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Abstract In noisy evolutionary optimization, sampling is a common strat-
egy to deal with noise. By the sampling strategy, the fitness of a solution
is evaluated multiple times (called sample size) independently, and its true
fitness is then approximated by the average of these evaluations. Most pre-
vious studies on sampling are empirical, and the few theoretical studies
mainly showed the effectiveness of sampling with a sufficiently large sam-
ple size. In this paper, we theoretically examine what strategies can work
when sampling with any fixed sample size fails. By constructing a family
of artificial noisy examples, we prove that sampling is always ineffective,
while using parent or offspring populations can be helpful on some exam-
ples. We also construct an artificial noisy example to show that when using
neither sampling nor populations is effective, a tailored adaptive sampling
(i.e., sampling with an adaptive sample size) strategy can work. These find-
ings may enhance our understanding of sampling to some extent, but future
work is required to validate them in natural situations.

Keywords Noisy optimization · evolutionary algorithms · sampling ·
population · adaptive sampling · running time analysis

1 Introduction

Evolutionary algorithms (EAs) are a type of general-purpose randomized
optimization algorithms, inspired by natural evolution. They have been ap-
plied to solve various real-world optimization problems [18,19,36,39], which
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are often subject to noise. Sampling is a popular strategy for dealing with
noise: to estimate the fitness of a solution, it evaluates the fitness multiple
(m) times (called sample size) independently and then uses the sample aver-
age to approximate the true fitness. Sampling reduces the variance of noise
by a factor of m, but also increases the computation time for the fitness es-
timation of a solution by m times. Previous studies mainly focused on the
empirical design of efficient sampling methods, e.g., adaptive sampling [4,
5], which dynamically decides the sample size m for each solution in each
generation. The theoretical analysis on sampling was rarely touched.

Due to their sophisticated behaviors of mimicking natural phenomena,
the theoretical analysis of EAs is difficult. Much effort thus has been devoted
to understanding the behavior of EAs from a theoretical viewpoint [2,20],
but most of such works focus on noise-free optimization. The presence of
noise further increases the randomness of optimization, and thus also in-
creases the difficulty of analysis.

For running time analysis (one essential theoretical aspect) in noisy evo-
lutionary optimization, only a few results have been reported. The classic
(1+1)-EA algorithm was first studied on the OneMax and LeadingOnes prob-
lems under various noise models [3,7,11,15,26,31], including one-bit noise
which flips a random bit of a binary solution before evaluation with prob-
ability p ∈ [0, 1], and additive Gaussian noise which adds a value randomly
drawn from the Gaussian distribution. The results showed that the (1+1)-EA
is efficient only under low noise levels, e.g., for the (1+1)-EA solving One-
Max in the presence of one-bit noise, the maximal noise level of allowing
a polynomial running time is O((log n)/n), where the noise level is char-
acterized by the noise probability p, and n is the problem size. Later stud-
ies mainly proved the robustness of different strategies to noise, includ-
ing using populations [6,7,15,24,31], sampling [26,29] and threshold selec-
tion [30]. For example, the (µ+1)-EA with µ ≥ 12 ln(15n) [15], the (1+λ)-EA
with λ ≥ 24n lnn [15], the (1+1)-EA using sampling with m = 3 [29] or the
(1+1)-EA using threshold selection with threshold τ = 1 [30] can solve One-
Max in polynomial time even if the probability of one-bit noise reaches 1.
Note that there was also a sequence of papers analyzing the running time
of the compact genetic algorithm [14] and ant colony optimization algo-
rithms [9,12,13,32] solving noisy problems, including OneMax as well as a
combinatorial optimization problem, single destination shortest paths. Re-
cently, Qian et al. [25,28] proved the polynomial-time approximation guar-
antee of simple multi-objective EAs for solving a general problem, subset
selection, under additive or multiplicative noise, and showed that the algo-
rithms can be easily distributed for large-scale applications.

The very few running time analyses involving sampling [26,29] mainly
showed the effectiveness of sampling with a large enough fixed sample sizem.
For example, for the (1+1)-EA solving OneMax under one-bit noise with
p = ω((log n)/n), using sampling with m = 4n3 can reduce the running
time from super-polynomial to polynomial. In addition, Akimoto et al. [1]
proved that using sampling with a large enough m can make optimization
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under additive unbiased noise behave as noiseless optimization. However,
there are still many fundamental theoretical issues that have not been ad-
dressed, e.g., what strategies can work when sampling fails.

In this paper, we theoretically compare the two strategies of using pop-
ulations and sampling on the robustness to noise. Previous studies have
shown that both of them are effective for solving OneMax under one-bit
noise [15,26,29], while using sampling is better for solving OneMax under
additive Gaussian noise [29]. Here, we complement this comparison by con-
structing a family of artificial noisy OneMax problems, and showing that
using parent or offspring populations can be better than using sampling on
some problems in this family. We also prove that the employed parent and
offspring population sizes are almost tight.

Furthermore, we give an artificial noisy OneMax problem where using
neither populations nor sampling is effective. For this case, we prove that
using adaptive sampling can reduce the running time from exponential to
polynomial, providing some theoretical justification for the good empirical
performance of adaptive sampling [33,38].

This paper extends our preliminary work [27]. When comparing sam-
pling with populations, we only considered parent populations in [27]. To
get a complete understanding, we add the analysis of using offspring pop-
ulations (i.e., Section 3.2), showing that using offspring populations can be
better than using sampling (i.e., Theorem 8 in Section 3.2). For the artificial
noisy example in Section 4, where we previously proved that using neither
sampling nor parent populations is effective while adaptive sampling can
work, we now prove that using offspring populations is also ineffective (i.e.,
Theorem 12 in Section 4). To show that using parent populations is bet-
ter than using sampling, we only gave an effective parent population size
in [27]. We now add the analysis of the tightness of the effective parent pop-
ulation size (i.e., Theorem 7 in Section 3.1) as well as the effective offspring
population size (i.e., Theorem 9 in Section 3.2).

In [27], we also analyzed the (1+1)-EA solving the LeadingOnes problem
under one-bit noise with p = 1, which always flips a random bit of a binary
solution before evaluation. We showed that as the sample size m increases,
the expected running time to find the optimal solution, i.e., the string with
all 1s, can reduce from exponential to polynomial, but then return to expo-
nential. Note that we delete this part here due to the ill-defined noisy set-
ting. Under one-bit noise with p = 1, the expected fitness of the string with
all 1s is no longer the largest.

The rest of this paper is organized as follows. Section 2 introduces some
preliminaries. The effectiveness of using populations when sampling fails is
proved in Section 3. Section 4 then shows that when using neither sampling
nor populations is effective, adaptive sampling can work. Finally, Section 5
concludes the paper.
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Algorithm 1 (1+1)-EA
Given a pseudo-Boolean function f : {0, 1}n → R to be maximized, the procedure of the
(1+1)-EA is:
1: Let x be a uniformly chosen solution from {0, 1}n.
2: Repeat until some termination condition is met
3: x′ := copy x and flip each bit independently with probability 1/n.
4: if f(x′) ≥ f(x) then x := x′.

Algorithm 2 (µ+1)-EA
Given a pseudo-Boolean function f : {0, 1}n → R to be maximized, the procedure of the
(µ+1)-EA is:
1: Let P be a set of µ uniformly chosen solutions from {0, 1}n.
2: Repeat until some termination condition is met
3: x := uniformly selected from P at random.
4: x′ := copy x and flip each bit independently with probability 1/n.
5: Let z ∈ argminz∈P f(z); ties are broken randomly.
6: if f(x′) ≥ f(z) then P := (P \ {z}) ∪ {x′}.

Algorithm 3 (1+λ)-EA
Given a pseudo-Boolean function f : {0, 1}n → R to be maximized, the procedure of the
(1+λ)-EA is:
1: Let x be a uniformly chosen solution from {0, 1}n.
2: Repeat until some termination condition is met
3: LetQ := ∅.
4: for i = 1 to λ do
5: x′ := copy x and flip each bit independently with probability 1/n.
6: Q := Q ∪ {x′}.
7: Let z ∈ argmaxz∈Q f(z); ties are broken randomly.
8: if f(z) ≥ f(x) then x := z.

2 Preliminaries

In this section, we first introduce the EAs and the sampling strategy, and
then present the analysis tools that will be used in this paper.

2.1 Evolutionary Algorithms

The (1+1)-EA (i.e., Algorithm 1) maintains only one solution, and iter-
atively tries to produce one better solution by bit-wise mutation and selec-
tion. The (µ+1)-EA (i.e., Algorithm 2) uses a parent population size µ. In each
iteration, it also generates one new solution x′, and then uses x′ to replace
the worst solution in the population P if x′ is not worse. The (1+λ)-EA (i.e.,
Algorithm 3) uses an offspring population size λ. In each iteration, it gen-
erates λ offspring solutions independently by mutating the parent solution
x, and then uses the best offspring solution to replace the parent solution
if it is not worse. When µ = 1 and λ = 1, both the (µ+1)-EA and (1+λ)-EA
degenerate to the (1+1)-EA. Note that for the (µ+1)-EA, a slightly different
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updating rule is also used [14,35]: x′ is simply added into P and then the
worst solution in P ∪{x′} is deleted. Our results about the (µ+1)-EA derived
in the paper also apply to this setting.

In noisy optimization, only a noisy fitness value fn(x) instead of the ex-
act one f(x) can be accessed. Note that in our analysis, the algorithms are
assumed to use the reevaluation strategy as in [9,11,15]. That is, besides
evaluating the noisy fitness fn(x′) of offspring solutions, the noisy fitness
values of parent solutions will be reevaluated in each iteration. The running
time of EAs is usually measured by the number of fitness evaluations un-
til finding an optimal solution w.r.t. the true fitness function f for the first
time [1,11,15].

2.2 Sampling

Sampling as described in Definition 1 is a common strategy to deal with
noise. It approximates the true fitness f(x) using the average of a number
of random evaluations. The number m of random evaluations is called the
sample size. Note that m = 1 implies that sampling is not used. Qian et
al. [26,29] have theoretically shown the robustness of sampling to noise.
Particularly, they proved that by using sampling with some fixed sample
size, the running time of the (1+1)-EA for solving OneMax and LeadingOnes
under noise can reduce from exponential to polynomial.

Definition 1 (Sampling) Sampling first evaluates the fitness of a solutionm
times independently and obtains the noisy fitness values fn1 (x), f

n
2 (x), . . . ,

fnm(x), and then outputs their average, i.e., f̂(x) =
∑m
i=1 f

n
i (x)/m.

Adaptive sampling dynamically decides the sample size for each solu-
tion in the optimization process, instead of using a fixed size. For example,
one popular strategy [4,5] is to first estimate the fitness of two solutions by a
small number of samples, and then sequentially increase samples until the
difference can be significantly discriminated. It has been found well useful
in many applications [33,38], while there has been no theoretical work sup-
porting its effectiveness.

