote by D¥ the Cartesian product of the domains
of all variables indexed in S: DS = [];cg D;. Given a tuple t € DS,
and 8’ C S we denote by ¢[S’] the projection of t on DY

The cost of an assignment ¢ of all variables is defined as the sum
Ywsew Ws(t[S]) of all cost functions. If it is strictly less than k,
the assignment is said to be a solution. The weighted constraint
satisfaction problem (WCSP) is to identify a solution of guaranteed
minimum cost over all t € DX, Because of the non negativity of all
cost functions, the cost function wy € W, a constant cost function
with no parameters, defines a lower bound on this minimum cost.

3.2 CPD modeling

We model CPD with a fixed protein backbone, a set of statistically
preferred side chain orientations, or rotamers, and a pairwise de-
composable energy function taking the form:

E(c) = Er + ) E(ir) + ) E(ir, j5)
i i<j
E; is a constant energy terms that captures the internal energy of
the protein backbone and the energy of the interactions between the
protein backbone and the environment. E(i,) captures internal side-
chain energies and rotamer-backbone interactions for rotamer r at
position i. E(iy, js) captures pairwise interactions between rotamers



Figure 9: Local optima network with basin edges for 2ckx (left side) and 2gkt (right side) in 2D and 3D representations. The
size is the log of the basin of attraction size. The color is the fitness: the better, the warmer. The thickness of the edges is
proportional to the probability of passing from one basin to the other.
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Figure 10: Strength and distance to global optimum on the
network as a function of fitness.
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Figure 11: Example of random walks. At each step the num-
ber of improving neighbors and autocorrelation function of
the random walks are computed.
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Figure 12: Example of random walks from a random solu-
tion and energy bounded to the energy of the initial point.
At each step of the walk, the fitness of the solution is com-
puted.

r and s at positions i and j respectively. Because the energy function
is pairwise decomposable, all terms can be precomputed and stored
in an energy matrix. The objective is to find the combination of
rotamers which minimizes the energy of the protein. The side chains
differentiate the amino acid types. So, selected rotamers determine
the sequence of the protein and solve the CPD problem.

With this representation, modeling CPD as a CFN is straight-
forward and has be done several times in the literature [1, 22, 24].
Each position i in the protein sequence defines a variable x; which
takes its values in the set of possible rotamers. The precomputed
energy terms are converted into costs by shifting them by a con-
stant in order to make them non negative, and by rounding after
multiplication by a large constant in order to make them integers.
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Figure 13: Top: the backbone of the protein is shown in
red. The side chains are shown in blue. In the fixed back-
bone representation, only side chains can move. Statistically
preferred side-chain orientations are stored in rotamer li-
braries. Bottom: toy CFN example representing the interac-
tions between the side chains of two amino acids: a Valine
(variable X) and a Leucine (variable Y). Values a and b repre-
sent rotamers. Assigning a to X has a unary cost of 1. The
assignments X =aq,Y =a,X =b,Y =g,and X = b,Y = b have
binary costs of 1. All other assignments have costs of 0.

The constant energy term E; is represented as the constant cost
function wg, rotamer-backbone interactions as unary cost func-
tions and pairwise interactions between rotamers as binary cost
functions. The backbone dependent CPD representation and an
example of CPD modeling as a CFN are illustrated on Figure 13.

We use ToulBar2! to compute the optima and enumerate sub-
optimal solutions. ToulBar2 explores a search tree with a Branch
and Bound algorithm. At the root of the search tree, all variables
are unassigned. At each node, the algorithm either assigns a value
to a variable (left branch) or removes this value (right branch).
Each leaf of the tree is an assignment of all variables. The optimal
solution can be obtained by examining the leaves and identifying
the assignment that gives the best cost. In order to avoid exploring
the whole exponentially sized tree, ToulBar2 maintains an upper
bound and a fast incremental lower bound on the cost of solutions
to prune branches that cannot lead to better solutions [4]. In a
minimization problem, the cost of the best solution found so far
defines the upper bound, and the lower bound provides an under-
estimation of the best cost below an unexplored branch. If the lower
bound reaches the upper bound, the branch is pruned. When every
branch has been either explored or pruned, the algorithm returns
the optimal solution. In order to perform enumerations, we run
our algorithm with a fixed upper bound k = x* + r where x™ is the
optimum and r the radius of the enumeration around the optimum.
This way, a branch is cut only if it contains solutions whose costs
fall outside of the enumeration radius.

http://www.inra.fr/mia/T/toulbar2

3.3 Models preparation

The structures of two proteins used as targets were downloaded
from the Protein Data Bank (PDB ID : 2ckx and 2gkt) and relaxed in
all-atom representation with PyRosetta, using the energy function
beta_nov16. From the relaxed models, pairwise energy matrices
were computed and converted into wesp format using PyRosetta,
the beta_nov16 energy function, the Dunbrack backbone depen-
dent rotamer library [21] and an in-house Python script. 2gkt is
51 amino acid residues long, 2ckx is 84 amino acid residues long.
The global optima were computed from the wesp files using Toul-
Bar2 with the following options: -dee: -0=-3 -B=1 -A -s -cpd
—-scpbranch. The enumerations were performed by running Toul-
Bar2 with the options: -dee: -A -s -hbfs: —cpd —scpbranch
-bestconf -a -ub=threshold, where threshold is the cost of the
global optimum augmented by the cost of the desired enumeration
radius.

