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ABSTRACT

Estimation of distribution algorithms have already demonstrated
their utility when solving a broad range of combinatorial prob-
lems. However, there is still room for methodological improvements
when approaching constrained type problems. The great majority
of works in the literature implement external repairing or penalty
schemes, or use ad-hoc sampling methods in order to avoid un-
feasible solutions. In this work, we present a new way to develop
EDAs for this type of problems by implementing distance-based
exponential probability models defined exclusively on the set of
feasible solutions. In order to illustrate this procedure, we take the
2-partition balanced Graph Partitioning Problem as a case of study,
and design efficient learning and sampling methods in order to use
these distance-based probability models in EDAs.
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1 INTRODUCTION

Estimation of Distribution Algorithms (EDAs) [4] have proved to
be a powerful evolutionary algorithm for solving either artificial or
real-world Combinatorial Optimization Problems (COP). Among
different types of COPs, constrained problems [3] (problems with
restrictions) have shown to be very challenging for EDAs. In general,
a n dimensional constrained COP consists of
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minimizing  f(x), X =(X1,...,Xn)
subjectto, ¢i(x) <0, i=1,...,r
hjx)=0, j=r+1,....,m

where f is the objective function, x is a solution of the search space
Q, and g and h are, respectively, inequality and equality constraints.

Constrained problems introduce a challenging characteristic in
the definition of the solutions in the search space: feasibility. A
solution x is feasible if it holds all the constraints; otherwise it is
unfeasible.

It must be noted that the search space Q is usually composed of
all the solutions that fit in the codification. This point represents
a serious drawback for EDAs, since these algorithms learn a prob-
ability distribution defined on the whole set of solutions induced
by the codification (either feasible or unfeasible), and thus, when
sampling new solutions, both types could be generated. In this
sense, in order to hold the feasibility of the solutions, a number of
approaches have been proposed [6]. However, in all these cases, the
behavior of EDAs is somehow denaturalized as the obtained sample
of solutions does not follow the estimated probability distribution.

In this work we address constrained problems in the framework
of EDAs following a more general research line: design and im-
plement new distance-based exponential probability models that
define a probability distribution only on the set of feasible solu-
tions [2]. In order to design such types of models, we address three
key aspects related to the model: (1) calculate the probability of
any x in Q, (2) given a set {x!,...,x"} of solutions, estimate the
parameters of the probability model, and (3) sample solutions from
the estimated model. For the sake of illustrating this procedure, we
considered the Graph Partitioning Problem (GPP) [5].

2 2-PARTITION BALANCED GPP

Given a weighted undirected graph G = (V, E) with n = |V| vertices,
and the weights w;; between each pair of vertices in G, the balanced
2-partition Graph Partitioning Problem (GPP) is the problem of
finding a 2-partition of the vertices in G while minimizing the total
weights of the edges between sets [5]. The objective function is

formalized as
n n
fx) = Z Z xi(1 = xj)wij
i=1j=1

where any solution x € Q is encoded as a binary vector and x;
indicates the set to which vertex i is assigned. A feasible solution is
subject to the constraint of having the same number of zeros and
ones, i.e., Z?:l x; = n/2. Taking this into account, the search space
of solutions Q is composed of (n'/’z) binary vectors.
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3 DISTANCE-BASED EXPONENTIAL MODEL

Let us consider a distance-based exponential probability model P
defined on a finite (or infinite countable) domain of solutions Q.
Under this model, the probability value of every solution in the
domain, x € Q, is calculated as

e—@d(x,)'c)

¥(6)
where /() is the normalization constant, 8 denotes the spread
of the distribution, and d(x, %) is the distance of x to a reference
solution X. This model assigns every solution x a probability that
decays exponentially with respect to its distance to x.

For the sake of illustrating the approach presented in this man-
uscript, we considered the GPP as a case of study, and we will
individually address each of the three key aspects described above.

The first decision to make is the election of the distance-metric
d, which directly depends on the codification used. As described in
Sec. 2, the solutions of the 2-balanced GPP are codified as binary
vectors of size n, with an equal number of zeros as ones. Among
binary vectors, the most natural distance-metric is the Hamming
distance. However, in this case, it is highly redundant as a solution x
and its complementary solution —x are equal. Therefore, we present
the following distance-metric:

P(x) =

Definition 3.1. Let x be a solution for a 2-balanced GPP problem,
and —x is the negated or complementary solution of x, then the
distance-metric d(x, x) is calculated as

d(x, %) = min{dg(x, x), dg(-x, %)}

Under this metric, the maximum distance K to which a solution
can be defined is | n/2]. The minimum distance is 0 (when x or —x,
are equal to X). Solutions can only be at paired distances in order
to hold the constraint of the balanced 2-partition case. The number

2,2
2) . Note that each

possible solution can be coded with two different binary vectors
(one the negation of the other).

of solutions at distance k (being k even) is (Z;

3.0.1 Computing the probability value. Given a solution x and
the parameters 6 and x, computing P(x) is given by an efficient
computation of the normalization constant ¢(6). Considering the
number of solutions at each distance, this function can be reformu-
lated as follows:

K/2 n/2 2

— -621

OEDY ( l ) e
1=0

3.0.2 Learning. Givenasetx = {x1,... ,xN} of solutions, the

learning step consists of estimating the parameters of the proposed

model: ¥ and 6. In this work, we decided to estimate the MLE of
the parameters. To that end, we calculate the likelihood function

below
("/2)2 -021
; e

where d = % Zfil d(x;, x). This term is independent to that of 6,
so by minimizing Zfi 1 d(xi, %) the likelihood is maximized. Such
an estimation is an optimization task itself. Therefore, we propose
estimating x as the mode solution [1].

K/2
log L(6, #|x) = —ONd — N'log Z
1=0

1

138

J. Ceberio et al.

In order to find the maximum value of 0 that maximizes Eq. 1, we
compute its derivative and equate it to 0, obtaining the expression

K/2

2,

1=0

2
("/ 2) (21 - d)e%% = ¢, @)

l

0 cannot be calculated exactly from Eq. 2 and, thus, we propose
using numerical methods, such as Newton-Raphson to estimate it.

3.0.3 Sampling. Once the parameters of the model have been
estimated, the next step in EDAs is to sample a set of solutions that
follows the previous probability distribution. It is worth to remark
that (1) every solution has the same number of solutions at each
distance, and (2) in the proposed model, all the solution at distance
k from x have the same probability.

Taking those considerations into account, first, a distance k = 2/
at which generate a solution is sampled. The probability under the
proposed model to generate a solution at distance k is

2 -0k
k) = n/z) e

o-|
x|d(x,x)=k k/2) ¥(0)

Once k has been decided, we generate uniformly at random one
solution among those at distance k from the reference solution x.
To that end, we choose u.a.r. k/2 zeros and k/2 ones, and the chosen
items are bit-flipped.

4 CONCLUSIONS

In this work, we propose using distance-based exponential prob-
ability models defined exclusively on the set of feasible solutions.
We took as a case of study the 2-balanced Graph Partitioning Prob-
lem, and addressed the three key aspects related to the model: (1)
calculate the probability of any x in Q, (2) given a set {x',...,x"}
of solutions, estimate the parameters of the probability model, and
(3) sample solutions from the estimated model.
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