2.3 Analysis Tools

EAs often generate offspring solutions only based on the current popula-
tion, thus, an EA can be modeled as a Markov chain {ξt}+∞t=0 (e.g., in [17,37])
by taking the EA’s population space X as the chain’s state space (i.e., ξt ∈ X )
and taking the set X ∗ of all optimal populations as the chain’s target state
space. Note that the population spaceX consists of all possible populations,
and an optimal population contains at least one optimal solution.
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Given a Markov chain {ξt}+∞t=0 and the state ξt̂ at time t̂, we define its first
hitting time starting from ξt̂ as τ = min{t | ξt̂+t ∈ X ∗, t ≥ 0}. The expec-
tation of τ , E(τ | ξt̂) =

∑+∞
i=0 i · P(τ = i | ξt̂), is called the expected first

hitting time (EFHT). If ξ0 is drawn from a distribution π0, E(τ | ξ0 ∼ π0) =∑
ξ0∈X π0(ξ0) · E(τ | ξ0) is called the EFHT of the chain over the initial dis-

tribution π0. Thus, the expected running time of the (µ+1)-EA starting from
ξ0 ∼ π0 is µ + (µ + 1) · E(τ | ξ0 ∼ π0), where the first µ is the cost of eval-
uating the initial population, and (µ + 1) is the cost of one iteration, where
it needs to evaluate the offspring solution x′ and reevaluate the µ parent so-
lutions. Similarly, the expected running time of the (1+λ)-EA starting from
ξ0 ∼ π0 is 1+(1+λ) ·E(τ | ξ0 ∼ π0), where the first 1 is the cost of evaluating
the initial solution, and (1 + λ) is the cost of one iteration, where it needs
to evaluate the λ offspring solutions and reevaluate the parent solution. For
the (1+1)-EA, the expected running time is calculated by setting µ = 1 or
λ = 1, i.e., 1 + 2 · E(τ | ξ0 ∼ π0). For the (1+1)-EA with sampling, it becomes
m+2m ·E(τ | ξ0 ∼ π0), because the fitness estimation of a solution needsm
independent evaluations. Note that in this paper, we consider the expected
running time of an EA starting from a uniform initial distribution.

Next, we introduce several drift theorems which will be used to analyze
the EFHT of Markov chains in this paper. The multiplicative drift theorem
(i.e., Theorem 1) [10] is for deriving upper bounds on the EFHT. First, a dis-
tance function V (x) satisfying that V (x ∈ X ∗) = 0 and V (x /∈ X ∗) > 0
needs to be designed to measure the distance of a state x to the target state
space X ∗. Then, we need to analyze the drift towards X ∗ in each step, i.e.,
E(V (ξt)−V (ξt+1) | ξt). If the drift in each step is roughly proportional to the
current distance to the set of optimal populations, we can derive an upper
bound on the EFHT accordingly. Note that ln denotes the natural logarithm,
and we will use log to denote the binary logarithm throughout the paper.

Theorem 1 (Multiplicative Drift [10]) Given a Markov chain {ξt}+∞t=0 and a
distance function V over X , suppose there exists c > 0 such that for all t ≥ 0
and ξt with V (ξt) > 0:

E(V (ξt)− V (ξt+1) | ξt) ≥ c · V (ξt).

Then it holds that E(τ | ξ0) ≤ 1+ln(V (ξ0)/Vmin)
c , where Vmin denotes the mini-

mum among all possible positive values of V .

The simplified negative drift theorem (i.e., Theorem 2) [21,22] is for prov-
ing exponential lower bounds on the EFHT of Markov chains, where Xt is
often represented by a mapping of ξt. From Theorem 2, we can see that two
conditions are required: (1) a constant negative drift and (2) exponentially
decaying probabilities of jumping towards or away from the target state. By
building a relationship between the jumping distance and the length of the
drift interval, a more general theorem, simplified negative drift with scal-
ing [23], as presented in Theorem 3 has been proposed. Theorem 4 gives the
original negative drift theorem [16], which is stronger because both the two
simplified versions are proved by using this original theorem.
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Theorem 2 (Simplified Negative Drift [21,22]) Let Xt, t ≥ 0, be real-valued
random variables describing a stochastic process over some state space. Sup-
pose there exists an interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly
depending on l := b− a, a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such
that for all t ≥ 0:

(1) E(Xt −Xt+1 | a < Xt < b) ≤ −ε,

(2) ∀j ∈ N+ : P(|Xt+1 −Xt| ≥ j | Xt > a) ≤ r(l)

(1 + δ)j
.

Then there exists a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a |
X0 ≥ b} it holds P(T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

Theorem 3 (Simplified Negative Drift with Scaling [23]) Let Xt, t ≥ 0, be
real-valued random variables describing a stochastic process over some state
space. Suppose there exists an interval [a, b] ⊆ R and, possibly depending on
l := b− a, a drift bound ε := ε(l) > 0 as well as a scaling factor r := r(l) such
that for all t ≥ 0:

(1) E(Xt −Xt+1 | a < Xt < b) ≤ −ε,
(2) ∀j ∈ N+ : P(|Xt+1 −Xt| ≥ jr | Xt > a) ≤ e−j ,

(3) 1 ≤ r ≤ min{ε2l,
√
εl/(132 ln(εl))}.

Then it holds for the first hitting time T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} that
P(T ≤ eεl/(132r2)) = O(e−εl/(132r

2)).

Theorem 4 (Negative Drift [16]) Let Xt, t ≥ 0, be real-valued random vari-
ables describing a stochastic process over some state space. Pick two real num-
bers a(l) and b(l) depending on a parameter l such that a(l) < b(l) holds.
Let T (l) be the random variable denoting the earliest time t ≥ 0 such that
Xt ≤ a(l) holds. Suppose there exists λ(l) > 0 and p(l) > 0 such that for all
t ≥ 0:

E
(
e−λ(l)·(Xt+1−Xt) | a(l) < Xt < b(l)

)
≤ 1− 1

p(l)
. (1)

Then it holds that for all time bounds L(l) ≥ 0,

P (T (l) ≤ L(l) | X0 ≥ b(l)) ≤ e−λ(l)·(b(l)−a(l)) · L(l) ·D(l) · p(l), (2)

where D(l) = max
{
1,E

(
e−λ(l)·(Xt+1−b(l)) | Xt ≥ b(l)

)}
.

3 Populations Can Work on Some Tasks Where Sampling Fails

Previous works [15,26,29] have shown that both using populations and sam-
pling can bring robustness against noise. For example, for the OneMax prob-
lem under one-bit noise with p = ω((log n)/n), the (1+1)-EA needs super-
polynomial expected time to find the optimum [11], while using a parent
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population size µ ≥ 12(ln(15n))/p [15], an offspring population size λ ≥
max{12/p, 24}n lnn [15] or a sample size m = 4n3 [26] can all reduce the
expected running time to polynomial. Then, a natural question is whether
there exist cases where only one of these two strategies (i.e., populations
and sampling) is effective. This question has been partially addressed. For
the OneMax problem under additive Gaussian noise with large variances, it
has been shown that the (µ+1)-EA with µ = ω(1) needs super-polynomial
time to find the optimum [14], while the (1+1)-EA using sampling can find
the optimum in polynomial time [29]. Now, we try to solve the other part of
this question. That is, we want to prove that using populations can be better
than using sampling.

For this purpose, we construct a family of artificial noisy problems. We
consider the OneMax problem under symmetric noise. As presented in Def-
inition 2, the goal of the OneMax problem is to maximize the number of
1-bits, and the optimal solution is the string with all 1s (denoted as 1n). As
presented in Definition 3, symmetric noise returns a false fitness C − f(x)
with probability 1/2. It is easy to see that under this noise model, the distri-
bution of fn(x) for any x is symmetric aboutC/2. Note that a concrete noisy
problem depends on the value of C.

Definition 2 (OneMax) The OneMax Problem is to find a binary string x∗ ∈
{0, 1}n that maximises

f(x) =
∑n

i=1
xi.

Definition 3 (Symmetric Noise) Given a parameter C ∈ R, let fn(x) and
f(x) denote the noisy and true fitness of a solution x, respectively, then

fn(x) =

{
f(x) with probability 1/2,

C − f(x) with probability 1/2.

Theorem 5 shows that the expected running time of the (1+1)-EA using
sampling with any sample sizem is exponential. From the proof, we can find
the reason why using sampling fails. Under symmetric noise, the distribu-
tion of fn(x) for any x is symmetric about C/2. Thus, for any two solutions
x and y, the distribution of fn(x)−fn(y) is symmetric about 0. By sampling,
the distribution of f̂(x)− f̂(y) is still symmetric about 0, which implies that
the offspring solution will always be accepted with probability at least 1/2
in each iteration of the (1+1)-EA. Such a behavior is analogous to random
walk, and thus the optimization is inefficient.

Theorem 5 For the (1+1)-EA solving OneMax under symmetric noise with
any C ∈ R, if using sampling with any sample size m ≥ 1, the expected run-
ning time is exponential.

Proof Let a Markov chain {ξt}+∞t=0 model the analyzed evolutionary pro-
cess. That is, ξt corresponds to the solution after running t iterations of the
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(1+1)-EA. We will show that for any t ≥ 0, the distribution of ξt is a uniform
distribution over {0, 1}n, i.e.,

∀x ∈ {0, 1}n : P(ξt = x) = 1/2n. (3)

For t = 0, it trivially holds since ξ0 is chosen from {0, 1}n uniformly at ran-
dom. Assume that for t ≤ i, Eq. (3) holds. Let Pmut(x, y) denote the prob-
ability that x is mutated to y by bit-wise mutation. For t = i + 1, we have
∀x ∈ {0, 1}n :

P(ξi+1 = x) =
∑

y∈{0,1}n
P(ξi+1 = x | ξi = y)P(ξi = y)

=
1

2n

∑
y 6=x

P(ξi+1 = x | ξi = y) +
1

2n
P(ξi+1 = x | ξi = x)

=
1

2n

∑
y 6=x

Pmut(y, x) · P(f̂(x) ≥ f̂(y))

+
1

2n

∑
y 6=x

Pmut(x, y) · P(f̂(y) < f̂(x)) + Pmut(x, x) · 1


=

1

2n

∑
y 6=x

Pmut(x, y) · (P(f̂(x) ≥ f̂(y)) + P(f̂(x) > f̂(y))) + Pmut(x, x)


=

1

2n

∑
y 6=x

Pmut(x, y) · 1 + Pmut(x, x)

 =
1

2n
,

where the second equality is by induction, i.e., ∀x ∈ {0, 1}n : P(ξi = x) =
1/2n, the third equality is by considering the mutation and selection be-
haviors, the fourth equality is by Pmut(y, x) = Pmut(x, y), and the fifth is
by P(f̂(x) > f̂(y)) = P(f̂(x) < f̂(y)) since f̂(x) − f̂(y) is symmetric about
0. By the definition of symmetric noise, the value of fn(x) − fn(y) can be
C−f(x)−f(y), f(x)−f(y), f(y)−f(x) and f(x)+f(y)−C, each with prob-
ability 1/4. It is easy to see that the distribution of fn(x)−fn(y) is symmetric
about 0, i.e., fn(x)− fn(y) has the same distribution as fn(y)− fn(x). Since
f̂(x) − f̂(y) is the average of m independent random variables, which have
the same distribution as fn(x)− fn(y), the distribution of f̂(x)− f̂(y) is also
symmetric about 0.

By the union bound, the probability of finding the optimum in o(2n) it-
erations is at most

∑o(2n)
t=0 P(ξt = 1n) = o(2n)/2n = o(1). Thus, the expected

running time is exponential. �
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3.1 Parent Populations

In this subsection, we show that compared with using sampling, using par-
ent populations can be more robust to noise. We prove in Theorem 6 that
for symmetric noise with C = 2n, the (µ+1)-EA with µ = 3 log n can find
the optimum in O(n log3 n) time. The reason for the effectiveness of using
parent populations is that the true best solution will be discarded only if it
appears worse than all the other solutions in the population, the probability
of which can be very small by using at least a logarithmic parent population
size. Note that this finding is consistent with that in [15].