For each instance, 1,000 simulated annealing trajectories were
performed using the fixbb program from the Rosetta software with
the same energy function and the relaxed protein models as input.

3.4 Fitness landscape analysis

In evolutionary computation, fitness landscapes (FL) is one of the
fundamental approaches to understand the geometry of the search
space from the point of view of local search techniques such as
evolutionary algorithm, simulated annealing, etc. On one side, FL
depicts the search space with metaphorical pictures such as moun-
tains, peaks, valleys, plateaus, etc. that could help one researcher to
design better algorithms; On the other side, it brings a set of numer-
ical metrics that can be used to compare problem difficulty, or be
used as features for machine learning techniques that predict algo-
rithm performance. One goal of a fitness landscape analysis is then
to contrast optimization difficulty of different problem instances,
representations, or neighborhood relations, etc.

Formally, a fitness landscape [23] is a triplet (X, NV, f) where X is
the set of potential solutions of the optimization problem, f : X —
R is the fitness function, and N : X — 2% is the neighborhood
relation between solutions: for each solution x € X, N(x) is the
set of solutions so-called neighbors of x. Several features of fitness
has been proposed and are detailed in the following paragraphs.

The Density Of States (DOS) [19] is the distribution of fitness
values of solutions from the search space. It has been shown that
the speed of decrease of the distribution tail towards good solutions
is an indicator of the problem difficulty. The faster the decrease,
the higher the difficulty. Indeed, this distribution corresponds to
the probability density of a random search to reach a fitness value.
In our experiments, in order to compare distributions, the fitness
value is shifted in such a way that the global minimum of energy
defines an optimal zero fitness.

One of the oldest fitness landscape feature is the Fitness Distance
Correlation (FDC) [7]. The idea of FDC is to measure how the fitness
function can guide search towards the global optimum. The FDC is
the scatter plot of the fitness vs. the distance of solutions to opti-
mum. The problem becomes easier when the correlation is higher
(higher than 0.15 according to the scale proposed by Jones [7]). The
global optimum is required to compute the FDC, which is usually
a drawback of the feature. But, for the CPD problem, the global
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minimum is known. The distance used in this work is the Ham-
ming distance i.e., the number of amino-acid substitutions between
two sequences. The distance is clearly related to the local search
operator used by existing Simulated Annealing implementations.

The set of FL metrics is related to evolvability [2] which is de-
fined in this context by the ability to evolve towards better solutions.
One tool to measure the evolvability is the Fitness Cloud (FC) [26]
which is the bi-variate distribution of fitness of solution before and
after applying a local search operator op: (f(x), f(op(x))). Several
statistics can be computed from the FC. For example, the num-
ber of improving solutions in the neighborhood: n*(x) = f#{x’ €
N(x) : f(x") < f(x)}. A high number means that the probabil-
ity to improve the current solution is higher. So, the correlation
between the fitness of the solution, and the number of improv-
ing neighbors is an indicator of the difficulty of the problem: the
probability decreases more slowly for an easier problem.

The main geometries of fitness landscape are the neutral ones
dominated by large plateaus of solutions with the same fitness
values, and the multi-modal ones with many local optima. The
ruggedness of fitness landscapes often impacts the multi-modality
of the fitness landscapes. Indeed, the ruggedness is the local conti-
nuity of the fitness function thanks to the neighborhood relation.
More rugged FL tends to be more multi-modal. The autocorrelation
of fitness during a random walks [31] is one of the metric of rugged-
ness. A random walk is a sequence of solutions (x1, x2, X3, ..., xn)
such that x;41 is a neighbor of x;. The first solution x; is a random
solution from the search space, and the next solution x;4; of the
walk is selected at random in the neighborhood of x;. The autocor-
relation function p(s) of the fitness is the correlation coefficient of
{(xt, xt4s) = 1 <t < n—s}. The autocorrelation length ¢ is defined
by the smallest integer such that |p(¢)| < 2/+/n. It measures the
degree of ruggedness of the landscape. A larger autocorrelation
length indicates a smoother and easier landscape.