Theorem 6 For the (µ+1)-EA solving OneMax under symmetric noise with
C = 2n, if µ = 3 log n, the expected running time is O(n log3 n).

Proof We apply the multiplicative drift theorem (i.e., Theorem 1) to prove
this result. Note that the state of the corresponding Markov chain is cur-
rently a population, i.e., a set of µ solutions. We first design a distance func-
tion V : for any population P , V (P ) = minx∈P |x|0, i.e., the minimum num-
ber of 0-bits of the solution in P . It is easy to see that V (P ) = 0 iff P ∈ X ∗,
i.e., P contains the optimum 1n.

Next we examine E(V (ξt) − V (ξt+1) | ξt = P ) for any P with V (P ) > 0
(i.e., P /∈ X ∗). Assume that currently V (P ) = i, where 1 ≤ i ≤ n. We divide
the drift into two parts:

E(V (ξt)− V (ξt+1) | ξt = P ) = E+ − E−, where

E+ =
∑

P ′:V (P ′)<i

P(ξt+1 = P ′ | ξt = P ) · (i− V (P ′)),

E− =
∑

P ′:V (P ′)>i

P(ξt+1 = P ′ | ξt = P ) · (V (P ′)− i).

For E+, we need to consider that the best solution in P is improved. Let x∗ ∈
argminx∈P |x|0, then |x∗|0 = i. In one iteration of the (µ+1)-EA, a solution x′

with |x′|0 = i − 1 can be generated by selecting x∗ and flipping only one
0-bit in mutation, whose probability is 1

µ ·
i
n (1 −

1
n )
n−1 ≥ i

eµn . If x′ is not
added into P , it must hold that fn(x′) < fn(x) for all x ∈ P , which happens
with probability 1/2µ since fn(x′) < fn(x) iff fn(x) = 2n − f(x). Thus, the
probability that x′ is added into P (which implies that V (P ′) = i − 1) is
1− 1/2µ. We then get

E+ ≥ i

eµn
·
(
1− 1

2µ

)
· (i− (i− 1)) =

i

eµn

(
1− 1

2µ

)
.

For E−, if there are at least two solutions x, y in P such that |x|0 = |y|0 = i, it
obviously holds that E− = 0. Otherwise, V (P ′) > V (P ) = i implies that for
the unique best solution x∗ in P and any x ∈ P \{x∗}, fn(x∗) ≤ fn(x), which
happens with probability 1/2µ−1 since fn(x∗) ≤ fn(x) iff fn(x) = 2n− f(x).
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Thus, P(V (P ′) > i) ≤ 1/2µ−1. Furthermore, V (P ′) can increase by at most
n− i. Thus, E− ≤ (n− i)/2µ−1. By calculating E+ − E−, we get

E(V (ξt)− V (ξt+1) | V (ξt) = i) ≥ i

eµn
− i

eµn2µ
− n− i

2µ−1

≥ i

10n log n
=

1

10n log n
· V (ξt),

where the second inequality holds with large enoughµ (which depends mono-
tonically on n). Note that µ = 3 log n. Thus, by Theorem 1,

E(τ | ξ0) ≤ 10n(log n)(1 + lnn) = O(n log2 n),

which implies that the expected running time is O(n log3 n), since the algo-
rithm needs to evaluate the offspring solution and reevaluate the µ parent
solutions in each iteration. �

In the following, we show that the parent population size µ = 3 log n is
almost tight for making the (µ+1)-EA efficient. Particularly, we prove that
µ ≤

√
log n/2 is insufficient. Note that the proof is finished by applying the

original negative drift theorem (i.e., Theorem 4) instead of the simplified
versions (i.e., Theorems 2 and 3). To apply the simplified negative drift the-
orems, we have to show that the probability of jumping towards and away
from the target is exponentially decaying. However, the probability of jump-
ing away from the target is ω(1/n) in this studied case. To jump away from
the target, it is sufficient that one non-best solution in the current popula-
tion is cloned by mutation and then the best solution is deleted in the pro-
cess of updating the population. The former event happens with probability
µ−1
µ · (1 −

1
n )
n = Θ(1), and the latter happens with probability 1

2µ , which is
ω(1/n) for µ ≤

√
log n/2. The original negative drift theorem is stronger than

the simplified ones, and can be applied here to prove the exponential run-
ning time.

Theorem 7 For the (µ+1)-EA solving OneMax under symmetric noise with
C = 2n, if µ ≤

√
log n/2, the expected running time is exponential.

Proof We apply the original negative drift theorem (i.e., Theorem 4) to
prove this result. Let Xt = Yt − h(Zt), where Yt = minx∈P |x|0 denotes the
minimum number of 0-bits of the solution in the population P after t iter-
ations of the (µ+1)-EA, Zt = |{x ∈ P | |x|0 = Yt}| denotes the number of
solutions in P that have the minimum 0-bits Yt, and for i ∈ {1, 2, . . . , µ},
h(i) = dµ−1−dµ−i

dµ−1 with d = 2µ+4. Note that 0 = h(1) < h(2) < ... < h(µ) < 1,
and Xt ≤ 0 iff Yt = 0, i.e., P contains at least one optimum 1n. We set l = n,
λ(l) = 1 and consider the interval [0, cn− 1], where c = 1

3dµ , i.e., the param-
eters a(l) = 0 and b(l) = cn− 1 in Theorem 4.

We analyze Eq. (1), which is equivalent to the following equation:∑
r 6=Xt

P (Xt+1 = r | a(l) < Xt < b(l)) ·
(
eXt−r − 1

)
≤ − 1

p(l)
. (4)
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We divide the left-side term of Eq. (4) into two parts: r < Xt (i.e.,Xt+1 < Xt)
and r > Xt (i.e., Xt+1 > Xt), and derive their upper bounds separately.

We first considerXt+1 < Xt. SinceXt+1 = Yt+1−h(Zt+1),Xt = Yt−h(Zt)
and 0 ≤ h(Zt+1), h(Zt) < 1, we have Xt+1 < Xt iff Yt+1 − Yt < 0 or Yt+1 =
Yt ∧ h(Zt+1) > h(Zt). In the following, we analyze the occurring probability
of each case, and the corresponding value of Xt −Xt+1.
(1) Yt+1 − Yt = −j ≤ −1. It implies that a new solution x′ with |x′|0 = Yt − j
is generated in the (t + 1)-th iteration of the algorithm. Suppose that x′ is
generated from some solution x (which must satisfy that |x|0 ≥ Yt) selected
from P , then ∑

x′:|x′|0=Yt−j

Pmut(x, x
′) ≤

∑
x′:|x′|0=Yt−j

Pmut

(
xYt , x′

)
≤
(
Yt
j

)
· 1

nj
≤
(
Yt
n

)j
< cj ,

where xj denotes any solution with j 0-bits, the second inequality is be-
cause it is necessary to flip at least j 0-bits, and the last inequality is by
Yt = Xt + h(Zt) < b(l) + 1 = cn. Furthermore, we have

Xt −Xt+1 = Yt − h(Zt)− Yt+1 + h(Zt+1) = j − h(Zt) ≤ j,

where the second equality is by h(Zt+1) = h(1) = 0.
(2) Yt+1 = Yt ∧ h(Zt+1) > h(Zt). It implies that Zt < µ and a new so-
lution x′ with |x′|0 = Yt is generated. Suppose that in the (t + 1)-th iter-
ation, the solution selected from P for mutation is x. If |x|0 > Yt, then∑
x′:|x′|0=Yt Pmut(x, x

′) ≤
∑
x′:|x′|0=Yt Pmut(x

Yt+1, x′) ≤
(
Yt+1

1

)
· 1
n = Yt+1

n .

If |x|0 = Yt, then
∑
x′:|x′|0=Yt Pmut(x, x

′) ≤ (1 − 1
n )
n +

∑Yt
j=1

(
Yt
j

)
· 1
nj ≤

1
e +

∑Yt
j=1(

Yt
n )j ≤ 1

e + Yt/n
1−Yt/n . Since Yt = Xt + h(Zt) < b(l) + 1 = cn and

c = 1
3dµ = 1

3·2µ(µ+4) , we have∑
x′:|x′|0=Yt

Pmut(x, x
′) ≤ 1

2
.

Furthermore, it must hold that Zt+1 = Zt + 1, thus we have

Xt −Xt+1 = h(Zt+1)− h(Zt) = h(Zt + 1)− h(Zt).

By combining the above cases, we get∑
r<Xt

P (Xt+1 = r | a(l) < Xt < b(l)) ·
(
eXt−r − 1

)
(5)

≤
Yt∑
j=1

cj ·
(
ej − 1

)
+

{
1
2 ·
(
eh(Zt+1)−h(Zt) − 1

)
, Zt < µ

0, Zt = µ

≤
Yt∑
j=1

(ce)j +

{
h(Zt + 1)− h(Zt), Zt < µ
0, Zt = µ
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≤ ce

1− ce
+

{
h(Zt + 1)− h(Zt), Zt < µ
0, Zt = µ

,

where the second inequality is by 0 < h(Zt + 1)− h(Zt) < 1 and es ≤ 1 + 2s
for 0 < s < 1.

Next we consider Xt+1 > Xt. It is easy to verify that Xt+1 > Xt iff in the
(t + 1)-th iteration, the newly generated solution x′ satisfies that |x′|0 > Yt
and one solution x∗ in P with |x∗|0 = Yt is deleted. We first analyze the
probability of generating a new solution x′ with |x′|0 > Yt. Suppose that
the solution selected from P for mutation is x. If |x|0 > Yt, it is sufficient
that all bits of x are not flipped, thus

∑
x′:|x′|0>Yt Pmut(x, x

′) ≥ (1 − 1
n )
n ≥

n−1
en . If |x|0 = Yt, it is sufficient that only one 1-bit of x is flipped, thus∑
x′:|x′|0>Yt Pmut(x, x

′) ≥ (1 − 1
n )
n−1 n−Yt

n ≥ n−Yt
en . Note that Yt = Xt +

h(Zt) < b(l) + 1 = cn and c = 1
3·2µ(µ+4) = ω(1/n) for µ ≤

√
log n/2. Thus,∑

x′:|x′|0>Yt

Pmut(x, x
′) ≥ 1− c

e
.

We then analyze the probability of deleting one solution x∗ in P with |x∗|0 =
Yt. Since it is sufficient that the fitness evaluation of all solutions in P ∪ {x′}
with more than Yt 0-bits is affected by noise, the probability is at least 1/2µ.
We finally analyze Xt −Xt+1. If Zt = 1, we have Yt+1 ≥ Yt + 1, thus

Xt −Xt+1 = Yt − Yt+1 + h(Zt+1)− h(Zt) ≤ h(µ)− 1.

If Zt ≥ 2, we have Yt+1 = Yt and Zt+1 = Zt − 1, thus

Xt −Xt+1 = h(Zt+1)− h(Zt) = h(Zt − 1)− h(Zt).