One major feature of multi-modal fitness landscapes is the num-
ber of local optima: a high number of local optima usually leads to a
difficult problem. However, a number of research works have shown
that the link between the number of local optima and difficulty must
be contrasted by the size of the basins of attraction [6]. The basin
of attraction of a local optimum x* is the set of solutions which
converge to x* by steepest-descent search. A steepest-descent is
a walk such that x;41 is the best neighbor of x; according to the
fitness function. Intuitively, if the size of the basin of attraction
of the global minimum is “small”, then the computation effort to
reach it is “important”. The size of a basin of attraction can be es-
timated using the average length of steepest-descent towards the
local optimum [27]. It has also been observed on several classes
of combinatorial problems (nk-landscapes, Quadratic Assignment
Problem, Flow Shop Scheduling Problem) that the fitness of the
local optima is correlated with the logarithm of the size of basins
of attraction: a deeper local optimum has more chance to have a
larger basin of attraction. Notice that the size of global minimum
usually remains exponentially small compared to the search size.

Recently, the Local Optima Network (LON) [14] have been pro-
posed to compress the information of the whole search space into a
directed weighted graph where the nodes are the local optima, and
the edges are the possible weighted transitions between them. Then,
the graph can be analyzed using features from complex networks

science. Two definitions of edges have been proposed [15]. An edge
from the escape-edges type between local optima i and j is defined
if the distance between i and a solution of the attraction basin of j
is below a constant. An edge from the basin-edges type between i
and j exists if there are two solutions x; and x; respectively in the
basin of i and j such x; is a neighbor of x;. The weight is defined by
wij = ﬁ 2ixeb; szebj p(x — x”) where b; and b; are the basins
of attraction of i and j, and p(x — x”) is the probability to pass
from the solution x to x’ with the given neighborhood structure.
The main metrics of the network which are correlated with the
performance of local search algorithm are the average strength,
the average path length to the global optimum, and the weighted
clustering coefficient [15]. The strength of a node is the sum of out-
going weights: s; = ) j4; wij. A higher strength means a higher
probability to escape from the basin of attraction. The distance d;;
between two local optima i and j on the network is defined by
the inverse of the weight: d;; = WLIJ Intuitively, the weight is the
probability to pass from a local optimum to another, so, the distance
can be interpreted as the expected number of mutations needed to
pass from a local optimum to another. The path length between one
local optimum in the network and the global optimum is the length
of the shortest path in the graph weighted by the distances d;;. The
local optima network may have more than one connected compo-
nent. So, to compute the average distance, the harmonic mean is
used. The weighted clustering coefficient (wCC) evaluates the local
density of the graph. It measures how two neighbors of a node can
be also neighbors with each other. A high clustering coefficient
shows a high density network which may indicate either a smooth
path to global optimum, or, conversely, point out a hard region of
the search from which it is difficult to escape. The wCC remains,
however, a useful metric to understand the structure of the network.
As complementary information, in addition to numerical metrics, it
may be useful to represent the local optima using a 3D representa-
tion [10]. The layout is obtained with Fruchterman-Reingold layout
algorithm based on the weighted edges. The width of the edge is
proportional to the weight, the size of nodes is proportional to the
logarithm of the basin size, and the color and height of nodes is
given by the fitness value of the local optima.

4 CONCLUSION

CPD methods play an important role in protein engineering and
have many practical applications in Biotechnology and Synthetic
Biology. Metaheuristics are suitable methods for this task, given
the size of the search space and the NP-hardness of the problem.
However, without any knowledge of the fitness landscape near
the global optimum, and without any guarantee on the quality
of the solutions found, it is hard to improve the sampling of the
search space and to increase the success rate of CPD-based protein
engineering. Using some powerful CFN-based exact optimization
methods, we were able to exhaustively enumerate all solutions in
the vicinity of the global optimum for a CPD problem on which the
simulated annealing algorithm implemented in Rosetta, the most
famous and commonly used molecular modeling software, behaves
poorly. We analyzed the fitness landscape of this CPD problem,
and compared it to the fitness landscape of an easier CPD prob-
lem on which the simulated annealing algorithm behaves correctly.



Our analysis highlights some crucial differences in the fitness land-
scapes, explaining the failure of the simulated annealing on the
difficult instance. The structure of the landscape, with the presence
of several sub-optimal clusters of local optima disconnected from
the basin of attraction of the global minimum, is likely the main
reason for the bad performance of the simulated annealing. With
this type of landscapes, a method able to periodically perturb the
solutions in order to help them escape the basin of attraction of a
sub-optimal solution would be more suitable. Statistics on random
walks also showed some differences between the two instances, in
agreement with the fitness landscape analysis, and could be used
to assess the difficulty of CPD problems and adapt the sampling
strategy before or during sampling.
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