Note that for Xt+1 > Xt, eXt−Xt+1 − 1 < 0. Thus, we have∑
r>Xt

P (Xt+1 = r | a(l) < Xt < b(l)) ·
(
eXt−r − 1

)
(6)

≤ 1

2µ
· 1− c

e
·
{
eh(µ)−1 − 1, Zt = 1
eh(Zt−1)−h(Zt) − 1, Zt ≥ 2

≤ 1

2µ+1
· 1− c

e
·
{
h(µ)− 1, Zt = 1
h(Zt − 1)− h(Zt), Zt ≥ 2

≤ 2

d
·
{
h(µ)− 1, Zt = 1
h(Zt − 1)− h(Zt), Zt ≥ 2

,

where the second inequality is by es − 1 ≤ s + s2/2 = s(1 + s/2) ≤ s/2 for
−1 < s < 0, and the last is by d = 2µ+4 and c = 1

3·2µ(µ+4) .
By combining Eq. (5) and Eq. (6), we can get∑
r 6=Xt

P (Xt+1 = r | a(l) < Xt < b(l)) ·
(
eXt−r − 1

)
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≤ ce

1− ce
+

h(Zt + 1)− h(Zt) + 2
d (h(µ)− 1), Zt = 1

h(Zt + 1)− h(Zt) + 2
d (h(Zt − 1)− h(Zt)), 1 < Zt < µ

2
d (h(Zt − 1)− h(Zt)), Zt = µ

.

If Zt = 1, 1−h(µ)
h(Zt+1)−h(Zt) = dµ−dµ−1

dµ−1 · dµ−1
dµ−1−dµ−2 = d, and we have h(Zt + 1) −

h(Zt) +
2
d (h(µ) − 1) = (h(Zt + 1) − h(Zt)) · (1 − d · 2

d ) ≤ h(µ − 1) − h(µ).
If 1 < Zt < µ, h(Zt)−h(Zt−1)h(Zt+1)−h(Zt) = dµ−Zt+1−dµ−Zt

dµ−Zt−dµ−Zt−1 = d, and similarly we have

h(Zt+1)−h(Zt)+ 2
d (h(Zt−1)−h(Zt)) = h(Zt)−h(Zt+1) ≤ h(µ−1)−h(µ).

IfZt = µ, 2
d (h(Zt−1)−h(Zt)) =

2
d (h(µ−1)−h(µ)). Thus, the above equation

continues with

≤ ce

1− ce
+

2

d
(h(µ− 1)− h(µ)) = 1

1/(ce)− 1
+

2

d
· 1− d
dµ − 1

≤ 1

dµ − 1
− 3

2
· 1

dµ − 1
= − 1

2(dµ − 1)
,

where the second inequality is by c = 1
3dµ and d ≥ 4. The condition of The-

orem 4 (i.e., Eq. (1) or equivalently Eq. (4)) thus holds with p(l) = 2(dµ − 1).
Now we investigate D(l) = max

{
1,E

(
e−λ(l)·(Xt+1−b(l)) | Xt ≥ b(l)

)}
=

max
{
1,E

(
eb(l)−Xt+1 | Xt ≥ b(l)

)}
in Eq. (2). To derive an upper bond onD(l),

we only need to analyze E
(
eb(l)−Xt+1 | Xt ≥ b(l)

)
.

E
(
eb(l)−Xt+1 | Xt ≥ b(l)

)
=
∑
r≥b(l)

P(Yt+1 = r | Xt ≥ b(l)) · E
(
eb(l)−Xt+1 | Xt ≥ b(l), Yt+1 = r

)
+
∑
r<b(l)

P(Yt+1 = r | Xt ≥ b(l)) · E
(
eb(l)−Xt+1 | Xt ≥ b(l), Yt+1 = r

)
.

WhenYt+1 = r ≥ b(l), we have b(l)−Xt+1 = b(l)−Yt+1+h(Zt+1) ≤ h(Zt+1) <
1. Next we consider the case that Yt+1 < b(l). SinceXt = Yt−h(Zt) ≥ b(l), we
have Yt ≥ b(l) > Yt+1, which implies that Yt ≥ db(l)e and Yt+1 ≤ db(l)e − 1.
To make Yt+1 = r ≤ db(l)e − 1, it is necessary that a new solution x′ with
|x′|0 = r ≤ db(l)e − 1 is generated by mutation. Let x denote the solution
selected from the population P for mutation. Note that |x|0 ≥ Yt ≥ db(l)e.
Then, for r ≤ db(l)e − 1, P(Yt+1 = r | Xt ≥ b(l)) ≤

∑
x′:|x′|0=r Pmut(x, x

′) ≤∑
x′:|x′|0=r Pmut(x

db(l)e, x′) ≤
( db(l)e
db(l)e−r

)
( 1n )
db(l)e−r ≤ ( db(l)en )db(l)e−r. Further-

more, for Yt+1 < Yt, it must hold that Zt+1 = 1, and thus b(l) − Xt+1 =
b(l)−Yt+1 +h(Zt+1) = b(l)−Yt+1. Thus, the above equation continues with

≤ e+
∑

r≤db(l)e−1

(
db(l)e
n

)db(l)e−r
· eb(l)−r ≤ e+

db(l)e∑
j=1

(
db(l)e
n

)j
· ej

≤ e+ edb(l)e/n
1− edb(l)e/n

= e+
1

n/(edb(l)e)− 1
≤ e+ 1

1/(ce)− 1
≤ e+ 1,
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where the fourth inequality is by db(l)e ≤ b(l)+1 = cn and the last inequality
is by c = 1

3dµ . Thus,

D(l) = max
{
1,E

(
eb(l)−Xt+1 | Xt ≥ b(l)

)}
≤ e+ 1.

Let L(l) = ecn/2 in Theorem 4. As µ ≤
√
log n/2, we have

3dµ = 3 · 2µ(µ+4) ≤ 3 · 2(logn)/4+2
√
logn ≤ 2(logn)/2 = n1/2,

where the last inequality holds with large enough n. Thus, cn = n
3dµ ≥ n1/2.

By Theorem 4, we get

P(T (l) ≤ ecn/2 | X0 ≥ b(l)) ≤ e1−cn · ecn/2 · (e+ 1) · 2(dµ − 1) = e−Ω(n1/2).

By Chernoff bounds, for any x chosen from {0, 1}n u.a.r., P(|x|0 < cn) =
e−Ω(n), where cn = n

3dµ = n
3·2µ(µ+4) ≤ n

96 . By the union bound, P(Y0 < cn) ≤
µ·e−Ω(n) = e−Ω(n), which implies that P(X0 < b(l)) = P(Y0−h(Z0) < b(l)) ≤
P(Y0 < b(l) + 1) = P(Y0 < cn) = e−Ω(n). Thus, the expected running time is
exponential. �

3.2 Offspring Populations

Next, we show the superiority of using offspring populations over sampling
on the robustness to noise. We prove in Theorem 8 that for symmetric noise
withC = 0, the (1+λ)-EA withλ = 8 log n can find the optimum inO(n log2 n)
time. By using offspring populations, the probability of losing the current
fitness becomes very small. This is because a fair number of offspring so-
lutions with fitness not worse than the current fitness will be generated
with a high probability in the reproduction of each iteration of the (1+λ)-
EA, and the current fitness becomes worse only if all these good offspring
solutions and the parent solution are evaluated incorrectly, the probability
of which can be very small by using at least a logarithmic offspring popu-
lation size. Thus, using offspring populations can lead to an efficient opti-
mization. Note that the reason for the effectiveness of using offspring pop-
ulations found here is consistent with that in [15].

Theorem 8 For the (1+λ)-EA solving OneMax under symmetric noise with
C = 0, if λ = 8 log n, the expected running time is O(n log2 n).

Proof We apply Theorem 1 to prove this result. Each state of the corre-
sponding Markov chain {ξt}+∞t=0 is just a solution here. That is, ξt corresponds
to the solution after running t iterations of the (1+λ)-EA. We design the dis-
tance function as for x ∈ {0, 1}n, V (x) = |x|0. Assume that currently |x|0 = i,
where 1 ≤ i ≤ n. To analyze E(V (ξt)−V (ξt+1) | ξt = x), we divide it into two
parts as in the proof of Theorem 6. That is,

E(V (ξt)− V (ξt+1) | ξt = x) = E+ − E−, where



16 Chao Qian et al.

E+ =
∑

y:|y|0<i

P(ξt+1 = y | ξt = x) · (i− |y|0),

E− =
∑

y:|y|0>i

P(ξt+1 = y | ξt = x) · (|y|0 − i).

For E+, since |y|0 < i, we have i− |y|0 ≥ 1. Thus,

E+ ≥
∑

y:|y|0<i

P(ξt+1 = y | ξt = x) = P(|ξt+1|0 < i | ξt = x).

To make |ξt+1|0 < i, it requires that at least one solution x′ with |x′|0 < i
is generated in the reproduction and at least one of them is evaluated cor-
rectly. To generate a solution x′ with |x′|0 < i by mutating x, it is sufficient
that only one 0-bit of x is flipped, whose probability is i

n · (1 −
1
n )
n−1 ≥ i

en .
Thus, in each iteration of the (1+λ)-EA, the probability of generating at least
one offspring solution x′ with |x′|0 < i is at least

1−
(
1− i

en

)λ
≥ 1− e−λ· ien ≥ 1− 1

1 + λ · i
en

.

If λ · i
en > 1, 1 − (1 − i

en )
λ ≥ 1

2 ; otherwise, 1 − (1 − i
en )

λ ≥ λ· ien
1+λ· ien

≥ λ·i
2en .

Thus, 1 − (1 − i
en )

λ ≥ min{ 12 ,
λ·i
2en} = min{ 12 ,

4i logn
en }, where the equality is

by λ = 8 log n. Since each solution is evaluated correctly with probability 1
2 ,

P(|ξt+1|0 < i | ξt = x) ≥ min{ 12 ,
4i logn
en } · 12 . Thus,

E+ ≥ min

{
1

2
,
4i log n

en

}
· 1
2
= min

{
1

4
,
2i log n

en

}
≥ i

4n
.

For E−, since |y|0 − i ≤ n− i, we have

E− ≤ (n− i) · P(|ξt+1|0 > i | ξt = x).

Let q =
∑
x′:|x′|0≤i Pmut(x, x

′) denote the probability of generating an off-
spring solution x′ with at most i 0-bits by mutating x. Since it is sufficient
that no bit is flipped or only one 0-bit is flipped in mutation, q ≥ (1− 1

n )
n +

i
n ·(1−

1
n )
n−1 ≥ 1

e . Now we analyze P(|ξt+1|0 > i | ξt = x). Assume that in the
reproduction, exactly k offspring solutions with at most i 0-bits are gener-
ated, where 0 ≤ k ≤ λ; it happens with probability

(
λ
k

)
·qk(1−q)λ−k. If k < λ,

the solution in the next generation has more than i 0-bits (i.e., |ξt+1|0 > i)
iff the fitness evaluation of these k offspring solutions and the parent so-
lution x are all affected by noise, whose probability is 1

2k+1 . If k = λ, the
solution in the next generation must have at most i 0-bits (i.e., |ξt+1|0 ≤ i).
Thus, we have

P(|ξt+1|0 > i | ξt = x) =

λ−1∑
k=0

(
λ

k

)
· qk(1− q)λ−k · 1

2k+1
(7)



Analysis of Noisy Evolutionary Optimization When Sampling Fails 17

≤ 1

2

(
1− q

2

)λ
≤ 1

2

(
1− 1

2e

)λ
,

where the last inequality is by q ≥ 1
e . We then get

E− ≤ (n− i) · 1
2
·
(
1− 1

2e

)8 logn

≤ n− i
2n2.3

≤ 1

2n1.3
.

By calculating E+ − E−, we have

E(V (ξt)− V (ξt+1) | V (ξt) = i) ≥ i

4n
− 1

2n1.3
≥ i

5n
=

1

5n
· V (ξt),

where the second inequality holds with large enough n. Thus, by Theorem 1,

E(τ | ξ0) ≤ 5n(1 + lnn) = O(n log n),

which implies that the expected running time is O(n log2 n), since it needs
to reevaluate the parent solution and evaluate the λ = 8 log n offspring so-
lutions in each iteration. �

Furthermore, we prove that an offspring population size λ ≤ (log n)/10
is not sufficient to allow solving the noisy problem in polynomial time. This
also implies that the effective value λ = 8 log n derived in the above theorem
is nearly tight. From the proof, we can find that λ ≤ (log n)/10 cannot guar-
antee a sufficiently small probability of losing the current fitness, and thus
the optimization is inefficient.

Theorem 9 For the (1+λ)-EA solving OneMax under symmetric noise with
C = 0, if λ ≤ (log n)/10, the expected running time is exponential.

Proof We apply Theorem 3 to prove this result. Let Xt = |x|0 denote the
number of 0-bits of the solution xmaintained by the (1+λ)-EA after running
t iterations. We consider the interval [0, n

16(2e)λ
], i.e., a = 0 and b = n

16(2e)λ
in

Theorem 3.
We analyze E(Xt −Xt+1 | Xt = i) for 1 ≤ i < n

16(2e)λ
. We divide the drift

as follows:

E(Xt −Xt+1 | Xt = i) = E+ − E−, where

E+ =

i−1∑
j=0

P(Xt+1 = j | Xt = i) · (i− j),

E− =

n∑
j=i+1

P(Xt+1 = j | Xt = i) · (j − i).
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For E+, we need to derive an upper bound on P(Xt+1 = j | Xt = i) for
j < i. Note that Xt+1 = j implies that at least one offspring solution x′ with
|x′|0 = j is generated by mutating x in the reproduction. Thus, we have

P(Xt+1 = j | Xt = i) ≤ 1−

1−
∑

x′:|x′|0=j

Pmut(x, x
′)

λ

≤ λ ·
∑

x′:|x′|0=j

Pmut(x, x
′),

where the second inequality is by Bernoulli’s inequality. Then, we get

E+ ≤
i−1∑
j=0

λ ·

 ∑
x′:|x′|0=j

Pmut(x, x
′)

 · (i− j) (8)

= λ ·
∑

x′:|x′|0<i

Pmut(x, x
′) · (i− |x′|0)

= λ ·
i∑

k=1

k · P(X − Y = k)

= λ ·
i∑

k=1

k ·
i∑

j=k

P(X = j) · P(Y = j − k)

= λ ·
i∑

j=1

j∑
k=1

k · P(X = j) · P(Y = j − k)

≤ λ
i∑

j=1

j · P(X = j) = λ · i
n
,

where the second equality holds by letting X and Y denote the number of
flipped 0-bits and 1-bits in mutating x (where |x|0 = i), respectively, and the
last equality holds becauseX satisfies the binomial distributionB(i, 1

n ). For
E−, we easily have

E− ≥
n∑

j=i+1

P(Xt+1 = j | Xt = i) = P(Xt+1 > i | Xt = i).

Let q =
∑
x′:|x′|0≤i Pmut(x, x

′), where x is any solution with i 0-bits. Using the
same analysis as Eq. (7), we can get

P(Xt+1 > i | Xt = i) =

λ−1∑
k=0

(
λ

k

)
· qk(1− q)λ−k · 1

2k+1

=
1

2
·
((

1− q

2

)λ
−
(q
2

)λ)
=

1

2
·
((q

2
+ 1− q

)λ
−
(q
2

)λ)
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=
1

2
·

(
λ∑
i=0

(
λ

i

)(q
2

)λ−i
(1− q)i −

(q
2

)λ)

≥ 1

2
·
((q

2

)λ
+ λ

(q
2

)λ−1
(1− q)−

(q
2

)λ)
=

1

2
· λ
(q
2

)λ−1
(1− q) ≥ λ · 1

8(2e)λ
,

where the last inequality is by q ≥ 1
e and 1 − q ≥

∑
x′:|x′|0=i+1 Pmut(x, x

′) ≥
n−i
en ≥

1
4 . Thus, E− ≥ λ/(8(2e)λ). By calculating E+ − E−, we have

E(Xt −Xt+1 | Xt = i) ≤ λ · i
n
− λ · 1

8(2e)λ
≤ − λ

16(2e)λ
,

where the last inequality is by i < n
16(2e)λ

. Thus, condition (1) of Theorem 3

holds with ε = λ
16(2e)λ

.

Next we examine conditions (2) and (3) of Theorem 3 by setting r = n1/6.
To make |Xt+1 − Xt| ≥ jr, it is necessary that at least one offspring solu-
tion generated by mutating x flips at least bjrc bits of x. Let p(k) denote the
probability that at least k bits of x are flipped in mutation. We easily have
p(k) ≤

(
n
k

)
1
nk

. Thus,

P(|Xt+1 −Xt |≥ jr | Xt ≥ 1) ≤ 1− (1− p(bjrc))λ (9)

≤ λ · p(bjrc) ≤ λ ·
(

n

bjrc

)
1

nbjrc
≤ 2λ · 1

2bjrc
≤ 4λ

(2n1/6)j
≤ 1

ej
,

where the last inequality holds with λ ≤ (log n)/10 and large enough n.
Thus, condition (2) of Theorem 3 holds. Since ε = λ

16(2e)λ
and l = b − a =

n
16(2e)λ

, we have

n1/2

256
≤ εl = nλ

(16(2e)λ)2
≤ n log n,

where the first inequality is by (2e)λ ≤ (2e)(logn)/10 = (nlog(2e))1/10 ≤ n1/4.
Thus, we have√

εl/(132 ln(εl)) ≥
√
n1/2/(256 · 132 · 2 · lnn) ≥ n1/6,

where the first inequality is by ln(εl) ≤ ln(n log n) ≤ 2 lnn, and the second
holds with large enough n. Furthermore, we have ε2l = nλ2

(16(2e)λ)3
≥ n

163n3/4 ≥
n1/6. Thus, 1 ≤ r ≤ min{ε2l,

√
εl/(132 ln(εl))} for large enough n, implying

that condition (3) of Theorem 3 holds.
Note that εl/(132r2) ≥ n1/2/(256 · 132 · n1/3) = Ω(n1/6) and X0 ≥ b =
n

16(2e)λ
holds with a high probability under the uniform initial distribution.

By Theorem 3, we get that the expected running time is exponential. �
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Therefore, to reduce the expected running time from exponential to poly-
nomial for solving the OneMax problem under symmetric noise, Theorems 6
and 7 imply that the smallest required parent population size µ belongs to
(
√
log n/2, 3 log n] when C = 2n; Theorems 8 and 9 imply that the small-

est required offspring population size λ belongs to ((log n)/10, 8 log n] when
C = 0. It is challenging to find their exact values. For example, if applying
the drift theorems, one needs to design a distance function to measure the
distance of a population to the set of optimal populations and analyze the
distance change by one step. For the (µ+1)-EA, the solutions in the parent
population can vary considerably, making it difficult to design a distance
function measuring the quality of the parent population well. Using the
minimum number of 0-bits of the solution in the population as in the proof
of Theorem 6 is probably insufficient. For estimating the one-step distance
change well, one needs to compute the distribution of the offspring solu-
tion accurately, which is also difficult as there are µ parent solutions to be
uniformly selected for mutation. For the (1+λ)-EA, the distance function is
much easier to be designed because there is only one parent solution. How-
ever, computing the distribution of the offspring solutions is still difficult,
as there are λ offspring solutions to be independently generated.

4 Adaptive Sampling Can Work on Some Tasks Where Both Sampling and
Populations Fail

In this section, we first theoretically examine whether there exist cases where
using neither populations nor sampling is effective. We give a positive an-
swer by considering OneMax under segmented noise. Next we prove that in
such a situation, using adaptive sampling can be effective, which provides
some theoretical justification for the good empirical performance of adap-
tive sampling in practice [33,38].

As presented in Definition 4, the OneMax problem is divided into four
segments. In one segment, the fitness is evaluated correctly, while in the
other three segments, the fitness is disturbed by different noises. All seven
sub-functions in Definition 4 are plotted in Figure 1. Note that for the last
sub-function −n4 − δ where δ ∼ U [0, 1], we plot its expectation, i.e., a con-
stant function−n4 − 1/2.

Definition 4 (OneMax under Segmented Noise) For any x ∈ {0, 1}n, the
noisy fitness value fn(x) is calculated as:
(1) if |x|0 > n

50 , fn(x) = n− |x|0;

(2) if n
100 < |x|0 ≤

n
50 ,

fn(x) =

{
n− |x|0 with probability 1/2 + 1/

√
n,

3n+ |x|0 with probability 1/2− 1/
√
n;

(3) if n
200 < |x|0 ≤

n
100 ,
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Figure 1 The seven sub-functions appearing in Definition 4. Note that the scale of axes is not
strict for plotting all sub-functions clearly.

fn(x) =

{
4n(n− |x|0) with probability 1− 1/n,

(2n+ |x|0)3 with probability 1/n;

(4) if |x|0 ≤ n
200 ,

fn(x) =

{
n4(n− |x|0) with probability 1/5,

−n4 − δ with probability 4/5,

where δ is randomly drawn from a continuous uniform distribution U [0, 1],
and n/200 ∈ N+.

We prove in Theorem 10 that the expected running time of the (1+1)-
EA using sampling with any sample size m is exponential. From the proof,
we can find the reason for the ineffectiveness of sampling. For two solu-
tions x and x′ with |x′|0 = |x|0 + 1 (i.e., f(x) = f(x′) + 1), the expected
gaps between fn(x) and fn(x′) are positive and negative, respectively, in the
segments of n

100 < |x|0 ≤ n
50 and n

200 < |x|0 ≤ n
100 . Thus, in the former

segment, a larger sample size is better since it will decrease P(f̂(x) ≤ f̂(x′)),
while in the latter segment, a larger sample size is worse since it will increase
P(f̂(x) ≤ f̂(x′)). Furthermore, there is no moderate sample size which can
make a good tradeoff. Thus, sampling fails in this case. Lemmas 1 and 2
show the Berry-Esseen and Bernstein inequalities, respectively, which will
be used in the proof.
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Lemma 1 (Berry-Esseen Inequality [34]) LetZ1, Z2, . . . , Zm be i.i.d. random
variables with E(Zi) = 0, Var(Zi) = σ2 > 0 and E(|Zi|3) = ρ < +∞. It holds
that

P

(
(
∑m
i=1 Zi/m)

√
m

σ
≤ x

)
− Φ(x) ≥ −0.4785ρ

σ3
√
m
,

whereΦ(x) denotes the cumulative distribution function of the standard nor-
mal distribution.

Lemma 2 (Bernstein Inequality [8]) LetZ1, Z2, . . . , Zm be independent ran-
dom variables with E(Zi) = 0 and |Zi| ≤ c for any i ∈ {1, 2, . . . ,m}. Let
σ2 =

∑m
i=1 Var(Zi)/m. It holds that for any t > 0,

P

(
m∑
i=1

Zi > t

)
≤ exp

(
− t2

2mσ2 + 2ct/3

)
.

Theorem 10 For the (1+1)-EA solving OneMax under segmented noise, if us-
ing sampling with any sample sizem ≥ 1, the expected running time is expo-
nential.

Proof We divide the proof into two parts according to the range of m. Let
Xt = |x|0 denote the number of 0-bits of the solution x maintained by the
(1+1)-EA after running t iterations. When m ≤ n3, we apply Theorem 2 to
prove that starting from X0 ≥ n

50 , the expected number of iterations until
Xt ≤ n

100 is exponential. When m > n3, we apply Theorem 2 to prove that
starting from X0 ≥ n

100 , the expected number of iterations until Xt ≤ n
200

is exponential. Due to the uniform initial distribution, both X0 ≥ n
50 and

X0 ≥ n
100 hold with a high probability. Thus, for anym, the expected running

time until finding the optimum is exponential. For the proof of each part,
condition (2) of Theorem 2 trivially holds as the probability of flipping at
least j bits of a solution is at most 2/2j , and we only need to show thatE(Xt−
Xt+1 | Xt) is upper bounded by a negative constant.

[Part I:m ≤ n3] We consider the interval [ n100 ,
n
50 ]. The drift E(Xt−Xt+1 |

Xt = i) (where n
100 < i < n

50 ) is calculated as

E(Xt −Xt+1 | Xt = i) = E+ − E−, where (10)

E+ =
∑

x′:|x′|0<i

Pmut(x, x
′) · P(f̂(x′) ≥ f̂(x)) · (i− |x′|0),

E− =
∑

x′:|x′|0>i

Pmut(x, x
′) · P(f̂(x′) ≥ f̂(x)) · (|x′|0 − i).

For E−, we consider the n − i cases where only one 1-bit of x is flipped in
mutation. That is, |x′|0 = i+1. Next we show that the offspring solution x′ is
accepted with probability at least 0.07 (i.e., P(f̂(x′) ≥ f̂(x)) ≥ 0.07) by con-
sidering two subcases form: (1) 4 ≤ m ≤ n3 and (2) 1 ≤ m ≤ 3. In the former
case, we mainly apply the Berry-Esseen inequality in Lemma 1; in the latter
case, the probability P(f̂(x′) ≥ f̂(x)) can be directly lower bounded.
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(1) 4 ≤ m ≤ n3. For n
100 < k ≤ n

50 , let xk denote a solution with k 0-bits.
According to case (2) of Definition 4, we have

E(fn(xk))=

(
1

2
+

1√
n

)
(n−k)+

(
1

2
− 1√

n

)
(3n+k) = 2n−2

√
n− 2k√

n
; (11)

Var(fn(xk))=

(
1

2
+

1√
n

)
(n−k)2+

(
1

2
− 1√

n

)
(3n+k)2−

(
2n−2

√
n− 2k√

n

)2

≥
(
1

2
− 1√

n

)
· (10n2 + 2k2 + 4kn)− 4n2 ≥ n2,

where the last inequality holds with large enough n. Let Y = fn(x)− fn(x′).
Note that |x|0 = i ∈ ( n

100 ,
n
50 ) and |x′|0 = i+1. Then, we get that µ := E(Y ) =

2√
n

and σ2 := Var(Y ) ≥ 2n2. Let Z = Y − µ. Then, we have E(Z) = 0,

Var(Z) = σ2 ≥ 2n2 and

ρ := E(|Z|3) ≤ 2

(
1

4
− 1

n

)
·
(
2n+ 2i+ 1 +

2√
n

)3

+

((
1

2
− 1√

n

)2

+

(
1

2
+

1√
n

)2
)
·
(
1 +

2√
n

)3

≤ 9n3

2
,

where the last inequality holds with large enoughn. Note that f̂(x)−f̂(x′)−µ
is the average of m independent random variables, which have the same
distribution as Z. By Lemma 1, we have

P

(
(f̂(x)− f̂(x′)− µ)

√
m

σ
≤ x

)
− Φ(x) ≥ − ρ

2σ3
√
m
,

leading to

P(f̂(x)− f̂(x′) ≤ 0) = P(f̂(x)− f̂(x′)− µ ≤ −µ)

= P

(
(f̂(x)− f̂(x′)− µ)

√
m

σ
≤ −µ

√
m

σ

)

≥ Φ
(
−µ
√
m

σ

)
− ρ

2σ3
√
m

≥ Φ

(
−
√
2m

n
√
n

)
− 9

8
√
2m

,

where the last inequality is derived by µ = 2√
n

, σ ≥
√
2n and ρ ≤ 9

2n
3. For

4 ≤ m < n, Φ
(
−
√
2m

n
√
n

)
− 9

8
√
2m
≥ Φ(−o(1)) − 9

16
√
2
≥ 0.07. For n ≤ m ≤ n3,

Φ
(
−
√
2m

n
√
n

)
− 9

8
√
2m
≥ Φ(−

√
2) − o(1) ≥ 0.07. Note that the last inequalities

in these two cases both hold with large enough n. Thus, we have P(f̂(x′) ≥
f̂(x)) ≥ 0.07.
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(2) 1 ≤ m ≤ 3. It holds that P(f̂(x′) ≥ f̂(x)) ≥ ( 12 −
1√
n
)3 ≥ 0.1, since it

is sufficient that fn(x′) is always evaluated to 3n + i + 1 in m independent
evaluations.
Combining the above two cases, our claim that P(f̂(x′) ≥ f̂(x)) ≥ 0.07
holds. Note that i < n/50. Thus, we have

E− ≥ n− i
n

(
1− 1

n

)n−1
· 0.07 · (i+ 1− i) ≥ 1.2

50
.

For E+, we use a trivial upper bound 1 on P(f̂(x′) ≥ f̂(x)). Then, we have

E+ ≤
∑

x′:|x′|0<i

Pmut(x, x
′) · (i− |x′|0) ≤

i

n
≤ 1

50
,

where the second inequality can be directly derived from Eq. (8). Thus, the
drift satisfies that

E(Xt −Xt+1 | Xt = i) = E+ − E− ≤ −0.2/50.

[Part II: m > n3] We consider the interval [ n200 ,
n

100 ], and calculate the
drift E(Xt −Xt+1 | Xt = i) (where n

200 < i < n
100 ) by E+ − E− (i.e., Eq. (10)).

For E−, we show that the probability of accepting the offspring solution x′

with |x′|0 = i + 1 is at least 0.1. Let xk denote a solution with k 0-bits. Ac-
cording to case (3) of Definition 4, we have, for n

200 < k < n
100 ,

E(fn(xk)− fn(xk+1))

=

(
1− 1

n

)
· 4n− 1

n
·
(
3(2n+ k)2 + 3(2n+ k) + 1

)
≤ −8n;

and for n
200 < k ≤ n

100 ,

Var(fn(xk)) =
1

n
· (2n+ k)6 +

(
1− 1

n

)
· (4n(n− k))2 − (E(fn(xk)))2

≤ (1/n) · 66n6 + 16n4 ≤ 82n5.

Then, µ := E(fn(x)−fn(x′)) ≤ −8n and σ2 := Var(fn(x)−fn(x′)) ≤ 2 ·82n5.
Note that |fn(x)−fn(x′)−µ| ≤ |fn(x)−fn(x′)|+|µ| ≤ 2(2n+i+1)3 ≤ 18n3. Let
fn1 (x), f

n
2 (x), . . . , f

n
m(x) denote i.i.d. random variables which have the same

distribution as fn(x), and let fn1 (x
′), fn2 (x

′), . . . , fnm(x′) denote i.i.d. random
variables which have the same distribution as fn(x′). We have

P(f̂(x) ≥ f̂(x′)) = P(m(f̂(x)− f̂(x′))−mµ ≥ −mµ)

= P

(
m∑
i=1

(fni (x)− fni (x′)− µ) ≥ −mµ

)

≤ exp

(
− m2µ2

2mσ2 + 2 · 18n3 · (−mµ)/3

)
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≤ exp

(
− m(8n)2

2σ2 + 12n3 · (8n)

)
< exp

(
− n3 · 64n2

328n5 + 96n4

)
= exp

(
− 8

41 + o(1)

)
≤ 0.9,

where the second equality holds because f̂(x) and f̂(x′) are the average ofm
independent fitness evaluations of x and x′, respectively, the first inequality
is by Lemma 2, the second inequality is by µ ≤ −8n, and the third inequality
is by m > n3 and σ2 ≤ 2 · 82n5. Thus, we have E− ≥ n−i

n (1 − 1
n )
n−1 · 0.1 ≥

99
100e · 0.1 ≥ 0.03. For E+, we still have E+ ≤ i

n ≤ 0.01. Thus, the drift satisfies

E(Xt −Xt+1 | Xt = i) = E+ − E− ≤ −0.02. �

To prove the ineffectiveness of parent populations, we derive a sufficient
condition for the exponential running time of the (µ+1)-EA required to solve
OneMax under noise, inspired from Theorem 4 in [14]. We generalize their
result from additive noise to arbitrary noise. As shown in Lemma 3, the con-
dition intuitively means that when the solution is close to the optimum, the
probability of deleting it from the population decreases linearly w.r.t. the
population size µ, which is, however, not small enough to make an efficient
optimization. Note that for the case where parent populations work in Sec-
tion 3.1, the probability of deleting the best solution from the population
decreases exponentially w.r.t. µ. Let poly(n) indicate any polynomial of n.

Lemma 3 For the (µ+1)-EA (whereµ ∈ poly(n)) solving OneMax under noise,
if for any solution y with |y|1 > (599n)/600 and any set of µ solutions Q =
{x1, x2, . . . , xµ},

P(fn(y) < minxi∈Q f
n(xi)) ≥ 3/(5(µ+ 1)), (12)

then the expected running time is exponential.

Proof Let ξt denote the population after t iterations of the algorithm. Let
Xt
i denote the number of solutions with i 1-bits in ξt. Let a = b 599n600 c and

b = 20. We first use an inductive proof to show that

∀t ≥ 0, i > a : E(Xt
i ) ≤ µba−i. (13)

For t = 0, due to the uniform initial distribution, we have E(X0
i ) = µ ·

(
(
n
i

)
/2n). Note that for j ≥ 2n

3 ,
(
n
j+1

)
/
(
n
j

)
= n−j

j+1 ≤
n/3

2n/3+1 ≤
1
2 . Thus, for

i > a,
(
n
i

)
/2n ≤

(
n

d 3n4 e+1

)
/
(

n
d 2n3 e

)
≤ ( 12 )

n/12 ≤ ba−n, which implies that ∀i >
a,E(X0

i ) ≤ µba−i. Next we assume that ∀0 ≤ t ≤ k, i > a : E(Xt
i ) ≤ µba−i,

and analyze E(Xk+1
i ) for i > a. Let Xk = (Xk

0 , X
k
1 , ..., X

k
n), l = (l0, l1, ..., ln),

|l|1 =
∑n
i=0 li and p = 3

5(µ+1) . Let x′ denote the offspring solution generated

in the (t + 1)-th iteration of the algorithm, and let xi denote any solution
with i 1-bits. Let Pmut(x, y) denote the probability that x is mutated to y by
bit-wise mutation. We use Pmut(x

j , xi) =
∑
y:|y|1=i Pmut(x

j , y) to denote the
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probability of generating a solution with i 1-bits by mutating any solution
with j 1-bits. Then, we have

E(Xk+1
i −Xk

i ) = E(E(Xk+1
i −Xk

i |Xk))

=
∑
|l|1=µ

P(Xk = l)·

(
P(|x′|1 = i, x′ and any xi in ξk are not deleted |Xk = l)

− P(|x′|1 6= i,one xi in ξk is deleted |Xk = l)
)

≤
∑
|l|1=µ

P(Xk = l) ·
(
P(|x′|1 = i |Xk = l) · (1− (li + 1)p)

− (1− P(|x′|1 = i |Xk = l)) · lip
)

=
∑
|l|1=µ

P(Xk = l) ·
(
P(|x′|1 = i |Xk = l) · (1− p)− lip

)

=
∑
|l|1=µ

P(Xk = l)

 n∑
j=0

lj
µ
· Pmut(x

j , xi) · (1− p)− lip


= (1− p)

n∑
j=0

Pmut(x
j , xi) ·

∑
|l|1=µ

P(Xk = l)
lj
µ
−
∑
|l|1=µ

P(Xk = l)lip

= (1− p)
n∑
j=0

Pmut(x
j , xi) ·

µ∑
lj=0

P(Xk
j = lj)

lj
µ
−

µ∑
li=0

P(Xk
i = li)lip

=
1− p
µ
·
n∑
j=0

Pmut(x
j , xi) · E(Xk

j )− p · E(Xk
i ),

where the second equality is because Xk+1
i − Xk

i = 1 iff |x′| = i and x′ is
added into the population meanwhile the solutions with i 1-bits in ξk are
not deleted; Xk+1

i −Xk
i = −1 iff |x′| 6= i and one solution with i 1-bits in ξk

is deleted, the first inequality is because any solution with i 1-bits is deleted
with probability at least p = 3

5(µ+1) by Eq. (12), and the fourth equality is
because a parent solution is uniformly selected from ξk for mutation. We

further derive an upper bound on 1
µ ·

n∑
j=0

Pmut(x
j , xi) · E(Xk

j ) as follows:

1

µ
·
n∑
j=0

Pmut(x
j , xi) · E(Xk

j )

=
1

µ
·

 a∑
j=0

+

i−1∑
j=a+1

+

i∑
j=i

+

n∑
j=i+1

Pmut(x
j , xi) · E(Xk

j )
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≤
(
n− a
i− a

)(
1

n

)i−a
+

i−1∑
j=a+1

ba−j ·
(
n− j
i− j

)(
1

n

)i−j

+ ba−i ·

((
1− 1

n

)n
+

n−i∑
l=1

(
n− i
l

)(
1

n

)l)
+

n∑
j=i+1

ba−j

≤
(
n− a
n

)i−a
+ ba−i ·

 i−1∑
j=a+1

bi−j
(
n− a
n

)i−j

+
1

e
+

n−i∑
l=1

(
n− a
n

)l
+

n∑
j=i+1

bi−j


≤ ba−i

((
1

b

n

n− a

)a−i
+

1
n

b(n−a) − 1
+

1

e
+

1
n

n−a − 1
+

1

b− 1

)
≤ ba−i/2,

where the first inequality is derived by applying ∀j ≤ a : Pmut(x
j , xi) ≤

Pmut(x
a, xi) ≤

(
n−a
i−a
)
( 1n )

i−a,
∑n
j=0 E(X

k
j ) = E(

∑n
j=0X

k
j ) = µ, ∀j > a :

E(Xk
j ) ≤ µba−j and some simple upper bounds on Pmut(x

j , xi) for j > a,

the third inequality is by ∀0 < c < 1 :
∑+∞
l=1 c

l = c
1−c = 1

1/c−1 , and the last

holds with a = b 599n600 c, b = 20, i > a and large enough n. Combining the
above two formulas, we get

E(Xk+1
i −Xk

i ) ≤ (1− p) · ba−i/2− p · E(Xk
i ),

which implies that

E(Xk+1
i ) ≤ (1− p) · ba−i/2 + (1− p) · E(Xk

i )

≤
(

1

2µ
+ 1

)
· 5µ+ 2

5(µ+ 1)
· µba−i ≤ µba−i,

where the second inequality is by p = 3
5(µ+1) andE(Xk

i ) ≤ µba−i, and the last
inequality holds with µ ≥ 2. Thus, our claim that ∀t ≥ 0,∀i > a : E(Xt

i ) ≤
µba−i holds.

Based on Eq. (13) and Markov’s inequality, we get, for any t ≥ 0, P(Xt
n ≥

1) ≤ E(Xt
n) ≤ µba−n. Note that Xt

n is the number of optimal solutions in
the population after t iterations. Let T = b(n−a)/2. Then, the probability of
finding the optimal solution 1n in T iterations is

P(∃t ≤ T,Xt
n ≥ 1) ≤

T∑
t=0

P(Xt
n ≥ 1) ≤ T · µba−n = µ · b(a−n)/2,

which is exponentially small for µ ∈ poly(n). This implies that the expected
running time for finding the optimal solution is exponential. �
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By verifying the condition of Lemma 3, we prove in Theorem 11 that the
(µ+1)-EA with µ ∈ poly(n) needs exponential time for solving OneMax un-
der segmented noise.

Theorem 11 For the (µ+1)-EA (where µ ∈ poly(n)) solving OneMax under
segmented noise, the expected running time is exponential.

Proof We apply Lemma 3 to prove this result. For any solution y with |y|0 ≤
n/200 andQ = {x1, . . . , xµ}, letAdenote the event that fn(y) < minxi∈Q f

n(xi).
We will show that P(A) ≥ 4

5(µ+1) , which implies that the condition Eq. (12)
holds since |y|0 ≤ n/200 covers the required range of |y|1 > 599n/600.

Let Bl (0 ≤ l ≤ µ) denote the event that l solutions in Q are evaluated
to have negative noisy fitness values. Note that for any x, fn(x) < 0 implies
that |x|0 ≤ n/200, and fn(x) = −n4 − δ where δ ∼ U [0, 1]. For 0 ≤ l ≤ µ,

P(A | Bl) ≥ P(fn(y) < 0 | Bl) · P(A | fn(y) < 0, Bl).

Under the conditions fn(y) < 0 and Bl, the noisy fitness values of y and
the corresponding l solutions in Q satisfy the same continuous distribution
−n4 − δ where δ ∼ U [0, 1], thus

P(A | fn(y) < 0, Bl) ≥
1

l + 1
≥ 1

µ+ 1
.

Then, we get P(A | Bl) ≥ 4
5 ·

1
µ+1 and P(A) =

∑µ
l=0 P(A | Bl) ·P(Bl) ≥

4
5(µ+1) .

By Lemma 3, the theorem holds. �

Next we show in Theorem 12 that using offspring populations is also in-
effective in this case. By using offspring populations, the probability of im-
proving the current fitness becomes very small when the solution is in the
2nd segment (i.e., n

100 < |x|0 ≤ n
50 ). This is because a fair number of off-

spring solutions with fitness no better than the current fitness will be gener-
ated with a high probability, and the current fitness becomes better only if
all these bad offspring solutions and the parent solution are evaluated cor-
rectly, the probability of which almost decreases exponentially w.r.t. λ. Note
that for the (1+λ)-EA solving OneMax under symmetric noise (i.e., Theo-
rem 8), the effectiveness of using offspring populations is due to the small
probability of losing the current fitness, since it requires a fair number of off-
spring solutions with fitness no worse than the current fitness to be evalu-
ated incorrectly. Therefore, we can see that using offspring populations can
generate a fair number of good and bad offspring solutions simultaneously,
and whether it will be effective depends on the concrete noisy problem.

Theorem 12 For the (1+λ)-EA (where λ ∈ poly(n)) solving OneMax under
segmented noise, the expected running time is exponential.

Proof We apply the simplified negative drift theorem with scaling (i.e., The-
orem 3) to prove this result. LetXt = |x|0 denote the number of 0-bits of the
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solution x maintained by the (1+λ)-EA after running t iterations. We con-
sider the interval [ n75 ,

n
50 ], i.e., a = n

75 and b = n
50 in Theorem 3.

First, we analyze E(Xt − Xt+1 | Xt = i) for n
75 < i < n

50 . As the proof of
Theorem 9, the drift is divided into two parts: E+ =

∑i−1
j=0 P(Xt+1 = j | Xt =

i) · (i− j) and E− =
∑n
j=i+1 P(Xt+1 = j | Xt = i) · (j − i).

To analyze E+, we will derive upper bounds on P(Xt+1 = j | Xt = i) sepa-
rately for two cases: n

100 < j < i and 0 ≤ j ≤ n
100 .

(1) n
100 < j < i. Let q =

∑
x′:|x′|0∈{i,i+1} Pmut(x, x

′), i.e., the probability of
generating a solution with i or i+1 0-bits by mutating x. Since it is sufficient
to flip no bits or flip only one 1-bit, q ≥ (1 − 1

n )
n + n−i

n (1 − 1
n )
n−1. Assume

that in the reproduction, exactly k offspring solutions with i or i+1 0-bits are
generated, where 0 ≤ k ≤ λ; it happens with probability

(
λ
k

)
· qk(1 − q)λ−k.

For k = λ, the solution in the next generation must have at least i 0-bits
(i.e., Xt+1 ≥ i). For 0 ≤ k < λ, each of the remaining λ − k solutions has j
0-bits with probability p(j)

1−q , where p(j) :=
∑
x′:|x′|0=j Pmut(x, x

′). Thus, un-
der the condition that exactly k offspring solutions with i or i + 1 0-bits are
generated, the probability that at least one offspring solution has j 0-bits
is 1 − (1 − p(j)

1−q )
λ−k. Furthermore, to make the solution in the next genera-

tion have j 0-bits (i.e.,Xt+1 = j), it is necessary that the fitness evaluation of
these k offspring solutions and the parent solution x is not affected by noise,
the probability of which is ( 12 + 1√

n
)k+1. Thus, we have, for n

100 < j < i,

P(Xt+1 = j | Xt = i)

≤
λ−1∑
k=0

(
λ

k

)
qk(1− q)λ−k

(
1−

(
1− p(j)

1− q

)λ−k)(
1

2
+

1√
n

)k+1

≤
λ−1∑
k=0

(
λ

k

)
· qk(1− q)λ−k · (λ− k) · p(j)

1− q
·
(
1

2
+

1√
n

)k+1

= p(j)λ

(
1

2
+

1√
n

) λ−1∑
k=0

(
λ− 1

k

)(
q

(
1

2
+

1√
n

))k
(1− q)λ−1−k

= p(j)λ

(
1

2
+

1√
n

)(
1− q ·

(
1

2
− 1√

n

))λ−1
≤ p(j)λ

(
2

3

)λ
,

where the last inequality is by q · ( 12 −
1√
n
) ≥ ((1− 1

n )
n+ n−i

n (1− 1
n )
n−1) · ( 12 −

1√
n
) ≥ 1

e · (1−
1
n + 49

50 )(
1
2 −

1√
n
) ≥ 1

3 . For λ ≥ 2, (λ+ 1) · ( 23 )
λ+1/(λ · ( 23 )

λ) =
λ+1
λ ·

2
3 ≤ 1, and note that 1 · 23 ≤ 1 and 2 · ( 23 )

2 ≤ 1. Thus, for n
100 < j < i,

P(Xt+1 = j | Xt = i) ≤ p(j) =
∑

x′:|x′|0=j

Pmut(x, x
′). (14)

(2) 0 ≤ j ≤ n
100 . Because to make Xt+1 = j, it is necessary that at least one

offspring solution with j 0-bits is generated, we have

P(Xt+1 = j | Xt = i) ≤ 1− (1− p(j))λ ≤ λ · p(j) (15)
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≤ λ ·
(

i

i− j

)
1

ni−j
≤ 2λ

2i−j
≤ 2λ

2n/300
,

where the last inequality is by i > n
75 and j ≤ n

100 .
By applying Eqs. (14) and (15) to E+, we get

E+ ≤
∑

n/100<j<i

∑
x′:|x′|0=j

Pmut(x, x
′) · (i− j) +

∑
0≤j≤n/100

2λ

2n/300
· (i− j)

≤ i

n
+

2λ

2n/300
· i ·
( n

100
+ 1
)
≤ i+ 1

n
,

where the second inequality can be directly derived from Eq. (8), and the
last holds with λ ∈ poly(n) and large enough n.
For E−, we have E− =

∑n
j=i+1 P(Xt+1 = j | Xt = i) · (j − i) ≥ P(Xt+1 ≥

i + 1 | Xt = i). To derive a lower bound on P(Xt+1 ≥ i + 1 | Xt = i), it is
sufficient that we consider the case where all the λ offspring solutions have
more than n

100 0-bits (denoted as eventA). Suppose that x′ is generated from
x by mutation, we have P(|x′|0 ≤ n

100 ) ≤
(

i
i−d n100 e

)
· 1

ni−d
n

100
e ≤ 1

(i−d n100 e)!
≤

1

2i−d
n

100
e−1 ≤ 4

2
n

300
. Thus, P(A) ≥ (1 − 4

2
n

300
)λ ≥ 3

4 , where the last inequality
holds with λ ∈ poly(n) and large enough n. Under the condition of A, if
one offspring solution has i + 1 0-bits (which happens with probability at
least n−ien ) and its fitness evaluation is affected by noise (which happens with
probability 1

2 −
1√
n

), it must hold that Xt+1 ≥ i+ 1. Thus, we have

P(Xt+1 ≥ i+ 1 | Xt = i) ≥ 3

4
· n− i
en
·
(
1

2
− 1√

n

)
≥ n− i

8n
,

implying
E− ≥ (n− i)/(8n).

By calculating E+ − E−, we get

E(Xt −Xt+1 | Xt = i) ≤ (i+ 1)/n− (n− i)/(8n) ≤ −1/10,

where the last inequality is by i < n
50 . Thus, condition (1) of Theorem 3 holds

with ε = 1
10 .

Next, we examine conditions (2) and (3) of Theorem 3 by setting r = 3
√
n.

Using the same analysis as Eq. (9) in the proof of Theorem 9, we can get, for
j ≥ 1,

P(|Xt+1 −Xt| ≥ jr | Xt ≥ 1) ≤ 2λ

2bjrc
≤ 4λ

(2
3
√
n)j
≤ 1

ej
,

where the last inequality holds with λ ∈ poly(n) and large enough n. Thus,
condition (2) of Theorem 3 holds. Since r = 3

√
n, ε = 1

10 and l = b− a = n
150 ,

we have 1 ≤ r ≤ min{ε2l,
√
εl/(132 ln(εl))} for large enough n, and thus

condition (3) of Theorem 3 also holds.
Note that εl/(132r2) = Θ( 3

√
n) and X0 ≥ n

50 holds with a high probability
under the uniform initial distribution. Thus, according to Theorem 3, we
can conclude that the expected running time is exponential. �
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In the above proof, we apply the simplified negative drift theorem with
scaling (i.e., Theorem 3) instead of the simplified negative drift theorem (i.e.,
Theorem 2). This is because under the condition of a negative constant drift,
the requirement on the probability of jumping towards or away from the tar-
get state is relaxed by the theorem with scaling, which is easier to be verified
in this studied case.

Finally, we prove in Theorem 13 that the (1+1)-EA using adaptive sam-
pling can solve OneMax under segmented noise in polynomial time. The
employed adaptive sampling strategy is defined as follows.

Definition 5 (Adaptive Sampling) To compare two solutionsx, y, their noisy
fitness is first evaluated once independently. If 3n ≤ |fn(x) − fn(y)| < n4,
this comparison result is directly used (i.e., the sample size m = 1); other-
wise, each solution will be evaluated 5n3 lnn times independently and the
comparison will be based on the average value of these 5n3 lnn fitness eval-
uations (i.e., the sample size m = 5n3 lnn).

Intuitively, when the noisy fitness gap of two solutions is too small or too
large, we increase the sample size to make a more confident comparison.

To prove Theorem 13, we apply the upper bound on the number of itera-
tions of the (1+1)-EA solving noisy OneMax in [15], as presented in Lemma 4.
Let xj denote any solution with j 0-bits. Lemma 4 intuitively means that if
the probability of recognizing the true better solution in the comparison
is large, the running time can be upper bounded. From the proof of Theo-
rem 13, we can find why adaptive sampling is effective in this case. In the
2nd segment (or the 4th segment) of the noisy problem, E(fn(x) − fn(y))
is positive for two solutions x and y with f(x) > f(y), while in the 3rd seg-
ment, it is negative. Thus, a large sample size is better in the 2nd and 4th
segments, while a small one is better in the 3rd segment. According to the
range of the noisy fitness gap of two solutions in each segment, the adap-
tive sampling strategy happens to allocate 5n3 lnn evaluations for compar-
ing two solutions in the 2nd segment (or the 4th segment), while allocate
only one evaluation in the 3rd segment; thus it works.

Lemma 4 [15] Suppose there is a positive constant c ≤ 1/15 and some 2 <
l ≤ n/2 such that

∀0 < i ≤ j : P(f̂(xj) < f̂(xi−1)) ≥ 1− l/n;

∀l < i ≤ j : P(f̂(xj) < f̂(xi−1)) ≥ 1− ci/n,

then the (1+1)-EA optimizes noisy OneMax in expectation in O(n log n) +
n2O(l) iterations.

Theorem 13 For the (1+1)-EA solving OneMax under segmented noise, if us-
ing adaptive sampling in Definition 5, the expected running time isO(n4 log2 n).

Proof We apply Lemma 4 to prove this result. We will show that P(f̂(xj) ≥
f̂(xi−1)), for all 0 < i ≤ j, can be upper bounded by 1/n. As presented in
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Definition 4, fn(x) can be divided into four segments according to the range
of |x|0; in each segment, fn(x) has a specific expression. Thus, we analyze
P(f̂(xj) ≥ f̂(xi−1)) separately by considering i in each segment.
(1) i > n

50 . It holds that ∀j ≥ i,P(f̂(xj) ≥ f̂(xi−1)) = 0, since fn(xj) evaluates
to the true OneMax fitness and fn(xi−1) must be larger.
(2) n

100 + 1 < i ≤ n
50 . If j > n

50 , we easily verify that P(f̂(xj) ≥ f̂(xi−1)) =
0. If j ≤ n

50 , |fn(xj) − fn(xi−1)| < 3n, and thus, both xj and xi−1 will be
evaluated m = 5n3 lnn times according to the adaptive sampling strategy.
Let Y = fn(xi−1)− fn(xj). Based on Eq. (11), we easily get µ := E(Y ) ≥ 2√

n
.

By Hoeffding’s inequality, |fn(xi−1)−fn(xj)| < 3n andm = 5n3 lnn, we have
P(f̂(xj) ≥ f̂(xi−1)) = P(f̂(xi−1)− f̂(xj)− µ ≤ −µ) ≤ exp

(
−2mµ2/(6n)2

)
≤

exp
(
−40n3 lnn/(36n3)

)
≤ 1/n.

(3) n
200 + 1 < i ≤ n

100 + 1. If j ≥ n
100 + 1, it holds that P(f̂(xj) ≥ f̂(xi−1)) = 0,

since the noisy fitness in the 3rd segment of Definition 4 is always larger
than that in the 2nd segment. If j ≤ n

100 , 3n ≤ |fn(xj) − fn(xi−1)| < n4,
and thus, both xj and xi−1 are just evaluated once. Then, we get P(f̂(xj) ≥
f̂(xi−1)) = 1/n, since f̂(xj) ≥ f̂(xi−1) iff f̂(xj) = (2n+ j)3. Note that f̂ is just
fn here, since it performs only one evaluation.
(4) 0 < i ≤ n

200 + 1. If j > n
200 , 0 ≤ fn(xj) ≤ n4. Note that fn(xi−1) = n4(n−

i + 1) or fn(xi−1) ≤ −n4. Thus, |fn(xj) − fn(xi−1)| ≥ n4. If j ≤ n
200 , we can

easily derive that |fn(xj)−fn(xi−1)| < n or≥ n4. Thus, for any j ≥ i, both xj

and xi−1 will be evaluated m = 5n3 lnn times. Let Y = fn(xi−1) − fn(xj). It
is easy to verify µ := E(Y ) ≥ n4/5 and σ2 := Var(Y ) ≤ 2n10. By Chebyshev’s
inequality, P(f̂(xj) ≥ f̂(xi−1)) ≤ σ2

mµ2 ≤ 1
n , where the last inequality holds

with large enough n.
Thus, it holds that ∀0 < i ≤ j : P(f̂(xj) ≥ f̂(xi−1)) ≤ 1/n for large

enough n. Let l = 15 and c = 1/15. The conditions of Lemma 4 are satisfied
and the expected number of iterations is thus O(n log n) +O(n). Since a so-
lution is evaluated by at most 1+5n3 lnn times in one iteration, the expected
running time is O(n4 log2 n). �

5 Conclusion

In this paper, we analyze the effectiveness of sampling in noisy evolution-
ary optimization via rigorous running time analysis. First, we construct a
family of artificial noisy problems to show that when sampling with any
fixed sample size fails, using parent or offspring populations can work. This
complements the previous comparison between populations and sampling
on the robustness to noise, which only showed the superiority of sampling
over populations. Next, through a carefully constructed artificial noisy prob-
lem, we show that when using neither sampling nor populations is effective,
adaptive sampling which uses a dynamic sample size can work. This pro-
vides some theoretical justification for the good empirical performance of
adaptive sampling.
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From the analysis, we can find that for an optimization problem under
noise, if the true fitness order on some solutions is consistent with their ex-
pected noisy fitness order while these two orders are reverse on some other
solutions, we should be very careful when using the sampling strategy. This
is because a consistent order prefers a large sample size while a reverse or-
der requires a small sample size. In such situations, we may use the adaptive
sampling strategy, as shown in Section 4.

The analysis in Section 3 shows that parent and offspring populations
can bring robustness to noise by making the probability of losing the cur-
rent best fitness small. For parent populations, losing the current best fit-
ness requires all non-best solutions in the population to appear better. For
offspring populations, a fair number of offspring solutions with fitness no
worse than the parent solution will be generated, and losing the current fit-
ness requires all these solutions to appear worse. Both events usually occur
with a small probability in noisy environments.

We want to point out that this work is only a start for the running time
analysis of sampling in noisy evolutionary optimization. All the findings are
derived on very artificial noise models. Future work should concentrate on
realistic noise models, e.g., additive Gaussian noise. It would be very inter-
esting to examine whether these findings occur in natural noisy situations.
Also it would be desirable to analyze the effectiveness of some standard
adaptive sampling strategies theoretically.
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